CN108993377B - 超薄锌铝类水滑石纳米片及其制备方法和应用 - Google Patents

超薄锌铝类水滑石纳米片及其制备方法和应用 Download PDF

Info

Publication number
CN108993377B
CN108993377B CN201810917300.4A CN201810917300A CN108993377B CN 108993377 B CN108993377 B CN 108993377B CN 201810917300 A CN201810917300 A CN 201810917300A CN 108993377 B CN108993377 B CN 108993377B
Authority
CN
China
Prior art keywords
zinc
aluminum hydrotalcite
ultrathin
preparation
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810917300.4A
Other languages
English (en)
Other versions
CN108993377A (zh
Inventor
王金龙
聂青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201810917300.4A priority Critical patent/CN108993377B/zh
Publication of CN108993377A publication Critical patent/CN108993377A/zh
Application granted granted Critical
Publication of CN108993377B publication Critical patent/CN108993377B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • B01J20/0244Compounds of Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0248Compounds of B, Al, Ga, In, Tl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/2804Sheets with a specific shape, e.g. corrugated, folded, pleated, helical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及超薄锌铝类水滑石纳米片及其制备方法,所述的超薄锌铝类水滑石纳米片可以作为去除染料罗丹明B应用,包括以下步骤:(1)将阴离子表面活性剂和锌铝类水滑石溶解在去离子水中,充分搅匀;(2)将步骤(1)所得的混合溶液进行水热反应;(3)取出样品进行干燥,获得超薄锌铝类水滑石成品。本发明的优点主要体现在:本方法合成的超薄锌铝类水滑石,制备工艺简单,生产成本低,易于大规模生产。超薄锌铝类水滑石结构更薄,比表面积更大、表面活性更强,在降解污染物方面也有更好的效果,所发明的超薄锌铝类水滑石可以在室温下快速去除污染物。

Description

超薄锌铝类水滑石纳米片及其制备方法和应用
技术领域
本发明属于新型材料技术领域,特别涉及超薄锌铝类水滑石纳米片及其制备方法,所述的超薄锌铝类水滑石纳米片可以作为去除染料罗丹明B应用。
背景技术
随着社会的发展和人们生活水平的提高,大量的工业、农业和生活废弃物日益增多,环境问题日益突出,特别是水环境方面。大量的有机物、无机物以及重金属物质破坏了水体的平衡,影响到了人类的健康。传统的水处理方法对生活污水和一般的工业废水具有较好的处理效果,但是印染废水由于其污染物浓度高、成分复杂、可生化性差难以用常规方法进行处理。目前处理印染废水的方法有传统的絮凝沉淀法、光化学氧化法、化学氧化、还原降解法等,但这些方法反应速度慢、运行和回收成本高。吸附法也作为一种有效去除染料的方法,吸附材料主要有活性炭、沸石类矿物等物质,但吸附效果不好,而且重复利用率低,因此,研究一种具有高效吸附性能且价格低廉的吸附材料十分必要。在众多材料中,水滑石与类水滑石作为一类层状化合物,因其在化学和结构上表现出的特殊性质,而成为一种在吸附、离子交换和催化及光、电、磁等方面具有巨大前景的新材料,近年来被广泛关注。
发明内容
本发明将锌铝类水滑石作为吸附剂,提供一种超薄锌铝类水滑石的制备方法及其去除染料性能研究,将现有的锌铝类水滑石变成超薄纳米片,使获得的超薄锌铝类水滑石在去除染料中取得更好的去除效果。另外,该制备方法简单、成本低、不引入其他污染物。
本发明解决上述技术问题所采用的方案是:具有染料吸附能力的超薄锌铝类水滑石的制备方法,包括以下步骤:
(1)将阴离子表面活性剂和锌铝类水滑石溶解在去离子水中,充分搅匀;
(2)将步骤(1)所得的混合溶液进行水热反应;
(3)取出样品进行干燥,获得超薄锌铝类水滑石成品。
按上述方案,所述的锌铝类水滑石的制备方法是:将ZnCl2和AlCl3·6H2O按照Zn/Al=2:1的物质的量之比溶解在去离子水中,充分搅匀后,用NaOH溶液调节pH至9-10,水热反应,反应完成后,水洗,烘干研磨后得到多层结构的具有一定厚度锌铝类水滑石。
按上述方案,所述的锌铝类水滑石的厚度为5-6nm。
按上述方案,所述的超薄锌铝类水滑石,呈纳米片状,尺寸为微米级,厚度为2-3nm,具有六方晶系结构,晶胞参数是a=0.27-0.32nm,c=2.27-2.42nm,层间距为0.75-0.81nm。
按上述方案,所述的阴离子表面活性剂为十二烷基苯磺酸钠、十六烷基磺酸钠、十二烷基硫酸钠中的一种或任意比例的混合物。
按上述方案,所述的阴离子表面活性剂的浓度为0.1~10g/L。
按上述方案,步骤(2)所述的锌铝类水滑石和阴离子表面活性剂的物质的量之比为1:0.02~1:5。
按上述方案,步骤(3)所述的混合溶液的水热温度为50~120℃,时间是0.5~24小时;所述的干燥温度为室温~100℃。
按上述方案,所述的超薄锌铝类水滑石可以在超声辅助下去除水中污染物罗丹明B、甲基橙或者酸性红。
本发明的超薄锌铝类水滑石的制备方法是将锌铝类水滑石纳米片变得更薄,使相同质量的锌铝类水滑石的比表面积更大、表面活性更强,从而在去除水中染料污染物中取得更好的去除效果,另外该制备方法简单、成本低、不引入其他污染物。
本发明的优点主要体现在:
(1)本方法合成的超薄锌铝类水滑石,制备工艺简单,生产成本低,易于大规模生产。
(2)超薄锌铝类水滑石结构更薄,比表面积更大、表面活性更强,在降解污染物方面也有更好的效果。
(3)所发明的超薄锌铝类水滑石可以在室温下快速去除污染物。
附图说明
图1为本发明经超薄处理前后实施例1的XRD图;
图2为锌铝类水滑石经超薄处理前后的场发射扫描电子显微镜照片;图2a为超薄处理前的低倍场发射扫描电镜照片;图2b为超薄处理后的低倍场发射扫描电镜照片;图2c为超薄处理前的高倍场发射扫描电镜照片;图2d为超薄处理后的高倍场发射扫描电镜照片;
图3为锌铝类水滑石经超薄处理前后的场发射透射电子显微镜照片,图3a为超薄处理前的低倍场发射透射电镜照片;图3b为超薄处理后的低倍场发射透射电镜照片;图3c为超薄处理前的高倍场发射透射电镜照片;图3d为超薄处理后的高倍场发射透射电镜照片。
图4为锌铝类水滑石经超薄处理前后的AFM图;
图5为锌铝类水滑石经超薄处理前后的去除罗丹明B效果图。
具体实施方式:
本发明的一种超薄锌铝类水滑石的制备方法,包括锌铝类水滑石和阴离子表面活性剂,所述的锌铝类水滑石是由ZnCl2和AlCl3·6H2O制备的。
下面结合附图,对本发明进一步详细说明。
实施例1:
将1.36g ZnCl2和1.2g AlCl3·6H2O溶解在70mL去离子水中,充分搅匀后用NaOH调节pH至9.5,再将溶液转移至聚四氟乙烯内衬的反应釜中,在140℃条件下进行水热反应24小时,反应完成后,用去离子水洗3遍,烘干研磨后得到多层结构的具有一定厚度(5-6nm)的锌铝类水滑石样品。再将0.01g十二烷基苯磺酸钠和制好的0.5g锌铝类水滑石样品溶解在70mL去离子水中,搅拌均匀后在80℃条件下进行水热反应6h,反应完成后取出,在60℃烘干,即可获得超薄锌铝类水滑石样品。
图1为本发明经超薄处理前后的XRD图,处理前后特征峰相同,说明处理后的超薄锌铝类水滑石样品没有变性。
图2、图3分别为经超薄处理前后的不同放大倍数的锌铝类水滑石样品的场发射扫描电子显微镜照片和场发射透射电子显微镜照片,图2a和2c为处理前的场发射扫描电镜照片,图3a和3c为处理前的场发射透射电镜照片,图2b和2d为处理后的场发射扫描电镜照片,图3b和3d为处理后的场发射透射电镜照片,从图中可以看出,处理前后的锌铝类水滑石样品都呈片状,处理前的样品更厚,片层更多,处理后的锌铝类水滑石样品更薄。
如图4所示,图a表示未经超薄处理样品,厚度为6nm,图b为经超薄处理后样品,厚度为3nm,即通过处理,锌铝类水滑石变薄。
实施例2
将1.36g ZnCl2和1.2g AlCl3·6H2O溶解在70mL去离子水中,充分搅匀后用NaOH调节pH至9-10,再将溶液转移至聚四氟乙烯内衬的反应釜中,在140℃条件下进行水热反应24小时,反应完成后,用去离子水洗3遍,烘干研磨后得到多层结构的具有一定厚度(5-6nm)的锌铝类水滑石样品。再将0.05g十二烷基苯磺酸钠和制好的0.5g锌铝类水滑石样品溶解在70mL去离子水中,搅拌均匀后在80℃条件下进行水热反应6h,反应完成后取出,在60℃烘干,即可获得超薄锌铝类水滑石样品。
实施例3
将1.36g ZnCl2和1.2g AlCl3·6H2O溶解在70mL去离子水中,充分搅匀后用NaOH调节pH至9-10,再将溶液转移至聚四氟乙烯内衬的反应釜中,在140℃条件下进行水热反应24小时,反应完成后,用去离子水洗3遍,烘干研磨后得到多层结构的具有一定厚度(5-6nm)的锌铝类水滑石样品。再将0.1g十二烷基硫酸钠和制好的0.5g锌铝类水滑石样品溶解在70mL去离子水中,搅拌均匀后在80℃条件下进行水热反应12h,反应完成后取出,在60℃烘干,即可获得超薄锌铝类水滑石样品。
实施例4
将1.36g ZnCl2和1.2g AlCl3·6H2O溶解在70mL去离子水中,充分搅匀后用NaOH调节pH至9-10,再将溶液转移至聚四氟乙烯内衬的反应釜中,在140℃条件下进行水热反应24小时,反应完成后,用去离子水洗3遍,烘干研磨后得到多层结构的具有一定厚度的锌铝类水滑石样品。再将0.2g十六烷基磺酸钠和制好的0.5g锌铝类水滑石样品溶解在70mL去离子水中,搅拌均匀后在60℃条件下进行水热反应12h,反应完成后取出,在50℃烘干,即可获得超薄锌铝类水滑石样品。
对比实施例5
将1.36g ZnCl2和1.2g AlCl3·6H2O溶解在70mL去离子水中,充分搅匀后用NaOH调节pH至9-10,再将溶液转移至聚四氟乙烯内衬的反应釜中,在140℃条件下进行水热反应24小时,反应完成后,用去离子水洗3遍,烘干研磨后得到多层结构的具有一定厚度的锌铝类水滑石样品。
实施例6
在室温下测定实施例1~5所获得的样品降解罗丹明B实验。称取0.03g制备的样品到装有100mL的10mg/L的罗丹明B烧杯中,充分搅拌9h后放入超声仪中超声,每小时取溶液离心,并测定罗丹明B溶液在其最大吸收波长处的吸光度,根据吸光度的大小判定罗丹明B的去除率。
吸附降解罗丹明B效果图如图5所示,实施例5是未经过超薄处理的样品,在9小时内,实验中罗丹明B最大波长处的吸光度由2变为1.2,吸附了40%;而实施例2是经过超薄处理后的样品,在9小时内,罗丹明B最大波长处的吸光度由2变为1,吸附了50%,吸附效果得到了提高。另外,实施不同的超薄处理条件,如实施例1与实施例2,处理效果也不同,实施例2在相同的时间内,吸附效率更高,处理效果更好。
如图5所示,样品经超声辅助可以在原有吸附的基础上降解染料。例如实施例5,在超声辅助下,染料罗丹明B最大波长处的吸光度由1.2变为0.8,即染料罗丹明B溶液在1小时内降解了33%;而实施例2中,染料罗丹明B最大波长处的吸光度由1变为0.38,即染料罗丹明B溶液在1小时内降解了62%,故样品在超声辅助下,可以提高染料降解效率。
上述的阴离子表面活性剂为十二烷基苯磺酸钠、十六烷基磺酸钠、十二烷基硫酸钠等;上述的水热反应的方法可以在水浴中恒温加热或在室温下、电热套、可控温的加热装置进行;干燥可以在室温下或用可控温的加热装置进行干燥。
根据上述方法制备出的超薄锌铝类水滑石可应用到超声辅助降解染料罗丹明B、甲基橙或者酸性红等其他染料或者其他污染物中。直接将本发明用来去除罗丹明B,不仅成本低廉,而且反应迅速,去除效果好。

Claims (2)

1.一种具有染料吸附能力的超薄锌铝类水滑石的制备方法,包括以下步骤:
(1)将阴离子表面活性剂和锌铝类水滑石溶解在去离子水中,充分搅匀;
(2)将步骤(1)所得的混合溶液进行水热反应;
(3)取出样品进行干燥,获得超薄锌铝类水滑石成品;
步骤(1)所述的锌铝类水滑石的制备方法是:将 ZnCl2 和 AlCl3·6H2O 按照Zn/Al=2:1 的物质的量之比溶解在去离子水中,充分搅匀后,用NaOH溶液调 节pH至9-10,水热反应,反应完成后,水洗,烘干研磨后得到多层结构厚度为5-6nm的锌铝类水滑石;
步骤(3)所述的超薄锌铝类水滑石,呈纳米片状,尺寸为微米级,厚度为2-3nm,具有六方晶系结构,晶胞参数是a=0.27-0.32nm,c=2.27-2.42nm,层间距为0.75-0.81nm;
步骤(1)所述的阴离子表面活性剂为十二烷基苯磺酸钠、十六烷基磺酸钠、十二烷基硫酸钠中的一种或任意比例的混合物,所述的阴离子表面活性剂的浓度为0.1~10g/L;
步骤(1)所述的锌铝类水滑石和阴离子表面活性剂的物质的量之比为 1:0.02~1:5;
步骤(2)所述的混合溶液的水热温度为 50~120℃,时间是 6~24小时;
步骤(3)所述的干燥温度为室温~100℃。
2.根据权利要求 1 所述的制备方法,其特征在于,所述的超薄锌铝类水滑石在超声辅助下去除水中污染物罗丹明 B、甲基橙或者酸性红。
CN201810917300.4A 2018-08-13 2018-08-13 超薄锌铝类水滑石纳米片及其制备方法和应用 Active CN108993377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810917300.4A CN108993377B (zh) 2018-08-13 2018-08-13 超薄锌铝类水滑石纳米片及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810917300.4A CN108993377B (zh) 2018-08-13 2018-08-13 超薄锌铝类水滑石纳米片及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108993377A CN108993377A (zh) 2018-12-14
CN108993377B true CN108993377B (zh) 2021-04-27

Family

ID=64594582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810917300.4A Active CN108993377B (zh) 2018-08-13 2018-08-13 超薄锌铝类水滑石纳米片及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108993377B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110215894A (zh) * 2019-07-16 2019-09-10 福州大学 一种氨基聚合物修饰层状双氢氧化物及其制备方法和应用
CN111250048B (zh) * 2020-03-02 2022-09-16 东营科尔特新材料有限公司 一种铜锌铝基类水滑石脱硫吸附剂及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515247B (zh) * 2011-12-09 2014-03-26 浙江工业大学 锌铝二元水滑石及其作为光催化材料降解甲基紫的应用
JP2016084263A (ja) * 2014-10-28 2016-05-19 日本碍子株式会社 層状複水酸化物緻密膜の形成方法
EP3015429A1 (en) * 2014-10-30 2016-05-04 Wintershall Holding GmbH Monolayer from at least one layered double hydroxide (LDH)
CN104549130A (zh) * 2014-12-04 2015-04-29 常州大学 一种掺层表面活性剂镍铝水滑石的制备方法
WO2016096626A1 (en) * 2014-12-17 2016-06-23 Unilever N.V. A carrier composition for volatile actives
CN106693945B (zh) * 2016-11-29 2019-10-18 北京化工大学 剥层水滑石纳米片基复合催化剂及其制备方法
CN106674572B (zh) * 2016-12-16 2020-11-03 北京化工大学 超薄改性水滑石的制备及其在橡胶阻气薄膜材料中的应用

Also Published As

Publication number Publication date
CN108993377A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
Guo et al. Synthesis and characterization of ZnNiCr-layered double hydroxides with high adsorption activities for Cr (VI)
CN107298477B (zh) 一种催化过硫酸盐降解废水中有机污染物的方法
Liu et al. Photoreduction of Cr (VI) from acidic aqueous solution using TiO2-impregnated glutaraldehyde-crosslinked alginate beads and the effects of Fe (III) ions
Liu et al. ZnCr-LDH/N-doped graphitic carbon-incorporated g-C3N4 2D/2D nanosheet heterojunction with enhanced charge transfer for photocatalysis
Zhu et al. Efficient degradation of rhodamine B by magnetically separable ZnS–ZnFe2O4 composite with the synergistic effect from persulfate
Zhao et al. Synthesis of Bi2S3 microsphere and its efficient photocatalytic activity under visible-light irradiation
Janani et al. ZnO–Al2O3–CeO2–Ce2O3 mixed metal oxides as a promising photocatalyst for methyl orange photocatalytic degradation
Wang et al. Preparation of a novel sonocatalyst, Au/NiGa2O4-Au-Bi2O3 nanocomposite, and application in sonocatalytic degradation of organic pollutants
Yang et al. Photocatalytic reduction of chromium (VI) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation
Shaniba et al. Sunlight-assisted oxidative degradation of cefixime antibiotic from aqueous medium using TiO2/nitrogen doped holey graphene nanocomposite as a high performance photocatalyst
Liu et al. High-efficient removal of organic dyes from model wastewater using Mg (OH) 2-MnO2 nanocomposite: synergistic effects of adsorption, precipitation, and photodegradation
CN104192967B (zh) 一种Ti3C2纳米片在处理水中高氧化性有毒金属离子的应用
Wang et al. La2Zr2O7/rGO synthesized by one-step sol-gel method for photocatalytic degradation of tetracycline under visible-light
Li et al. Granular activated carbon supported iron as a heterogeneous persulfate catalyst for the pretreatment of mature landfill leachate
CN102886245B (zh) 一种用于废水处理的聚苯胺/海泡石纳米复合纤维的制备方法
CN107445387A (zh) 一种磁性石墨烯二氧化钛纳米复合废水处理剂的制备方法及其应用
Sun et al. Effective removal of nanoplastics from water by cellulose/MgAl layered double hydroxides composite beads
Lu et al. Novel CaCO3/g-C3N4 composites with enhanced charge separation and photocatalytic activity
Kamaraj et al. Facile fabrication of CuO-Pb2O3 nanophotocatalyst for efficient degradation of Rose Bengal dye under visible light irradiation
CN108993377B (zh) 超薄锌铝类水滑石纳米片及其制备方法和应用
CN114849748B (zh) 一种CoS/Ti3C2MXene复合材料的制备及其应用
CN108311162A (zh) 一种ZnO/BiOI异质结光催化剂的制备方法及其应用
Shah Efficient photocatalytic degradation of methyl orange dye using facilely synthesized α-Fe2O3 nanoparticles
CN112125349A (zh) 高耐久的铁酸钴材料及其应用
Ahirwar et al. Synthesis of mesoporous TiO 2 and its role as a photocatalyst in degradation of indigo carmine dye

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant