CN108986984B - 一种n型导电浆料的制备方法 - Google Patents

一种n型导电浆料的制备方法 Download PDF

Info

Publication number
CN108986984B
CN108986984B CN201810610637.0A CN201810610637A CN108986984B CN 108986984 B CN108986984 B CN 108986984B CN 201810610637 A CN201810610637 A CN 201810610637A CN 108986984 B CN108986984 B CN 108986984B
Authority
CN
China
Prior art keywords
parts
coating
slurry
conductive
type conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810610637.0A
Other languages
English (en)
Other versions
CN108986984A (zh
Inventor
陆嘉君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Cuili New Material Technology Co ltd
Original Assignee
Taicang Cuili New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taicang Cuili New Energy Technology Co ltd filed Critical Taicang Cuili New Energy Technology Co ltd
Priority to CN201810610637.0A priority Critical patent/CN108986984B/zh
Publication of CN108986984A publication Critical patent/CN108986984A/zh
Application granted granted Critical
Publication of CN108986984B publication Critical patent/CN108986984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

一种N型导电浆料的制备方法,其特征在于,配方由以下质量比含量的成分组成:去离子水:100份;聚3,4‑乙撑二氧噻吩:1~5份;聚脒:1~6份;N型无机导电填料:0~5份;分散剂:0~3份;消泡剂:0~0.2份;其中聚脒含量不低于加入的聚3,4‑乙撑二氧噻吩含量,分散剂含量不低于无机导电填料含量的1/2,制作方法为将功能成分加入去离子水中,室温~50℃超声波环境下搅拌8~12小时得到稳定导电分散液浆料,将浆料旋涂或刮涂在材料表面,室温~70℃下风干可得到导电涂层。本发明所有原料均为常见廉价化学品,易于规模化量产得到N型导电浆料,分散性好、浆料持久稳定。产品经旋涂或刮涂得到的涂层为N型导电特性,可用于柔性热电器件、柔性光电器件等领域。

Description

一种N型导电浆料的制备方法
技术领域
本发明属于材料化学技术领域,涉及一种N型导电浆料的制备方法。
背景技术
随着智能化电子技术的发展,柔性化成为电子器件的一大发展趋势。柔性导电电极材料研究在全球范围内方兴未艾。目前市场中以共轭导电高分子为基础的多种导电浆料均为P型导电特性,包括德国Clevios生产的PH200~PH1000系列共轭高分子全有机透明导电浆料和比利时Agfa公司的OrgaCon系列的PEDOT导电油墨等。这些导电油墨显示P型导电特性,涂膜后作为空穴传输层(Comparison of performance and stability ofperovskite solar cells with CuInS2 and PH1000hole transport layers fabricatedin a humid atmosphere,Yong Zhai等,Journal of Nanoparticle Research,2017年,19卷,384)。有机光电领域中,柔性N型电极多为蒸镀的小分子化合物,之对应N型高分子导电浆料基本处于空白。高分子导电浆料的丝印工艺在制造成本和稳定性上较之气相蒸镀均有显著优势,因此,高分子为基础的N型导电涂料对柔性电子产业有较大意义。
发明内容
针对现有技术不足,本发明的目的在于提供一种N型导电浆料的制备方法,其特征在于,配方由以下质量比含量的成分组成:
去离子水:100份;
聚3,4-乙撑二氧噻吩:1~5份;
聚脒:1~6份;
N型无机导电填料:0~5份;
分散剂:0~3份;
消泡剂:0~0.2份;
去离子水为溶剂,其余为功能成分,其中聚脒含量不低于加入的聚3,4-乙撑二氧噻吩含量,分散剂含量不低于无机导电填料含量的1/2,制作方法为将功能成分加入去离子水中,室温~50℃超声波环境下搅拌8~12小时得到稳定导电分散液浆料,将浆料旋涂或刮涂在材料表面,室温~70℃下风干可得到导电涂层。
所述原料聚3,4-乙撑二氧噻吩采用化学氧化合成,经氨水去掺杂后烘干。
所述无机导电填料为N型导电特性,包括纳米镍、纳米钴、纳米碳化钨、纳米碳化钛中的一种或其组合。
所述分散剂包括乙酰丙酮、乙二胺四乙酸或其组合。
所述消泡剂包括矿物油、聚硅氧烷、聚醚化合物、改性有机硅中的一种或其组合。
本发明所有原料均为常见廉价化学品,易于规模化量产得到N型导电浆料,分散性好、浆料持久稳定。产品经旋涂或刮涂得到的涂层为N型导电特性,可用于柔性热电器件、柔性光电器件等领域。
本发明的内容和特点已揭示如上,然而前面叙述的本发明仅仅简要地或只涉及本发明的特定部分,本发明的特征可能比在此公开的内容涉及的更多。因此,本发明的保护范围应不限于实施例所揭示的内容,而应该包括在不同部分中所体现的所有内容的组合,以及各种不背离本发明的替换和修饰,并为本发明的权利要求书所涵盖。
具体实施方式
实施例1
一种N型导电浆料的制备方法,配方由以下质量比含量的成分组成:
去离子水:100份;
聚3,4-乙撑二氧噻吩:1份(采用化学氧化合成,经氨水去掺杂后烘干);
聚脒:1份;
去离子水为溶剂,其余为功能成分,制作方法为将功能成分加入去离子水中,室温超声波环境下搅拌8小时得到稳定导电分散液浆料,将浆料旋涂或刮涂在材料表面,70℃下风干可得到导电涂层,电导率12Scm-1,Seebeck系数-22μV/K。
实施例2
一种N型导电浆料的制备方法,配方由以下质量比含量的成分组成:
去离子水:100份;
聚3,4-乙撑二氧噻吩:5份(采用化学氧化合成,经氨水去掺杂后烘干);
聚脒:6份;
纳米镍:4份;
乙酰丙酮:3份;
改性有机硅:0.1份;
去离子水为溶剂,其余为功能成分,制作方法为将功能成分加入去离子水中,50℃超声波环境下搅拌10小时得到稳定导电分散液浆料,将浆料旋涂或刮涂在材料表面,70℃下风干可得到导电涂层,电导率290Scm-1,Seebeck系数-7μV/K。
实施例3
一种N型导电浆料的制备方法,配方由以下质量比含量的成分组成:
去离子水:100份;
聚3,4-乙撑二氧噻吩:3份(采用化学氧化合成,经氨水去掺杂后烘干);
聚脒:3份;
纳米碳化钨:5份;
乙二胺四乙酸:3份;
聚醚化合物:0.2份;
去离子水为溶剂,其余为功能成分,制作方法为将功能成分加入去离子水中,室温超声波环境下搅拌12小时得到稳定导电分散液浆料,将浆料旋涂或刮涂在材料表面,室温下风干可得到导电涂层,电导率106Scm-1,Seebeck系数-6μV/K。
实施例4
一种N型导电浆料的制备方法,配方由以下质量比含量的成分组成:
去离子水:100份;
聚3,4-乙撑二氧噻吩:4份(采用化学氧化合成,经氨水去掺杂后烘干);
聚脒:4份;
纳米碳化钛:3份;
乙酰丙酮:2份;
聚硅氧烷:0.2份;
去离子水为溶剂,其余为功能成分,制作方法为将功能成分加入去离子水中,50℃超声波环境下搅拌10小时得到稳定导电分散液浆料,将浆料旋涂或刮涂在材料表面,60℃下风干可得到导电涂层,电导率79Scm-1,Seebeck系数-6μV/K。

Claims (5)

1.一种N型导电浆料的制备方法,其特征在于,配方由以下质量比含量的成分组成:
去离子水:100份;
聚3,4-乙撑二氧噻吩:1~5份;
聚脒:1~6份;
N型无机导电填料:0~5份;
分散剂:0~3份;
消泡剂:0~0.2份;
去离子水为溶剂,其余为功能成分,其中聚脒含量不低于加入的聚3,4-乙撑二氧噻吩含量,分散剂含量不低于无机导电填料含量的1/2,制作方法为将功能成分加入去离子水中,室温~50℃超声波环境下搅拌8~12小时得到稳定导电分散液浆料,将浆料旋涂或刮涂在材料表面,室温~70℃下风干可得到导电涂层;
所述无机导电填料为N型导电特性,包括纳米镍、纳米钴、纳米碳化钨、纳米碳化钛中的一种或其组合。
2.根据权利要求1所述一种N型导电浆料的制备方法,其特征在于:所述原料聚3,4-乙撑二氧噻吩采用化学氧化合成,经氨水去掺杂后烘干。
3.根据权利要求1所述一种N型导电浆料的制备方法,其特征在于:所述分散剂包括乙酰丙酮、乙二胺四乙酸或其组合。
4.根据权利要求1所述一种N型导电浆料的制备方法,其特征在于:所述消泡剂包括矿物油、聚硅氧烷、聚醚化合物、改性有机硅中的一种或其组合。
5.一种如权利要求1~4任意一项所述的N型导电浆料的制备方法所制作的N型导电浆料。
CN201810610637.0A 2018-06-07 2018-06-07 一种n型导电浆料的制备方法 Active CN108986984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810610637.0A CN108986984B (zh) 2018-06-07 2018-06-07 一种n型导电浆料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810610637.0A CN108986984B (zh) 2018-06-07 2018-06-07 一种n型导电浆料的制备方法

Publications (2)

Publication Number Publication Date
CN108986984A CN108986984A (zh) 2018-12-11
CN108986984B true CN108986984B (zh) 2020-07-28

Family

ID=64540367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810610637.0A Active CN108986984B (zh) 2018-06-07 2018-06-07 一种n型导电浆料的制备方法

Country Status (1)

Country Link
CN (1) CN108986984B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111515379B (zh) * 2020-04-17 2022-12-20 常州联德陶业有限公司 能抑制金属颗粒高温迁移的htcc发热电阻浆料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101868638B1 (ko) * 2012-03-13 2018-06-19 주식회사 케이씨씨 실리콘 태양전지 전면전극용 페이스트 조성물
CN103971784B (zh) * 2013-01-24 2016-08-17 上海九鹏化工有限公司 一种新型有机/无机纳米复合导电浆料及其制备方法
CN104538086B (zh) * 2014-12-05 2017-01-11 北京航空航天大学 水性导电高分子‑石墨烯分散液及其制备方法
CN107293634A (zh) * 2017-06-14 2017-10-24 上海萃励电子科技有限公司 一种新型柔性热电元件的制作方法
CN107579150B (zh) * 2017-09-08 2020-09-15 上海萃励电子科技有限公司 一种平面热电元件的制作方法

Also Published As

Publication number Publication date
CN108986984A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
Chu et al. Air‐stable conductive polymer ink for printed wearable micro‐supercapacitors
KR101135934B1 (ko) 이방성 형태를 갖는 입자들로 이뤄진 전도성 중합체
Ates et al. Conducting polymers and their applications
CN103214882B (zh) 用于形成空穴注入传输层的墨液
Ma et al. Non-covalent stabilization and functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of complex BNNSs-containing structures
Jadoun et al. Tuning the spectral, thermal and fluorescent properties of conjugated polymers via random copolymerization of hole transporting monomers
Choudhury et al. Doping effect of carboxylic acid group functionalized multi-walled carbon nanotube on polyaniline
CN1910204A (zh) 本征导电聚合物的分散体及其制备方法
KR20070112799A (ko) 개선된 전자 성능을 갖는 가용성 폴리(티오펜)의 공중합체
Matras-Postołek et al. Formation and characterization of one-dimensional ZnS nanowires for ZnS/P3HT hybrid polymer solar cells with improved efficiency
CN107431135A (zh) 光电转换元件
CN108986984B (zh) 一种n型导电浆料的制备方法
Das et al. Preparation, characterization and properties of newly synthesized SnO2-polycarbazole nanocomposite via room temperature solution phase synthesis process
Zhu et al. Electrodeposited transparent PEDOT for inverted perovskite solar cells: Improved charge transport and catalytic performances
Liu et al. Systematically investigating the effect of the aggregation behaviors in solution on the charge transport properties of BDOPV-based polymers with conjugation-break spacers
Ugraskan et al. Enhanced thermoelectric properties of highly conductive poly (3, 4-ethylenedioxy thiophene)/exfoliated graphitic carbon nitride composites
US11205753B2 (en) Use of sequential processing for highly efficient organic solar cells based on conjugated polymers with temperature dependent aggregation
KR20110074305A (ko) 유기산이 이차도핑된 폴리아닐린의 전도도 향상 방법 및 그 박막의 제조 방법
Hong et al. Effect of aggregation behavior and phenolic hydroxyl group content on the performance of lignosulfonate doped PEDOT as a hole extraction layer in polymer solar cells
Charekhah et al. Bulk heterojunction solar cells based on polyaniline/multi wall carbon nanotube: from morphology control to cell efficiency
CN104183703A (zh) 纳米结构的全聚合物太阳电池及其制备方法
Sharma et al. Polymeric materials for printed electronics application
Shi et al. Synthesis and characterization of polypyrrole doped by cage silsesquioxane with carboxyl groups
WO2018068720A1 (en) Materials and facbrication methods for tandem organic photovoltaic cells
Aoai et al. Photo doping process of conductive polymer with PAG and application for organic thermoelectric materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240626

Address after: Room 210, Maker Space, 5th Floor, Commercial and Office Building, Hefei University City Commercial Center, North Danxia Road and West Feicui Road, Economic and Technological Development Zone, Hefei City, Anhui Province, 230601

Patentee after: HEFEI CUILI NEW MATERIAL TECHNOLOGY CO.,LTD.

Country or region after: China

Address before: No. 20 Jianxiong Road, Science and Education New City, Taicang City, Jiangsu Province, 215411

Patentee before: TAICANG CUILI NEW ENERGY TECHNOLOGY Co.,Ltd.

Country or region before: China