WO2018068720A1 - Materials and facbrication methods for tandem organic photovoltaic cells - Google Patents

Materials and facbrication methods for tandem organic photovoltaic cells Download PDF

Info

Publication number
WO2018068720A1
WO2018068720A1 PCT/CN2017/105658 CN2017105658W WO2018068720A1 WO 2018068720 A1 WO2018068720 A1 WO 2018068720A1 CN 2017105658 W CN2017105658 W CN 2017105658W WO 2018068720 A1 WO2018068720 A1 WO 2018068720A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic photovoltaic
photovoltaic cell
metal oxide
tandem organic
layer
Prior art date
Application number
PCT/CN2017/105658
Other languages
French (fr)
Inventor
He Yan
Shangshang CHEN
Original Assignee
He Yan
Chen Shangshang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by He Yan, Chen Shangshang filed Critical He Yan
Publication of WO2018068720A1 publication Critical patent/WO2018068720A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/08Naphthalimide dyes; Phthalimide dyes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to photovoltaic cells (organic solar cells) and interlayers in photovoltaic cells, methods for their preparation and intermediates used therein, the use of formulations containing such interlayer as recombination layer in tandem organic photovoltaic cells, organic photovoltaic cell devices made from these formulations.
  • OSCs organic solar cells
  • tandem solar cell structure which can increase the voltage of the cell and also broaden its absorption range.
  • recombination layer also called interconnecting layer, plays critical roles, including collecting holes from one sub-cell and electrons from the other, as well as working as a hole-electron recombination zone free of potential losses simultaneously.
  • the recombination layer be processed and treated using rather mild conditions.
  • Some of the reported interlayers such as PEDOT: PSS, nanoparticle-based ZnO) require harsh thermal annealing up to 150 °C, which may ruin the morphology of the underlying active layer, as the morphology of state-of-the-art OSC blends is rather sensitive to temperature. Therefore, it is important to develop an all-solution processed recombination layer without the need of any harsh post-treatments.
  • the tandem organic solar cells of the present teachings consist of solution processed active layers and interlayers.
  • a tandem organic photovoltaic cell comprises: (1) at least two photoactive layers; (2) two external electrodes; and (3) at least one shared electrode that is disposed between two respective adjacent photoactive layers and connects them to each electrically and mechanically, wherein the shared electrode comprises a conducting polymer layer and a metal oxide layer, the two layers do not require any thermal treatment above 110 degrees Celsius.
  • a tandem organic photovoltaic cell comprises: (1) at least two photoactive layers; (2) two external electrodes; and (3) at least one shared electrode that is disposed between two respective adjacent photoactive layers and connects them to each electrically and mechanically, wherein at least one of photoactive layers comprises an acceptor component that has a chemical structure containing a perylenediimide (PDI) sub-unit.
  • the acceptor component may comprise 2-4 perylenediimide (PDI) sub-units.
  • a method for forming a tandem organic photovoltaic cell comprises: (1) providing a first photoactive layer on a substrate; (2) providing a conducting polymer solution; (3) coating the conducting polymer solution on the first photoactive layer to form a conducting polymer pre-layer; (4) providing a precursor solution (diethyl zinc precursor solution is preferred) ; (5) coating the precursor solution on the conducting polymer pre-layer, wherein at least part of the precursors react with water molecules from the conducting polymer pre-layer to convert into metal oxide, so as to form a metal oxide layer on a conducting polymer layer; (6) performing a annealing process, wherein the annealing temperature ranges from 50 degrees Celsius to 100 degrees Celsius and the annealing time of the annealing process may range from 5 min to 30 min; and (7) forming a second photoactive layer on the metal oxide layer.
  • the recombination layer of the present invention include a hole-transporting layer PEDOT: PSS of the formula:
  • n, x and y are as defined herein.
  • the PEDOT: PSS can be dispersed in a variety of polar solvents, including water, methanol, ethanol, isopropyl alcohol and aminoethanol.
  • polar solvents including water, methanol, ethanol, isopropyl alcohol and aminoethanol.
  • Various additives, surfactants or stabilizers, including dimethyl sulfoxide, fluorinated surfactants and so on, can be added into the PEDOT: PSS solution to alter its wettability, mobility or acidity-basicity.
  • the recombination layer of the present invention includes a hole-transporting layer such as PANI or polypyrole.
  • the recombination layers of the present invention include an electron-transporting layer ZnO from a precursor of diethyl Zinc (DEZ) of the formula:
  • DEZ can be dispersed various organic solvents, including hexane, toluene, tetrahydrofuran and so on.
  • the recombination layers of the present invention include an electron-transporting layer SnO processed from solutions.
  • the recombination layers of the present invention include an electron-transporting layer that contains the mixture of a metal oxide (such as ZnO, AlZnO or SnO) and a conducting polymer (such as PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole) .
  • a metal oxide such as ZnO, AlZnO or SnO
  • a conducting polymer such as PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole
  • the present invention further relates to a recombination layer consisting a hole-transporting layer PEDOT: PSS. which has an average molecular weight in the range of 1,000-1,000,000 gram/mole.
  • the present invention further relates to the use of a formulation as described above and below as a coating or printing interlayer, especially for the preparation of OE devices and rigid or flexible organic photovoltaic (OSC) cells and devices.
  • a formulation as described above and below as a coating or printing interlayer, especially for the preparation of OE devices and rigid or flexible organic photovoltaic (OSC) cells and devices.
  • OSC organic photovoltaic
  • the present invention further relates to an OE device prepared from a formulation as described above and below.
  • the OE devices contemplated in this regard include, without limitation, organic field effect transistors (OFET) , integrated circuits (IC) , thin film transistors (TFT) , Radio Frequency Identification (RFID) tags, organic light emitting diodes (OLED) , organic light emitting transistors (OLET) , electroluminescent displays, organic photovoltaic (OSC) cells, organic solar cells (O-SC) , flexible OSCs and O-SCs, organic laser diodes (O-laser) , organic integrated circuits (O-IC) , lighting devices, sensor devices, electrode materials, photoconductors, photodetectors, electrophotographic recording devices, capacitors, charge injection layers, Schottky diodes, planarising layers, antistatic films, conducting substrates, conducting patterns, photoconductors, electrophotographic devices, organic memory devices, biosensors and biochips.
  • OFET organic field effect transistors
  • the formulations, methods and devices of the present invention provide surprising improvements in the efficiency of the OE devices and the production thereof. Unexpectedly, the performance, the lifetime and the efficiency of the OE devices can be improved, if these devices are achieved by using a formulation of the present subject matter. Furthermore, the formulation of the present subject matter provides an astonishingly high level of film forming. Especially, the homogeneity and the quality of the films can be improved. In addition thereto, the present subject matter enables better solution printing of OE devices, especially OSC devices.
  • the recombination layer of the present teachings can work as an interconnecting layer efficiently in tandem solar cells, including collecting holes from one sub-cell and electrons from the other, as well as working as a hole-electron recombination zone free of potential losses simultaneously
  • the recombination layer of the present teachings can be used in a variety of tandem solar cells, including organic solar cells (OSCs) and perovskite solar cells or hybrid solar cells.
  • OSCs organic solar cells
  • perovskite solar cells or hybrid solar cells.
  • FIG. 1 Atomic Force Microscope (AFM) height (left) and cross-section (right) images of glass/ITO/P3TEA: SF-PDI 2 /PEDOT: PSS/ZnO (scan area is 1 ⁇ m ⁇ 1 ⁇ m and the vertical data scale is 10 nm) .
  • AFM Atomic Force Microscope
  • FIG. 2 Current-voltage and EQE curves of P3TEA: SF-PDI 2 double-junction solar cell with various thickness of two sub-cells.
  • FIG. 3 EQE curves of an optimized P3TEA: SF-PDI 2 double-junction solar cell.
  • compositions of the present teachings can also consist essentially of, or consist of, the recited components, and that the processes of the present teachings can also consist essentially of, or consist of, the recited process steps.
  • a "p-type semiconductor material” or a “donor” material refers to a semiconductor material, for example, an organic semiconductor material, having holes as the majority current or charge carriers.
  • a p-type semiconductor material when deposited on a substrate, it can provide a hole mobility in excess of about 10 -5 cm 2 /Vs.
  • a p-type semiconductor In the case of field-effect devices, a p-type semiconductor also can exhibit a current on/off ratio of greater than about 10.
  • an "n-type semiconductor material” or an “acceptor” material refers to a semiconductor material, for example, an organic semiconductor material, having electrons as the majority current or charge carriers.
  • an n-type semiconductor material when deposited on a substrate, it can provide an electron mobility in excess of about 10 -5 cm 2 /Vs. In the case of field-effect devices, an n-type semiconductor also can exhibit a current on/off ratio of greater than about 10.
  • mobility refers to a measure of the velocity with which charge carriers, for example, holes (or units of positive charge) in the case of a p-type semiconductor material and electrons (or units of negative charge) in the case of an n-type semiconductor material, move through the material under the influence of an electric field.
  • charge carriers for example, holes (or units of positive charge) in the case of a p-type semiconductor material and electrons (or units of negative charge) in the case of an n-type semiconductor material
  • a compound can be considered “ambient stable” or “stable at ambient conditions” when a transistor incorporating the compound as its semiconducting material exhibits a carrier mobility that is maintained at about its initial measurement when the compound is exposed to ambient conditions, for example, air, ambient temperature, and humidity, over a period of time.
  • ambient stable if a transistor incorporating the compound shows a carrier mobility that does not vary more than 20%or more than 10%from its initial value after exposure to ambient conditions, including, air, humidity and temperature, over a 3 day, 5 day, or 10 day period.
  • fill factor is the ratio (given as a percentage) of the actual maximum obtainable power, (Pm or Vmp *Jmp) , to the theoretical (not actually obtainable) power, (Jsc *Voc) . Accordingly, FF can be determined using the equation:
  • Jmp and Vmp represent the current density and voltage at the maximum power point (Pm) , respectively, this point being obtained by varying the resistance in the circuit until J *V is at its greatest value; and Jsc and Voc represent the short circuit current and the open circuit voltage, respectively.
  • Fill factor is a key parameter in evaluating the performance of solar cells. Commercial solar cells typically have a fill factor of about 0.60%or greater.
  • the open-circuit voltage is the difference in the electrical potentials between the anode and the cathode of a device when there is no external load connected.
  • the power conversion efficiency (PCE) of a solar cell is the percentage of power converted from absorbed light to electrical energy.
  • the PCE of a solar cell can be calculated by dividing the maximum power point (Pm) by the input light irradiance (E, in W/m2) under standard test conditions (STC) and the surface area of the solar cell (Ac in m2) .
  • STC typically refers to a temperature of 25°C and an irradiance of 1000 W/m2 with an air mass 1.5 (AM 1.5) spectrum.
  • a component such as a thin film layer
  • a component can be considered "photoactive" if it contains one or more compounds that can absorb photons to produce excitons for the generation of a photocurrent.
  • solution-processable refers to compounds (e.g., polymers) , materials, or compositions that can be used in various solution-phase processes including spin-coating, printing (e.g., inkjet printing, gravure printing, offset printing and the like) , spray coating, electrospray coating, drop casting, dip coating, blade coating, and the like.
  • a "semicrystalline polymer” refers to a polymer that has an inherent tendency to crystallize at least partially either when cooled from a melted state or deposited from solution, when subjected to kinetically favorable conditions such as slow cooling, or low solvent evaporation rate and so forth.
  • the crystallization or lack thereof can be readily identified by using several analytical methods, for example, differential scanning calorimetry (DSC) and/or X-ray diffraction (XRD) .
  • annealing refers to a post-deposition heat treatment to the semicrystalline polymer film in ambient or under reduced/increased pressure for a time duration of more than 100 seconds
  • annealing temperature refers to the maximum temperature that the polymer film is exposed to for at least 60 seconds during this process of annealing.
  • DSC differential scanning calorimetry
  • XRD X-ray diffraction
  • polymeric compound refers to a molecule including a plurality of one or more repeating units connected by covalent chemical bonds.
  • a polymeric compound can be represented by General Formula I:
  • each Ma and Mb is a repeating unit or monomer.
  • the polymeric compound can have only one type of repeating unit as well as two or more types of different repeating units. When a polymeric compound has only one type of repeating unit, it can be referred to as a homopolymer. When a polymeric compound has two or more types of different repeating units, the term "copolymer” or “copolymeric compound” can be used instead.
  • a copolymeric compound can include repeating units where Ma and Mb represent two different repeating units. Unless specified otherwise, the assembly of the repeating units in the copolymer can be head-to-tail, head-to-head, or tail-to-tail.
  • the copolymer can be a random copolymer, an alternating copolymer, or a block copolymer.
  • General Formula I can be used to represent a copolymer of Ma and Mb having x mole fraction of Ma and y mole fraction of Mb in the copolymer, where the manner in which comonomers Ma and Mb is repeated can be alternating, random, regiorandom, regioregular, or in blocks, with up to z comonomers present.
  • a polymeric compound in addition to its composition, can be further characterized by its degree of polymerization (n) and molar mass (e.g., number average molecular weight (M) and/or weight average molecular weight (Mw) depending on the measuring technique (s) ) .
  • halo or halogen refers to fluoro, chloro, bromo, and iodo.
  • alkyl refers to a straight-chain or branched saturated hydrocarbon group.
  • alkyl groups include methyl (Me) , ethyl (Et) , propyl (e.g., n-propyl and z'-propyl) , butyl (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) , pentyl groups (e.g., n-pentyl, z'-pentyl, -pentyl) , hexyl groups, and the like.
  • an alkyl group can have 1 to 40 carbon atoms (i.e., C1-40 alkyl group) , for example, 1-30 carbon atoms (i.e., C1-30 alkyl group) .
  • an alkyl group can have 1 to 6 carbon atoms, and can be referred to as a "lower alkyl group. " Examples of lower alkyl groups include methyl, ethyl, propyl (e.g., n-propyl and z'-propyl) , and butyl groups (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) .
  • alkyl groups can be substituted as described herein.
  • An alkyl group is generally not substituted with another alkyl group, an alkenyl group, or an alkynyl group.
  • alkenyl refers to a straight-chain or branched alkyl group having one or more carbon-carbon double bonds.
  • alkenyl groups include ethenyl, propenyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl groups, and the like.
  • the one or more carbon-carbon double bonds can be internal (such as in 2-butene) or terminal (such as in 1-butene) .
  • an alkenyl group can have 2 to 40 carbon atoms (i.e., C2-40 alkenyl group) , for example, 2 to 20 carbon atoms (i.e., C2-20 alkenyl group) .
  • alkenyl groups can be substituted as described herein.
  • An alkenyl group is generally not substituted with another alkenyl group, an alkyl group, or an alkynyl group.
  • a "fused ring” or a “fused ring moiety” refers to a polycyclic ring system having at least two rings where at least one of the rings is aromatic and such aromatic ring (carbocyclic or heterocyclic) has a bond in common with at least one other ring that can be aromatic or non-aromatic, and carbocyclic or heterocyclic.
  • aromatic ring or heterocyclic
  • These polycyclic ring systems can be highly p-conjugated and optionally substituted as described herein.
  • heteroatom refers to an atom of any element other than carbon or hydrogen and includes, for example, nitrogen, oxygen, silicon, sulfur, phosphorus, and selenium.
  • aryl refers to an aromatic monocyclic hydrocarbon ring system or a polycyclic ring system in which two or more aromatic hydrocarbon rings are fused (i.e., having a bond in common with) together or at least one aromatic monocyclic hydrocarbon ring is fused to one or more cycloalkyl and/or cycloheteroalkyl rings.
  • An aryl group can have 6 to 24 carbon atoms in its ring system (e.g., C6-24 aryl group) , which can include multiple fused rings.
  • a polycyclic aryl group can have 8 to 24 carbon atoms. Any suitable ring position of the aryl group can be covalently linked to the defined chemical structure.
  • aryl groups having only aromatic carbocyclic ring include phenyl, 1-naphthyl (bicyclic) , 2-naphthyl (bicyclic) , anthracenyl (tricyclic) , phenanthrenyl (tricyclic) , pentacenyl (pentacyclic) , and like groups.
  • polycyclic ring systems in which at least one aromatic carbocyclic ring is fused to one or more cycloalkyl and/or cycloheteroalkyl rings include, among others, benzo derivatives of cyclopentane (i.e., an indanyl group, which is a 5, 6-bicyclic cycloalkyl/aromatic ring system) , cyclohexane (i.e., a tetrahydronaphthyl group, which is a 6, 6-bicyclic cycloalkyl/aromatic ring system) , imidazoline (i.e., a benzimidazolinyl group, which is a 5, 6-bicyclic cycloheteroalkyl/aromatic ring system) , and pyran (i.e., a chromenyl group, which is a 6, 6-bicyclic cycloheteroalkyl/aromatic ring system) .
  • aryl groups include benzodioxanyl, benzodioxolyl, chromanyl, indolinyl groups, and the like.
  • aryl groups can be substituted as described herein.
  • an aryl group can have one or more halogen substituents, and can be referred to as a "haloaryl” group.
  • Perhaloaryl groups i.e., aryl groups where all of the hydrogen atoms are replaced with halogen atoms (e.g., -C6F5) , are included within the definition of "haloaryl.
  • an aryl group is substituted with another aryl group and can be referred to as a biaryl group. Each of the aryl groups in the biaryl group can be substituted as disclosed herein.
  • heteroaryl refers to an aromatic monocyclic ring system containing at least one ring heteroatom selected from oxygen (O) , nitrogen (N) , sulfur (S) , silicon (Si) , and selenium (Se) or a polycyclic ring system where at least one of the rings present in the ring system is aromatic and contains at least one ring heteroatom.
  • Polycyclic heteroaryl groups include those having two or more heteroaryl rings fused together, as well as those having at least one monocyclic heteroaryl ring fused to one or more aromatic carbocyclic rings, non-aromatic carbocyclic rings, and/or non-aromatic cycloheteroalkyl rings.
  • a heteroaryl group as a whole, can have, for example, 5 to 24 ring atoms and contain 1-5 ring heteroatoms (i.e., 5-20 membered heteroaryl group) .
  • the heteroaryl group can be attached to the defined chemical structure at any heteroatom or carbon atom that results in a stable structure. Generally, heteroaryl rings do not contain O-O, S-S, or S-0 bonds. However, one or more N or S atoms in a heteroaryl group can be oxidized (e.g., pyridine Noxide thiophene S-oxide, thiophene S, S-dioxide) .
  • heteroaryl groups include, for example, the 5-or 6-membered monocyclic and 5-6 bicyclic ring systems shown below: where T is O, S, NH, N-alkyl, N-aryl, N- (arylalkyl) (e.g., N-benzyl) , SiH2, SiH (alkyl) , Si (alkyl) 2, SiH (arylalkyl) , Si (arylalkyl) 2, or Si (alkyl) (arylalkyl) .
  • T is O, S, NH, N-alkyl, N-aryl, N- (arylalkyl) (e.g., N-benzyl) , SiH2, SiH (alkyl) , Si (alkyl) 2, SiH (arylalkyl) , Si (arylalkyl) 2, or Si (alkyl) (arylalkyl) .
  • heteroaryl rings examples include pyrrolyl, furyl, thienyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, isothiazolyl, thiazolyl, thiadiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, indolyl, isoindolyl, benzofuryl, benzothienyl, quinolyl, 2-methylquinolyl, isoquinolyl, quinoxalyl, quinazolyl, benzotriazolyl, benzimidazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzoxadiazolyl, benzoxazolyl, cinnolinyl, lH-indazolyl, 2H-indazo
  • heteroaryl groups include 4, 5, 6, 7-tetrahydroindolyl, tetrahydroquinolinyl, benzothienopyridinyl, benzofuropyridinyl groups, and the like.
  • heteroaryl groups can be substituted as described herein.
  • fullerene useful herein can be selected from the group consisting of:
  • n 1, 2, 4, 5, or 6;
  • each Ar is independently selected from the group consisting of monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked;
  • each Ar 1 is independently selected from the group consisting of monocyclic, bicyclic and polycyclic heteroaryl groups, wherein each Ar 1 may contain one to five of said heteroaryl groups each of which may be fused or linked;
  • each Ar 2 is independently selected from aryl groups containing more than 6 atoms excluding H;
  • fullerene ball represents a fullerene selected from the group consisting of C60, C70, C84, and other fullerenes.
  • the fullerene is substituted by one or more functional groups selected from the group consisting of:
  • each Ar is independently selected from the group consisting of monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, or may contain one to five such groups, either fused or linked;
  • each Ar 1 is independently selected from the group consisting of monocyclic, bicyclic and polycyclic heteroaryl groups, wherein each Ar 1 may contain one to five of said heteroaryl groups each of which may be fused or linked;
  • each Ar 2 is independently selected from aryl groups containing more than 6 atoms excluding H;
  • fullerene ball represents a fullerene selected from the group consisting of C60, C70, C84, and other fullerenes.
  • the formulation is further characterized in that the fullerene is selected from the group consisting of:
  • the formulation is further characterized in that the fullerene is selected from the group consisting of:
  • the formulation is further characterized in that the fullerene is selected from the group consisting of:
  • each m 1, 2, 4, 5, or 6;
  • each R 1 and R 2 is independently selected from the group consisting of C1-4 straight and branched chain alkyl groups
  • fullerene ball represents a fullerene from the group consisting of C60, C70, C84, and other fullerenes.
  • the formulation is further characterized in that the fullerene is selected from the group consisting of:
  • an organic electronic (OE) device comprises a coating or printing ink containing the formulation. Another exemplary embodiment is further characterized in that the OE device is an organic field effect transistor (OFET) device. Another exemplary embodiment is further characterized in that the OE device is an organic photovoltaic (OSC) device.
  • OFET organic field effect transistor
  • OSC organic photovoltaic
  • Formulations of the present teachings can exhibit semiconductor behavior such as optimized light absorption/charge separation in a photovoltaic device; charge transport/recombination/light emission in a light-emitting device; and/or high carrier mobility and/or good current modulation characteristics in a field-effect device.
  • the present formulations can possess certain processing advantages such as solution-processability and/or good stability (e.g., air stability) in ambient conditions.
  • the formulations of the present teachings can be used to prepare either p-type (donor or hole-transporting) , n-type (acceptor or electron-transporting) , or ambipolar semiconductor materials, which in turn can be used to fabricate various organic or hybrid optoelectronic articles, structures and devices, including organic photovoltaic devices and organic light-emitting transistors.
  • a tandem organic photovoltaic cell comprises: (1) at least two photoactive layers; (2) two external electrodes; and (3) at least one shared electrode that is disposed between two respective adjacent photoactive layers and connects them to each electrically and mechanically, wherein the shared electrode comprises a conducting polymer layer and a metal oxide layer, the two layers do not require any thermal treatment above 110 degrees Celsius.
  • the photoactive layers and the at least one shared electrode are processed from solutions.
  • the above-mentioned conducting polymer layer comprises a conducting polymer selected from PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole.
  • the above-mentioned metal oxide layer comprises a metal oxide selected from ZnO, AlZnO or SnO, wherein the metal oxide layer is not deposited from a solution containing nanoparticles of the respective metal oxide.
  • the metal oxide layer is processed from a precursor solution and the precursor reacts with water molecules to convert into metal oxide.
  • the precursor solution is diethyl zinc precursor solution.
  • At least one of the photoactive layers comprises an acceptor component that has a chemical structure containing perylenediimide (PDI) sub-unit.
  • PDI perylenediimide
  • a tandem organic photovoltaic cell comprises: (1) at least two photoactive layers; (2) two external electrodes; and (3) at least one shared electrode that is disposed between two respective adjacent photoactive layers and connects them to each electrically and mechanically, wherein at least one of photoactive layers comprises an acceptor component that has a chemical structure containing a perylenediimide (PDI) sub-unit.
  • the acceptor component may comprise 2-4 perylenediimide (PDI) sub-units.
  • the perylenediimide (PDI) sub-unit is selected from:
  • R 1 and R 2 are selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, or an aryl group;
  • X is S, O, or Se.
  • the perylenediimide (PDI) sub-unit is selected from:
  • R is selected from the group consisting of straight-chain, branched, and cyclic alkyl groups with 2-40 C atoms.
  • the above-mentioned conducting polymer layer comprises a conducting polymer selected from PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole.
  • the above-mentioned metal oxide layer comprises a metal oxide selected from ZnO, AlZnO or SnO, wherein the metal oxide layer is not deposited from a solution containing nanoparticles of the respective metal oxide.
  • the metal oxide layer is processed from a precursor solution and the precursor reacts with water molecules to convert into metal oxide.
  • the precursor solution is diethyl zinc precursor solution.
  • a method for forming a tandem organic photovoltaic cell comprises: (1) providing a first photoactive layer on a substrate; (2) providing a conducting polymer solution; (3) coating the conducting polymer solution on the first photoactive layer to form a conducting polymer pre-layer; (4) providing a precursor solution (diethyl zinc precursor solution is preferred) ; (5) coating the precursor solution on the conducting polymer pre-layer, wherein at least part of the precursors react with water molecules from the conducting polymer pre-layer to convert into metal oxide, so as to form a metal oxide layer on a conducting polymer layer; (6) performing a annealing process, wherein the annealing temperature ranges from 50 degrees Celsius to 100 degrees Celsius and the annealing time of the annealing process may range from 5 min to 30 min; and (7) forming a second photoactive layer on the metal oxide layer.
  • the above-mentioned conducting polymer layer comprises a conducting polymer selected from PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole.
  • Step 1 Preparation of PEDOT: PSS solution.
  • the PEDOT: PSS precursor solution can be prepared by diluting commercially available aqueous dispersions with polar solvents, including water, methanol, ethanol, isopropyl alcohol, aminoethanol and so on, in a weight ratio from 0.1 %to 10 %.
  • polar solvents including water, methanol, ethanol, isopropyl alcohol, aminoethanol and so on
  • Various additives, surfactants or stabilizers, including dimethyl sulfoxide, fluorinated surfactants and so on, can be added into the PEDOT: PSS solution to alter its wettability, mobility or acidity-basicity.
  • Step 2 Preparation of ZnO precursor.
  • DEZ precursor can be prepared by dissolving DEZ in various organic solvents, including hexane, toluene, tetrahydrofuran and so on, in a weight ratio from 0.1 %to 2 %.
  • Example 2a Fabrication of double-junction tandem solar cells based on non- fullerene acceptors
  • Diethylzinc (15 %wt in toluene) and vanadium (V) oxide (V 2 O 5 ) were purchased from Sigma-Aldrich and used as received without further treatment. The synthesis of P3TEA and SF-PDI 2 can be found elsewhere. Pre-patterned ITO-coated glass substrates were cleaned by sequential sonication in soap deionized water, deionized water, acetone, and isopropanol for 30 min of each step.
  • a ZnO electron-transporting layer ( ⁇ 23 nm) was prepared by spin-coating a ZnO precursor solution (diethyl zinc, diluted with tetrahydrofuran) at 5000 rpm, and then annealed at 100 °C for 15 min.
  • Active layer solutions (P3TEA: SF-PDI 2 ratio 1: 1.5 w/w) were prepared in 1, 2, 4-trimethylbenzene (polymer concentration: 9 mg mL -1 , 1, 8-octanedithiol 2.5 %v/v as additive) .
  • the active layer solution should be stirred on a hotplate at 90 °C for at least 1 hour.
  • both the polymer solution and substrates were preheated on a hotplate at ⁇ 90 °C. Active layers were spin-coated from the warm polymer solutions onto the preheated substrates in a N 2 glovebox at 1200-1500 rpm.
  • the P3TEA: SF-PDI 2 blend films were then annealed at 90 °C for 5 min, After that, PEDOT: PSS (Clevios HTL SOLAR) was deposited on top of the front sub-cell at a speed of 5000 rpm for 30 s, and the resultant thickness was 55 nm.
  • the optimized active layer thickness for the front and rear sub-cells were 100 nm and 120 nm, respectively.
  • substrates were transferred to the vacuum chamber of a thermal evaporator inside the same glovebox.
  • a thin layer (7 nm) of V 2 O 5 was deposited as the anode interlayer, followed by the deposition of 100 nm of Al as the top electrode. All devices were encapsulated using epoxy inside the glovebox.
  • Example 2b Fabrication of double-junction tandem solar cells based on fullerene acceptors
  • a ZnO electron-transporting layer ( ⁇ 23 nm) was prepared by spin-coating a ZnO precursor solution (diethyl zinc, diluted with tetrahydrofuran) at 5000 rpm, and then annealed at 100 °C for 15 min.
  • Active layer solutions (PffBT4T-2DT: PC 71 BM ratio 1: 1.2 w/w) were prepared in chlorobenzene (polymer concentration: 10 mg mL -1 , 1, 8-diiodooctane 2.5 %v/v as additive) .
  • the active layer solution should be stirred on a hotplate at 90 °C for at least 1 hour.
  • both the polymer solution and substrates were preheated on a hotplate at ⁇ 90 °C. Active layers were spin-coated from the warm polymer solutions onto the preheated substrates in a N 2 glovebox at 1200-1500 rpm.
  • the PffBT4T-2DT: PC 71 BM blend films were then annealed at 90 °C for 5 min, After that, PEDOT: PSS (Clevios HTL SOLAR) was deposited on top of the front sub-cell at a speed of 5000 rpm for 30 s, and the resultant thickness was 55 nm.
  • Device J-V characteristics were measured under AM 1.5G (100 mW cm -2 ) using a Newport solar simulator. The light intensity was calibrated using a standard Si diode (with KG5 filter, purchased from PV Measurement) to bring spectral mismatch to unity. J-V characteristics were recorded using a Keithley 2400 source meter unit. Typical cells have devices area of 5.9 mm 2 , defined by a metal mask with an aperture aligned with the device area. EQEs were measured using an Enlitech QE-SEQE system equipped with a standard Si diode. Monochromatic light was generated from a Newport 300W lamp source. These test protocols are exactly the same as that we used in previously certified OSCs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention discloses a tandem organic photovoltaic cell. The tandem organic photovoltaic cell comprises: (1) at least two photoactive layers; (2) two external electrodes; and (3) at least one shared electrode that is disposed between two respective adjacent photoactive layers and connects them to each electrically and mechanically. The present invention also discloses methods for forming the tandem organic photovoltaic cell.

Description

MATERIALS AND FACBRICATION METHODS FOR TANDEM ORGANIC PHOTOVOLTAIC CELLS
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application Ser. No. 62/496,207 filed on 11 Oct. 2016 and entitled “AN ALL-SOLUTION PROCESSED RECOMBINATION LAYER WITH MILD TREATMENT FOR TANDEM SOLAR CELLS” , which is incorporated by reference herein in its entirety.
TECHNICAL FIELD
The present invention relates to photovoltaic cells (organic solar cells) and interlayers in photovoltaic cells, methods for their preparation and intermediates used therein, the use of formulations containing such interlayer as recombination layer in tandem organic photovoltaic cells, organic photovoltaic cell devices made from these formulations.
BACKGROUND
In recent years there has been growing interest in the use of organic semiconductors, including conjugated polymers, for various electronic applications.
One particular area of importance is the field of organic solar cells (OSCs) . Organic semiconductors have found use in OSCs as they allow devices to be manufactured by solution-processing techniques such as spin casting and printing. Solution processing can be carried out cheaper and on a larger scale compared to the evaporative techniques used to make inorganic thin film devices.
During the past 25 years, a large amount of high-performance polymers have been reported, and the PCE over 10 %have been achieved in single-junction OSCs. However, the best PCE of OSCs still lags behind that of inorganic counterparts. To further increase the power conversion efficiency of OSCs, various strategies have been applied to enhance the PCE of OSC cells that include morphology control of the active layer, utilizing low bandgap polymers to enhance the short-circuit current density (Jsc) and increasing the open-circuit voltage (Voc) .
One of the reasons for low PCE of OSC is narrow absorption range of organic materials, which only covers a fraction of the solar spectrum. Another major loss mechanism for single junction solar cells is voltage loss from the optical bandgap to the open circuit voltage of the solar cell.
These limitations of single junction photovoltaics can be overcome using the tandem solar cell structure, which can increase the voltage of the cell and also broaden its absorption range.
In tandem organic solar cells, recombination layer, also called interconnecting layer, plays critical roles, including collecting holes from one sub-cell and electrons from the other, as well as working as a hole-electron recombination zone free of potential losses simultaneously.
In addition, it is also important for industrial and commercialization considerations that the recombination layer of tandem cells is processed from solution. A vacuum-deposited recombination layer would interrupt the sequential solution processing of the active layers and thus increase the production cost dramatically.
Importantly, it is preferred that the recombination layer be processed and treated  using rather mild conditions. Some of the reported interlayers (such as PEDOT: PSS, nanoparticle-based ZnO) require harsh thermal annealing up to 150 ℃, which may ruin the morphology of the underlying active layer, as the morphology of state-of-the-art OSC blends is rather sensitive to temperature. Therefore, it is important to develop an all-solution processed recombination layer without the need of any harsh post-treatments.
SUMMARY
The tandem organic solar cells of the present teachings consist of solution processed active layers and interlayers.
In a first embodiment of the present invention, a tandem organic photovoltaic cell is disclosed. The tandem organic photovoltaic cell comprises: (1) at least two photoactive layers; (2) two external electrodes; and (3) at least one shared electrode that is disposed between two respective adjacent photoactive layers and connects them to each electrically and mechanically, wherein the shared electrode comprises a conducting polymer layer and a metal oxide layer, the two layers do not require any thermal treatment above 110 degrees Celsius.
In a second embodiment of the present invention, a tandem organic photovoltaic cell is disclosed. The tandem organic photovoltaic cell comprises: (1) at least two photoactive layers; (2) two external electrodes; and (3) at least one shared electrode that is disposed between two respective adjacent photoactive layers and connects them to each electrically and mechanically, wherein at least one of photoactive layers comprises an acceptor component that has a chemical structure containing a perylenediimide (PDI) sub-unit. The acceptor component may comprise 2-4 perylenediimide (PDI) sub-units.
In a third embodiment of the present invention, a method for forming a tandem organic photovoltaic cell is disclosed. The method comprises: (1) providing a first photoactive layer on a substrate; (2) providing a conducting polymer solution; (3) coating the conducting polymer solution on the first photoactive layer to form a conducting polymer pre-layer; (4) providing a precursor solution (diethyl zinc precursor solution is preferred) ; (5) coating the precursor solution on the conducting polymer pre-layer, wherein at least part of the precursors react with water molecules from the conducting polymer pre-layer to convert into metal oxide, so as to form a metal oxide layer on a conducting polymer layer; (6) performing a annealing process, wherein the annealing temperature ranges from 50 degrees Celsius to 100 degrees Celsius and the annealing time of the annealing process may range from 5 min to 30 min; and (7) forming a second photoactive layer on the metal oxide layer.
It was surprisingly found in the present inventions that, using precursor solutions (such as diethyl zinc) to form the ZnO layer offer dramatic differences and advantages to conventional ZnO formulations containing ZnO nanoparticles.
In various embodiments, the recombination layer of the present invention include a hole-transporting layer PEDOT: PSS of the formula:
Figure PCTCN2017105658-appb-000001
wherein n, x and y are as defined herein.
The PEDOT: PSS can be dispersed in a variety of polar solvents, including water, methanol, ethanol, isopropyl alcohol and aminoethanol. Various additives, surfactants or stabilizers, including dimethyl sulfoxide, fluorinated surfactants and so on, can be added into the PEDOT: PSS solution to alter its wettability, mobility or acidity-basicity.
In other embodiments, the recombination layer of the present invention includes a hole-transporting layer such as PANI or polypyrole.
In certain embodiments, the recombination layers of the present invention include an electron-transporting layer ZnO from a precursor of diethyl Zinc (DEZ) of the formula:
Figure PCTCN2017105658-appb-000002
wherein DEZ can be dispersed various organic solvents, including hexane, toluene, tetrahydrofuran and so on.
In some other embodiments, the recombination layers of the present invention  include an electron-transporting layer SnO processed from solutions.
In some other embodiments, the recombination layers of the present invention include an electron-transporting layer that contains the mixture of a metal oxide (such as ZnO, AlZnO or SnO) and a conducting polymer (such as PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole) .
The present invention further relates to a recombination layer consisting a hole-transporting layer PEDOT: PSS. which has an average molecular weight in the range of 1,000-1,000,000 gram/mole.
The present invention further relates to the use of a formulation as described above and below as a coating or printing interlayer, especially for the preparation of OE devices and rigid or flexible organic photovoltaic (OSC) cells and devices.
The present invention further relates to an OE device prepared from a formulation as described above and below. The OE devices contemplated in this regard include, without limitation, organic field effect transistors (OFET) , integrated circuits (IC) , thin film transistors (TFT) , Radio Frequency Identification (RFID) tags, organic light emitting diodes (OLED) , organic light emitting transistors (OLET) , electroluminescent displays, organic photovoltaic (OSC) cells, organic solar cells (O-SC) , flexible OSCs and O-SCs, organic laser diodes (O-laser) , organic integrated circuits (O-IC) , lighting devices, sensor devices, electrode materials, photoconductors, photodetectors, electrophotographic recording devices, capacitors, charge injection layers, Schottky diodes, planarising layers, antistatic films, conducting substrates, conducting patterns, photoconductors, electrophotographic devices, organic memory devices, biosensors and biochips.
The formulations, methods and devices of the present invention provide surprising improvements in the efficiency of the OE devices and the production thereof. Unexpectedly, the performance, the lifetime and the efficiency of the OE devices can be improved, if these devices are achieved by using a formulation of the present subject matter. Furthermore, the formulation of the present subject matter provides an astonishingly high level of film forming. Especially, the homogeneity and the quality of the films can be improved. In addition thereto, the present subject matter enables better solution printing of OE devices, especially OSC devices.
In various embodiments, the recombination layer of the present teachings can work as an interconnecting layer efficiently in tandem solar cells, including collecting holes from one sub-cell and electrons from the other, as well as working as a hole-electron recombination zone free of potential losses simultaneously
In various embodiments, the recombination layer of the present teachings can be used in a variety of tandem solar cells, including organic solar cells (OSCs) and perovskite solar cells or hybrid solar cells.
BRIEF DESCRIPTION OF THE DRAWINGS
It should be understood that the drawings described above or below are for illustration purposes only. The drawings are not necessarily to scale, with emphasis generally being placed upon illustrating the principles of the present teachings. The drawings are not intended to limit the scope of the present teachings in any way.
FIG. 1 Atomic Force Microscope (AFM) height (left) and cross-section (right) images of glass/ITO/P3TEA: SF-PDI2/PEDOT: PSS/ZnO (scan area is 1 μm×1 μm  and the vertical data scale is 10 nm) .
FIG. 2 Current-voltage and EQE curves of P3TEA: SF-PDI2 double-junction solar cell with various thickness of two sub-cells.
FIG. 3 EQE curves of an optimized P3TEA: SF-PDI2 double-junction solar cell.
DETAILED DESCRIPTION
Definitions
Throughout the application, where compositions are described as having, including, or comprising specific components, or where processes are described as having, including, or comprising specific process steps, it is contemplated that compositions of the present teachings can also consist essentially of, or consist of, the recited components, and that the processes of the present teachings can also consist essentially of, or consist of, the recited process steps.
In the application, where an element or component is said to be included in and/or selected from a list of recited elements or components, it should be understood that the element or component can be any one of the recited elements or components, or the element or component can be selected from a group consisting of two or more of the recited elements or components. Further, it should be understood that elements and/or features of a composition, an apparatus, or a method described herein can be combined in a variety of ways without departing from the spirit and scope of the present teachings, whether explicit or implicit herein
The use of the terms "include, " "includes" , "including, " "have, " "has, " or  "having" should be generally understood as open-ended and non-limiting unless specifically stated otherwise.
The use of the singular herein includes the plural (and vice versa) unless specifically stated otherwise. In addition, where the use of the term "about" is before a quantitative value, the present teachings also include the specific quantitative value itself, unless specifically stated otherwise. As used herein, the term "about" refers to a ±10%variation from the nominal value unless otherwise indicated or inferred.
It should be understood that the order of steps or order for performing certain actions is immaterial so long as the present teachings remain operable. Moreover, two or more steps or actions may be conducted simultaneously.
As used herein, a "p-type semiconductor material" or a "donor" material refers to a semiconductor material, for example, an organic semiconductor material, having holes as the majority current or charge carriers. In some embodiments, when a p-type semiconductor material is deposited on a substrate, it can provide a hole mobility in excess of about 10-5 cm2/Vs. In the case of field-effect devices, a p-type semiconductor also can exhibit a current on/off ratio of greater than about 10.
As used herein, an "n-type semiconductor material" or an "acceptor" material refers to a semiconductor material, for example, an organic semiconductor material, having electrons as the majority current or charge carriers. In some embodiments, when an n-type semiconductor material is deposited on a substrate, it can provide an electron mobility in excess of about 10-5 cm2/Vs. In the case of field-effect devices, an n-type semiconductor also can exhibit a current on/off ratio of greater than about 10.
As used herein, "mobility" refers to a measure of the velocity with which charge carriers, for example, holes (or units of positive charge) in the case of a p-type semiconductor material and electrons (or units of negative charge) in the case of an n-type semiconductor material, move through the material under the influence of an electric field. This parameter, which depends on the device architecture, can be measured using a field-effect device or space-charge limited current measurements.
As used herein, a compound can be considered "ambient stable" or "stable at ambient conditions" when a transistor incorporating the compound as its semiconducting material exhibits a carrier mobility that is maintained at about its initial measurement when the compound is exposed to ambient conditions, for example, air, ambient temperature, and humidity, over a period of time. For example, a compound can be described as ambient stable if a transistor incorporating the compound shows a carrier mobility that does not vary more than 20%or more than 10%from its initial value after exposure to ambient conditions, including, air, humidity and temperature, over a 3 day, 5 day, or 10 day period.
As used herein, fill factor (FF) is the ratio (given as a percentage) of the actual maximum obtainable power, (Pm or Vmp *Jmp) , to the theoretical (not actually obtainable) power, (Jsc *Voc) . Accordingly, FF can be determined using the equation:
FF = (Vmp *Jmp) / (Jsc *Voc)
where Jmp and Vmp represent the current density and voltage at the maximum power point (Pm) , respectively, this point being obtained by varying the resistance in the circuit until J *V is at its greatest value; and Jsc and Voc represent the short circuit current and the open circuit voltage, respectively. Fill factor is a key parameter in evaluating the  performance of solar cells. Commercial solar cells typically have a fill factor of about 0.60%or greater.
As used herein, the open-circuit voltage (Voc) is the difference in the electrical potentials between the anode and the cathode of a device when there is no external load connected.
As used herein, the power conversion efficiency (PCE) of a solar cell is the percentage of power converted from absorbed light to electrical energy. The PCE of a solar cell can be calculated by dividing the maximum power point (Pm) by the input light irradiance (E, in W/m2) under standard test conditions (STC) and the surface area of the solar cell (Ac in m2) . STC typically refers to a temperature of 25℃ and an irradiance of 1000 W/m2 with an air mass 1.5 (AM 1.5) spectrum.
As used herein, a component (such as a thin film layer) can be considered "photoactive" if it contains one or more compounds that can absorb photons to produce excitons for the generation of a photocurrent.
As used herein, "solution-processable" refers to compounds (e.g., polymers) , materials, or compositions that can be used in various solution-phase processes including spin-coating, printing (e.g., inkjet printing, gravure printing, offset printing and the like) , spray coating, electrospray coating, drop casting, dip coating, blade coating, and the like.
As used herein, a "semicrystalline polymer" refers to a polymer that has an inherent tendency to crystallize at least partially either when cooled from a melted state or deposited from solution, when subjected to kinetically favorable conditions such as slow cooling, or low solvent evaporation rate and so forth. The crystallization or lack  thereof can be readily identified by using several analytical methods, for example, differential scanning calorimetry (DSC) and/or X-ray diffraction (XRD) .
As used herein, "annealing″ refers to a post-deposition heat treatment to the semicrystalline polymer film in ambient or under reduced/increased pressure for a time duration of more than 100 seconds, and "annealing temperature" refers to the maximum temperature that the polymer film is exposed to for at least 60 seconds during this process of annealing. Without wishing to be bound by any particular theory, it is believed that annealing can result in an increase of crystallinity in the polymer film, where possible, thereby increasing field effect mobility. The increase in crystallinity can be monitored by several methods, for example, by comparing the differential scanning calorimetry (DSC) or X-ray diffraction (XRD) measurements of the as-deposited and the annealed films.
As used herein, a "polymeric compound" (or "polymer" ) refers to a molecule including a plurality of one or more repeating units connected by covalent chemical bonds. A polymeric compound can be represented by General Formula I:
*- (- (Ma) x- (Mb) y-) z*
General Formula I
wherein each Ma and Mb is a repeating unit or monomer. The polymeric compound can have only one type of repeating unit as well as two or more types of different repeating units. When a polymeric compound has only one type of repeating unit, it can be referred to as a homopolymer. When a polymeric compound has two or more types of different repeating units, the term "copolymer" or "copolymeric compound" can be used instead. For example, a copolymeric compound can include repeating units where Ma and Mb  represent two different repeating units. Unless specified otherwise, the assembly of the repeating units in the copolymer can be head-to-tail, head-to-head, or tail-to-tail. In addition, unless specified otherwise, the copolymer can be a random copolymer, an alternating copolymer, or a block copolymer. For example, General Formula I can be used to represent a copolymer of Ma and Mb having x mole fraction of Ma and y mole fraction of Mb in the copolymer, where the manner in which comonomers Ma and Mb is repeated can be alternating, random, regiorandom, regioregular, or in blocks, with up to z comonomers present. In addition to its composition, a polymeric compound can be further characterized by its degree of polymerization (n) and molar mass (e.g., number average molecular weight (M) and/or weight average molecular weight (Mw) depending on the measuring technique (s) ) .
As used herein, "halo" or "halogen" refers to fluoro, chloro, bromo, and iodo.
As used herein, "alkyl" refers to a straight-chain or branched saturated hydrocarbon group. Examples of alkyl groups include methyl (Me) , ethyl (Et) , propyl (e.g., n-propyl and z'-propyl) , butyl (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) , pentyl groups (e.g., n-pentyl, z'-pentyl, -pentyl) , hexyl groups, and the like. In various embodiments, an alkyl group can have 1 to 40 carbon atoms (i.e., C1-40 alkyl group) , for example, 1-30 carbon atoms (i.e., C1-30 alkyl group) . In some embodiments, an alkyl group can have 1 to 6 carbon atoms, and can be referred to as a "lower alkyl group. " Examples of lower alkyl groups include methyl, ethyl, propyl (e.g., n-propyl and z'-propyl) , and butyl groups (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) . In some embodiments, alkyl groups can be substituted as described herein. An alkyl group is  generally not substituted with another alkyl group, an alkenyl group, or an alkynyl group.
As used herein, "alkenyl" refers to a straight-chain or branched alkyl group having one or more carbon-carbon double bonds. Examples of alkenyl groups include ethenyl, propenyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl groups, and the like. The one or more carbon-carbon double bonds can be internal (such as in 2-butene) or terminal (such as in 1-butene) . In various embodiments, an alkenyl group can have 2 to 40 carbon atoms (i.e., C2-40 alkenyl group) , for example, 2 to 20 carbon atoms (i.e., C2-20 alkenyl group) . In some embodiments, alkenyl groups can be substituted as described herein. An alkenyl group is generally not substituted with another alkenyl group, an alkyl group, or an alkynyl group.
As used herein, a "fused ring" or a "fused ring moiety" refers to a polycyclic ring system having at least two rings where at least one of the rings is aromatic and such aromatic ring (carbocyclic or heterocyclic) has a bond in common with at least one other ring that can be aromatic or non-aromatic, and carbocyclic or heterocyclic. These polycyclic ring systems can be highly p-conjugated and optionally substituted as described herein.
As used herein, "heteroatom" refers to an atom of any element other than carbon or hydrogen and includes, for example, nitrogen, oxygen, silicon, sulfur, phosphorus, and selenium.
As used herein, "aryl" refers to an aromatic monocyclic hydrocarbon ring system or a polycyclic ring system in which two or more aromatic hydrocarbon rings are fused (i.e., having a bond in common with) together or at least one aromatic monocyclic hydrocarbon ring is fused to one or more cycloalkyl and/or cycloheteroalkyl rings. An  aryl group can have 6 to 24 carbon atoms in its ring system (e.g., C6-24 aryl group) , which can include multiple fused rings. In some embodiments, a polycyclic aryl group can have 8 to 24 carbon atoms. Any suitable ring position of the aryl group can be covalently linked to the defined chemical structure. Examples of aryl groups having only aromatic carbocyclic ring (s) include phenyl, 1-naphthyl (bicyclic) , 2-naphthyl (bicyclic) , anthracenyl (tricyclic) , phenanthrenyl (tricyclic) , pentacenyl (pentacyclic) , and like groups. Examples of polycyclic ring systems in which at least one aromatic carbocyclic ring is fused to one or more cycloalkyl and/or cycloheteroalkyl rings include, among others, benzo derivatives of cyclopentane (i.e., an indanyl group, which is a 5, 6-bicyclic cycloalkyl/aromatic ring system) , cyclohexane (i.e., a tetrahydronaphthyl group, which is a 6, 6-bicyclic cycloalkyl/aromatic ring system) , imidazoline (i.e., a benzimidazolinyl group, which is a 5, 6-bicyclic cycloheteroalkyl/aromatic ring system) , and pyran (i.e., a chromenyl group, which is a 6, 6-bicyclic cycloheteroalkyl/aromatic ring system) . Other examples of aryl groups include benzodioxanyl, benzodioxolyl, chromanyl, indolinyl groups, and the like. In some embodiments, aryl groups can be substituted as described herein. In some embodiments, an aryl group can have one or more halogen substituents, and can be referred to as a "haloaryl" group. Perhaloaryl groups, i.e., aryl groups where all of the hydrogen atoms are replaced with halogen atoms (e.g., -C6F5) , are included within the definition of "haloaryl. " In certain embodiments, an aryl group is substituted with another aryl group and can be referred to as a biaryl group. Each of the aryl groups in the biaryl group can be substituted as disclosed herein.
As used herein, "heteroaryl" refers to an aromatic monocyclic ring system containing at least one ring heteroatom selected from oxygen (O) , nitrogen (N) , sulfur (S) ,  silicon (Si) , and selenium (Se) or a polycyclic ring system where at least one of the rings present in the ring system is aromatic and contains at least one ring heteroatom. Polycyclic heteroaryl groups include those having two or more heteroaryl rings fused together, as well as those having at least one monocyclic heteroaryl ring fused to one or more aromatic carbocyclic rings, non-aromatic carbocyclic rings, and/or non-aromatic cycloheteroalkyl rings. A heteroaryl group, as a whole, can have, for example, 5 to 24 ring atoms and contain 1-5 ring heteroatoms (i.e., 5-20 membered heteroaryl group) . The heteroaryl group can be attached to the defined chemical structure at any heteroatom or carbon atom that results in a stable structure. Generally, heteroaryl rings do not contain O-O, S-S, or S-0 bonds. However, one or more N or S atoms in a heteroaryl group can be oxidized (e.g., pyridine Noxide thiophene S-oxide, thiophene S, S-dioxide) . Examples of heteroaryl groups include, for example, the 5-or 6-membered monocyclic and 5-6 bicyclic ring systems shown below: where T is O, S, NH, N-alkyl, N-aryl, N- (arylalkyl) (e.g., N-benzyl) , SiH2, SiH (alkyl) , Si (alkyl) 2, SiH (arylalkyl) , Si (arylalkyl) 2, or Si (alkyl) (arylalkyl) . Examples of such heteroaryl rings include pyrrolyl, furyl, thienyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, isothiazolyl, thiazolyl, thiadiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, indolyl, isoindolyl, benzofuryl, benzothienyl, quinolyl, 2-methylquinolyl, isoquinolyl, quinoxalyl, quinazolyl, benzotriazolyl, benzimidazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzoxadiazolyl, benzoxazolyl, cinnolinyl, lH-indazolyl, 2H-indazolyl, indolizinyl, isobenzofuyl, naphthyridinyl, phthalazinyl, pteridinyl, purinyl, oxazolopyridinyl, thiazolopyridinyl, imidazopyridinyl, furopyridinyl, thienopyridinyl, pyridopyrimidinyl, pyridopyrazinyl, pyridopyridazinyl, thienothiazolyl, thienoxazolyl, thienoimidazolyl  groups, and the like. Further examples of heteroaryl groups include 4, 5, 6, 7-tetrahydroindolyl, tetrahydroquinolinyl, benzothienopyridinyl, benzofuropyridinyl groups, and the like. In some embodiments, heteroaryl groups can be substituted as described herein.
In a further embodiment, the fullerene useful herein can be selected from the group consisting of:
Figure PCTCN2017105658-appb-000003
wherein each n = 1, 2, 4, 5, or 6;
each Ar is independently selected from the group consisting of monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked;
each Rx is independently selected from the group consisting of Ar, straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C- , and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
each R1 is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C- , and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein the number of carbon that R1 contains is larger than 1, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
each Ar1 is independently selected from the group consisting of monocyclic, bicyclic and polycyclic heteroaryl groups, wherein each Ar1 may contain one to five of said heteroaryl groups each of which may be fused or linked;
each Ar2 is independently selected from aryl groups containing more than 6 atoms excluding H; and
wherein the fullerene ball represents a fullerene selected from the group consisting of C60, C70, C84, and other fullerenes.
In one embodiment, the fullerene is substituted by one or more functional groups selected from the group consisting of:
Figure PCTCN2017105658-appb-000004
wherein each n = 1-6;
each Ar is independently selected from the group consisting of monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, or may contain one to five such groups, either fused or linked;
each Rx is independently selected from the group consisting of Ar, straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C- , and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain,  branched, or cyclic alkyl group;
each R1 is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C- , and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein the number of carbon that R1 contains is larger than 1, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
each R is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C- , and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
each Ar1 is independently selected from the group consisting of monocyclic, bicyclic and polycyclic heteroaryl groups, wherein each Ar1 may contain one to five of said heteroaryl groups each of which may be fused or linked;
each Ar2 is independently selected from aryl groups containing more than 6  atoms excluding H; and
wherein the fullerene ball represents a fullerene selected from the group consisting of C60, C70, C84, and other fullerenes.
In some embodiments, the formulation is further characterized in that the fullerene is selected from the group consisting of:
Figure PCTCN2017105658-appb-000005
wherein each R is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C- , and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl,  heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group.
In some embodiments, the formulation is further characterized in that the fullerene is selected from the group consisting of:
Figure PCTCN2017105658-appb-000006
In some embodiments, the formulation is further characterized in that the fullerene is selected from the group consisting of:
Figure PCTCN2017105658-appb-000007
wherein each n = 1-6;
each m = 1, 2, 4, 5, or 6;
each q = 1-6;
each R1 and R2 is independently selected from the group consisting of C1-4 straight and branched chain alkyl groups; and
wherein the fullerene ball represents a fullerene from the group consisting of C60, C70, C84, and other fullerenes.
In some embodiments, the formulation is further characterized in that the fullerene is selected from the group consisting of:
Figure PCTCN2017105658-appb-000008
Figure PCTCN2017105658-appb-000009
In an exemplary embodiment, an organic electronic (OE) device comprises a coating or printing ink containing the formulation. Another exemplary embodiment is further characterized in that the OE device is an organic field effect transistor (OFET) device. Another exemplary embodiment is further characterized in that the OE device is an organic photovoltaic (OSC) device.
Formulations of the present teachings can exhibit semiconductor behavior such as optimized light absorption/charge separation in a photovoltaic device; charge transport/recombination/light emission in a light-emitting device; and/or high carrier mobility and/or good current modulation characteristics in a field-effect device. In addition, the present formulations can possess certain processing advantages such as solution-processability and/or good stability (e.g., air stability) in ambient conditions. The formulations of the present teachings can be used to prepare either p-type (donor or hole-transporting) , n-type (acceptor or electron-transporting) , or ambipolar semiconductor materials, which in turn can be used to fabricate various organic or hybrid optoelectronic articles, structures and devices, including organic photovoltaic devices and organic light-emitting transistors.
In a first embodiment of the present invention, a tandem organic photovoltaic cell is disclosed. The tandem organic photovoltaic cell comprises: (1) at least two photoactive  layers; (2) two external electrodes; and (3) at least one shared electrode that is disposed between two respective adjacent photoactive layers and connects them to each electrically and mechanically, wherein the shared electrode comprises a conducting polymer layer and a metal oxide layer, the two layers do not require any thermal treatment above 110 degrees Celsius.
In one example of this embodiment, the photoactive layers and the at least one shared electrode are processed from solutions.
The above-mentioned conducting polymer layer comprises a conducting polymer selected from PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole.
The above-mentioned metal oxide layer comprises a metal oxide selected from ZnO, AlZnO or SnO, wherein the metal oxide layer is not deposited from a solution containing nanoparticles of the respective metal oxide.
The metal oxide layer is processed from a precursor solution and the precursor reacts with water molecules to convert into metal oxide. In a preferred example, the precursor solution is diethyl zinc precursor solution.
In another example of this embodiment, at least one of the photoactive layers comprises an acceptor component that has a chemical structure containing perylenediimide (PDI) sub-unit.
In a second embodiment of the present invention, a tandem organic photovoltaic cell is disclosed. The tandem organic photovoltaic cell comprises: (1) at least two  photoactive layers; (2) two external electrodes; and (3) at least one shared electrode that is disposed between two respective adjacent photoactive layers and connects them to each electrically and mechanically, wherein at least one of photoactive layers comprises an acceptor component that has a chemical structure containing a perylenediimide (PDI) sub-unit. The acceptor component may comprise 2-4 perylenediimide (PDI) sub-units.
In one example of this embodiment, the perylenediimide (PDI) sub-unit is selected from:
Figure PCTCN2017105658-appb-000010
wherein R1 and R2 are selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, or an aryl group;
X is S, O, or Se.
In a preferred example of this embodiment, the perylenediimide (PDI) sub-unit is selected from:
Figure PCTCN2017105658-appb-000011
wherein R is selected from the group consisting of straight-chain, branched, and cyclic alkyl groups with 2-40 C atoms.
The above-mentioned conducting polymer layer comprises a conducting polymer selected from PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole.
The above-mentioned metal oxide layer comprises a metal oxide selected from ZnO, AlZnO or SnO, wherein the metal oxide layer is not deposited from a solution containing nanoparticles of the respective metal oxide.
The metal oxide layer is processed from a precursor solution and the precursor reacts with water molecules to convert into metal oxide. In a preferred example, the precursor solution is diethyl zinc precursor solution.
In a third embodiment of the present invention, a method for forming a tandem  organic photovoltaic cell is disclosed. The method comprises: (1) providing a first photoactive layer on a substrate; (2) providing a conducting polymer solution; (3) coating the conducting polymer solution on the first photoactive layer to form a conducting polymer pre-layer; (4) providing a precursor solution (diethyl zinc precursor solution is preferred) ; (5) coating the precursor solution on the conducting polymer pre-layer, wherein at least part of the precursors react with water molecules from the conducting polymer pre-layer to convert into metal oxide, so as to form a metal oxide layer on a conducting polymer layer; (6) performing a annealing process, wherein the annealing temperature ranges from 50 degrees Celsius to 100 degrees Celsius and the annealing time of the annealing process may range from 5 min to 30 min; and (7) forming a second photoactive layer on the metal oxide layer.
The above-mentioned conducting polymer layer comprises a conducting polymer selected from PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole.
EXAMPLES
Example 1-preparation of PEDOT: PSS and ZnO precusor
Step 1: Preparation of PEDOT: PSS solution.
The PEDOT: PSS precursor solution can be prepared by diluting commercially available aqueous dispersions with polar solvents, including water, methanol, ethanol, isopropyl alcohol, aminoethanol and so on, in a weight ratio from 0.1 %to 10 %. Various additives, surfactants or stabilizers, including dimethyl sulfoxide, fluorinated surfactants and so on, can be added into the PEDOT: PSS solution to alter its wettability, mobility or acidity-basicity.
Step 2: Preparation of ZnO precursor..
DEZ precursor can be prepared by dissolving DEZ in various organic solvents, including hexane, toluene, tetrahydrofuran and so on, in a weight ratio from 0.1 %to 2 %.
Example 2-Device Fabrication
Example 2a: Fabrication of double-junction tandem solar cells based on non- fullerene acceptors
Figure PCTCN2017105658-appb-000012
Diethylzinc (15 %wt in toluene) and vanadium (V) oxide (V2O5) were purchased from Sigma-Aldrich and used as received without further treatment. The synthesis of P3TEA and SF-PDI2 can be found elsewhere. Pre-patterned ITO-coated glass substrates were cleaned by sequential sonication in soap deionized water, deionized water, acetone, and isopropanol for 30 min of each step. After UV/ozone treatment for 60 min, a ZnO electron-transporting layer (~23 nm) was prepared by spin-coating a ZnO precursor solution (diethyl zinc, diluted with tetrahydrofuran) at 5000 rpm, and then annealed at 100 ℃ for 15 min. Active layer solutions (P3TEA: SF-PDI2 ratio 1: 1.5 w/w) were prepared in 1, 2, 4-trimethylbenzene (polymer concentration: 9 mg mL-1, 1, 8-octanedithiol 2.5 %v/v as additive) . To completely dissolve the polymer, the active layer solution should be stirred on a hotplate at 90 ℃ for at least 1 hour. Before spin-coating, both the polymer solution and substrates were preheated on a hotplate at ~90 ℃. Active layers  were spin-coated from the warm polymer solutions onto the preheated substrates in a N2 glovebox at 1200-1500 rpm. The P3TEA: SF-PDI2 blend films were then annealed at 90 ℃ for 5 min, After that, PEDOT: PSS (Clevios HTL SOLAR) was deposited on top of the front sub-cell at a speed of 5000 rpm for 30 s, and the resultant thickness was 55 nm. Subsequently, another thin ZnO layer (25 nm) was spin-coated onto the PEDOT: PSS layer followed by a thermal annealing step at 80 ℃ for 10 min. AFM height (left) and cross-section (right) images of glass/ITO/ZnO/P3TEA: SF-PDI2/PEDOT: PSS/ZnO can be found in Fig. 1 (scan area is 1 μm×1 μm and the vertical data scale is 10 nm) . Then, the identical active layer solutions were spin-coated on the top of ZnO at various spin conditions prior to the evaporation of V2O5 and Al electrode. The optimized active layer thickness for the front and rear sub-cells were 100 nm and 120 nm, respectively. After that, substrates were transferred to the vacuum chamber of a thermal evaporator inside the same glovebox. At a vacuum level of ~1.5×10-4 Pa, a thin layer (7 nm) of V2O5 was deposited as the anode interlayer, followed by the deposition of 100 nm of Al as the top electrode. All devices were encapsulated using epoxy inside the glovebox.
Example 2b: Fabrication of double-junction tandem solar cells based on fullerene acceptors
Figure PCTCN2017105658-appb-000013
Diethylzinc (15 %wt in toluene) and vanadium (V) oxide (V2O5) were purchased from Sigma-Aldrich and used as received without further treatment. The synthesis of PffBT4T- 2DT can be found elsewhere. Pre-patterned ITO-coated glass substrates were cleaned by sequential sonication in soap deionized water, deionized water, acetone, and isopropanol for 30 min of each step. After UV/ozone treatment for 60 min, a ZnO electron-transporting layer (~23 nm) was prepared by spin-coating a ZnO precursor solution (diethyl zinc, diluted with tetrahydrofuran) at 5000 rpm, and then annealed at 100 ℃ for 15 min. Active layer solutions (PffBT4T-2DT: PC71BM ratio 1: 1.2 w/w) were prepared in chlorobenzene (polymer concentration: 10 mg mL-1, 1, 8-diiodooctane 2.5 %v/v as additive) . To completely dissolve the polymer, the active layer solution should be stirred on a hotplate at 90 ℃ for at least 1 hour. Before spin-coating, both the polymer solution and substrates were preheated on a hotplate at ~90 ℃. Active layers were spin-coated from the warm polymer solutions onto the preheated substrates in a N2 glovebox at 1200-1500 rpm. The PffBT4T-2DT: PC71BM blend films were then annealed at 90 ℃ for 5 min, After that, PEDOT: PSS (Clevios HTL SOLAR) was deposited on top of the front sub-cell at a speed of 5000 rpm for 30 s, and the resultant thickness was 55 nm. Subsequently, another thin ZnO layer (25 nm) was spin-coated onto the PEDOT: PSS layer followed by a thermal annealing step at 80 ℃ for 10 min. Then, the identical active layer solutions were spin-coated on the top of ZnO at various spin conditions prior to the evaporation of V2O5 and Al electrode. After that, substrates were transferred to the vacuum chamber of a thermal evaporator inside the same glovebox. At a vacuum level of ~1.5×10-4 Pa, a thin layer (7 nm) of V2O5 was deposited as the anode interlayer, followed by the deposition of 100 nm of Al as the top electrode. All devices were encapsulated using epoxy inside the glovebox.
Example 3: Device Characterizations
Device J-V characteristics were measured under AM 1.5G (100 mW cm-2) using a Newport solar simulator. The light intensity was calibrated using a standard Si diode (with KG5 filter, purchased from PV Measurement) to bring spectral mismatch to unity. J-V characteristics were recorded using a Keithley 2400 source meter unit. Typical cells have devices area of 5.9 mm2, defined by a metal mask with an aperture aligned with the device area. EQEs were measured using an Enlitech QE-SEQE system equipped with a standard Si diode. Monochromatic light was generated from a Newport 300W lamp source. These test protocols are exactly the same as that we used in previously certified OSCs. All thicknesses of the layers involved were determined by variable angle spectroscopic ellipsometry (J. A. Woollam Co. α-SE) in the transparent wavelength range of the films. AFM measurements were performed by using a Scanning Probe Microscope-Dimension 3100 in tapping mode. UV-Vis absorption spectra were acquired on a Perkin Elmer Lambda 20 UV/VIS Spectrophotometer. All film samples were spincast on ITO/ZnO substrates. The J-V and EQE curves are shown in FIG. 2 and FIG. 3, respectively.
Table 1. Photovoltaic performances of P3TEA: SF-PDI2-based double-junction tandem solar cells
Figure PCTCN2017105658-appb-000014

Claims (20)

  1. A tandem organic photovoltaic cell, comprising:
    at least two photoactive layers;
    two external electrodes; and
    at least one shared electrode that is disposed between two respective adjacent photoactive layers and connects them to each electrically and mechanically;
    wherein the shared electrode comprises a conducting polymer layer and a metal oxide layer, the two layers do not require any thermal treatment above 110 degrees Celsius.
  2. The tandem organic photovoltaic cell of claim 1, wherein the photoactive layers and the at least one shared electrode are processed from solutions.
  3. The tandem organic photovoltaic cell of claim 1, wherein the conducting polymer layer comprises a conducting polymer selected from PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole.
  4. The tandem organic photovoltaic cell of claim 1, wherein the metal oxide layer comprises a metal oxide selected from ZnO, AlZnO or SnO.
  5. The tandem organic photovoltaic cell of claim 1, wherein the metal oxide layer is not deposited from a solution containing nanoparticles of the respective metal oxide.
  6. The tandem organic photovoltaic cell of claim 1, wherein the metal oxide layer is processed from a precursor solution and the precursor reacts with water molecules to convert into metal oxide.
  7. The tandem organic photovoltaic cell of claim 6, wherein the precursor solution is diethyl zinc precursor solution.
  8. The tandem organic photovoltaic cell of claim 1, wherein at least one of the photoactive layers comprises an acceptor component that has a chemical structure containing perylenediimide (PDI) sub-unit.
  9. A tandem organic photovoltaic cell, comprising:
    at least two photoactive layers;
    two external electrodes;
    at least one shared electrode that is disposed between two respective adjacent photoactive layers and connects them to each electrically and mechanically;
    wherein at least one of photoactive layers comprises an acceptor component that has a chemical structure containing a perylenediimide (PDI) sub-unit.
  10. The tandem organic photovoltaic cell of claim 9, wherein the perylenediimide (PDI) sub-unit is selected from:
    Figure PCTCN2017105658-appb-100001
    wherein R1 and R2 are selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C(O)-, -C(O-)-O-, -O-C(O)-, or an aryl group;
    X is S, O, or Se.
  11. The tandem organic photovoltaic cell of claim 9, wherein the perylenediimide (PDI) sub-unit is selected from:
    Figure PCTCN2017105658-appb-100002
    wherein R is selected from the group consisting of straight-chain, branched, and cyclic alkyl groups with 2-40 C atoms.
  12. The tandem organic photovoltaic cell of claim 9, wherein the acceptor component comprises 2-4 perylenediimide (PDI) sub-units.
  13. The tandem organic photovoltaic cell of claim 9, wherein the conducting polymer layer comprises a conducting polymer selected from PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole.
  14. The tandem organic photovoltaic cell of claim 9, wherein the metal oxide layer comprises a metal oxide selected from ZnO, AlZnO or SnO.
  15. The tandem organic photovoltaic cell of claim 9, wherein the metal oxide layer is processed from a precursor solution and the precursor reacts with water molecules to convert into metal oxide.
  16. The tandem organic photovoltaic cell of claim 15, wherein the precursor solution is diethyl zinc precursor solution.
  17. A method for forming a tandem organic photovoltaic cell, comprising:
    providing a first photoactive layer on a substrate;
    providing a conducting polymer solution;
    coating the conducting polymer solution on the first photoactive layer to form a conducting polymer pre-layer;
    providing a precursor solution;
    coating the precursor solution on the conducting polymer pre-layer, wherein at least part of the precursors react with water molecules from the conducting polymer pre-layer to convert into metal oxide, so as to form a metal oxide layer on a conducting polymer layer;
    performing a annealing process, wherein the annealing temperature ranges from 50 degrees Celsius to 100 degrees Celsius; and
    forming a second photoactive layer on the metal oxide layer.
  18. The method of claim 17, wherein the conducting polymer solution comprises a conducting polymer selected from PEDOT, polythiophene, polythienothiophene, PANI, or polypyrole.
  19. The method of claim 17, wherein the precursor solution is diethyl zinc precursor solution.
  20. The method of claim 17, wherein the annealing time of the annealing process ranges from 5 min to 30 min.
PCT/CN2017/105658 2016-10-11 2017-10-11 Materials and facbrication methods for tandem organic photovoltaic cells WO2018068720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662496207P 2016-10-11 2016-10-11
US62/496,207 2016-10-11

Publications (1)

Publication Number Publication Date
WO2018068720A1 true WO2018068720A1 (en) 2018-04-19

Family

ID=61905182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105658 WO2018068720A1 (en) 2016-10-11 2017-10-11 Materials and facbrication methods for tandem organic photovoltaic cells

Country Status (1)

Country Link
WO (1) WO2018068720A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545869A (en) * 2018-10-24 2019-03-29 四川大学 A kind of flexible cadmium telluride solar cell of two-sided three terminal
EP4000111A4 (en) * 2019-07-17 2023-08-09 North Carolina State University Method of manufacturing all-solution-processed interconnection layer for multi-junction tandem organic solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282309A1 (en) * 2007-07-23 2010-11-11 Basf Se Tandem photovoltaic cell
CN103346264A (en) * 2013-06-08 2013-10-09 苏州方昇光电装备技术有限公司 Nano-zinc oxide film preparation method and organic solar cell preparation method
CN104447744A (en) * 2014-11-18 2015-03-25 北京航空航天大学 Perylene diimide derivative, and application thereof in solar cell and preparation method of perylene diimide derivative
WO2015163658A1 (en) * 2014-04-21 2015-10-29 주식회사 엘지화학 Stacked organic solar cell
WO2016062258A1 (en) * 2014-10-22 2016-04-28 The Hong Kong University Of Science And Technology Difluorobithiophene-based donor-acceptor polymers for electronic and photonic applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282309A1 (en) * 2007-07-23 2010-11-11 Basf Se Tandem photovoltaic cell
CN103346264A (en) * 2013-06-08 2013-10-09 苏州方昇光电装备技术有限公司 Nano-zinc oxide film preparation method and organic solar cell preparation method
WO2015163658A1 (en) * 2014-04-21 2015-10-29 주식회사 엘지화학 Stacked organic solar cell
WO2016062258A1 (en) * 2014-10-22 2016-04-28 The Hong Kong University Of Science And Technology Difluorobithiophene-based donor-acceptor polymers for electronic and photonic applications
CN104447744A (en) * 2014-11-18 2015-03-25 北京航空航天大学 Perylene diimide derivative, and application thereof in solar cell and preparation method of perylene diimide derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN CHUN-CHAO ET AL.: "An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding", ADVANCED MATERIALS, vol. 26, 14 July 2014 (2014-07-14), pages 5670 - 5677, XP055476100, ISSN: 0935-9648 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545869A (en) * 2018-10-24 2019-03-29 四川大学 A kind of flexible cadmium telluride solar cell of two-sided three terminal
EP4000111A4 (en) * 2019-07-17 2023-08-09 North Carolina State University Method of manufacturing all-solution-processed interconnection layer for multi-junction tandem organic solar cell

Similar Documents

Publication Publication Date Title
US10263190B2 (en) Difluorobithiophene-based donor-acceptor polymers for electronic and photonic applications
US10680178B2 (en) Organic semiconductor formulation and application thereof
CN109891615B (en) Ternary mixture organic solar cell based on one donor polymer and two acceptors
WO2019137329A1 (en) Chlorinated benzodithiophene-based polymers for electronic and photonic applications
WO2015096797A1 (en) Polymer/fullerene formations and their use in electronic/photonic devices
US9472764B2 (en) Conjugated polymers and their use in optoelectronic devices
WO2019072163A1 (en) Materials and processes for tandem organic solar cells
WO2018068721A1 (en) Randomly polymerized conjugated polymers containing random distribution of different side chains
US11205753B2 (en) Use of sequential processing for highly efficient organic solar cells based on conjugated polymers with temperature dependent aggregation
WO2019137354A1 (en) Thiophene-based fused aromatic systems
WO2018068720A1 (en) Materials and facbrication methods for tandem organic photovoltaic cells
US20210336148A1 (en) Semiconductor mixed material and application thereof
Yasuda et al. Air-stable triarylamine-based amorphous polymer as donor material for bulk-heterojunction organic solar cells
KR101997972B1 (en) Conductive polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof
Stenta et al. Solution processed bathocuproine for organic solar cells
KR20230167223A (en) Composition for preparing of large-area perovskite thin film and Preparing method of large-area perovskite thin film using the same
CN113571639B (en) Semiconductor mixed material and application thereof
WO2017097246A1 (en) Fluorinated benzoxadiazole-based donor-acceptor polymers for electronic and photonic applications
Wang et al. Toward morphological stabilization in polymer bulk heterojunction solar cells by crosslinking using an additive
CN110536915B (en) Vertical benzodithiophene-based donor-acceptor polymers for electronic and photonic applications
US20230407111A1 (en) Coating agent for electron transporting layer of inverted perovskite solar cell, and inverted perovskite solar cell containing the same
EP2698834A1 (en) Fullerene derivatives with reduced electron affinity and a photovoltaic cell using the same
Budiawan et al. Solution Processed Non-Fullerene All Small Molecules Solar Cell Using Perylene Diimide Acceptor Material
Corani Non-Fullerene-Based Polymer Solar Cells
JP2024514619A (en) Perovskite solar cell and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861063

Country of ref document: EP

Kind code of ref document: A1