WO2018068721A1 - Randomly polymerized conjugated polymers containing random distribution of different side chains - Google Patents

Randomly polymerized conjugated polymers containing random distribution of different side chains Download PDF

Info

Publication number
WO2018068721A1
WO2018068721A1 PCT/CN2017/105660 CN2017105660W WO2018068721A1 WO 2018068721 A1 WO2018068721 A1 WO 2018068721A1 CN 2017105660 W CN2017105660 W CN 2017105660W WO 2018068721 A1 WO2018068721 A1 WO 2018068721A1
Authority
WO
WIPO (PCT)
Prior art keywords
atoms
group
conjugated polymer
branched
chain
Prior art date
Application number
PCT/CN2017/105660
Other languages
French (fr)
Inventor
He Yan
Huatong YAO
Original Assignee
The Hong Kong University Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Hong Kong University Of Science And Technology filed Critical The Hong Kong University Of Science And Technology
Priority to CN201780062951.3A priority Critical patent/CN109890867B/en
Publication of WO2018068721A1 publication Critical patent/WO2018068721A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/149Side-chains having heteroaromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present subject matter generally relates to donor-acceptor conjugated polymers, methods for their preparation, and intermediates used therein.
  • the present subject matter relates to the use of formulations containing such polymers as semiconductors in organic electronic (OE) devices, especially in organic photovoltaics (OPV) and organic field-effect transistor (OFET) devices, and to corresponding OE and OPV devices made from such formulations.
  • OE organic electronic
  • OPF organic photovoltaics
  • OFET organic field-effect transistor
  • OSCs organic semiconductors
  • solution-processing techniques such as spin casting and printing.
  • solution processing can be carried out on a larger scale and is typically cheaper than evaporative techniques.
  • the synthesis of some side chains cannot be prepared directly from commercially available materials.
  • PCE power conversion efficiency
  • 11.7% a record PCE to-date
  • theside chains used in the 11.7%polymer were not the commonlyused 2-octyldodecyl or 2-decyltetradecyl alkyl chains, which are two alkyl chains commercially available at a very low price.
  • the alkyl chain used in the 11.7%polymer was a specially tailored side chain that was synthesized in-house and had a long synthesis route.
  • the present subject matter is directed to a conjugated polymer comprising five or more repeating units of the following formula
  • x and y are real numbers representing molar fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • each Ar 1 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar 1 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
  • each Ar 2 ’and Ar 2 is independently selected from the group consisting of substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar 2 ’and Ar 2 ”may contain one to five of said arylene or heteroarylene each of which may be fused or linked; wherein Ar 2 ’and Ar 2 ”have substitution groups including but not limited to alkyl side chains; and wherein Ar 2 ”has a nearly identical chemical structure to Ar 2 ’except substitution groups on Ar 2 ”differ from those on Ar 2 ’.
  • the present subject matter is directed to an organic electronic (OE) device comprising the conjugated polymer of the present subject matter.
  • the OE device is an organic solar cell (OSC) .
  • FIG. 1 shows the J-V curves of V7: PC 71 BM-based solar cells processed from TMB or TMB-DIO.
  • FIG. 2 shows the UV-Vis absorption spectra of V7 at elevated temperatures in a 0.01 mg mL -1 CB solution.
  • the insets indicate temperatures (units: °C) .
  • FIG. 3 shows the UV-Vis absorption spectra of V10 at elevated temperatures in a 0.01 mg mL -1 CB solution.
  • the insets indicate temperatures (units: °C) .
  • FIG. 4 shows the UV-Vis absorption spectra of V15 at elevated temperatures in a 0.01 mg mL -1 CB solution.
  • the insets indicate temperatures (units: °C) .
  • compositions of the presentteachings can also consist essentially of, or consist of, the recited components, and that theprocesses of the present teachings can also consist essentially of, or consist of, the recited processsteps.
  • an element or component is said to be included in and/orselected from a list of recited elements or components, it should be understood that theelement or component can be any one of the recited elements or components, or the elementor component can be selected from a group consisting of two or more of the recited elementsor components. Further, it should be understood that elements and/or features of acomposition, an apparatus, or a method described herein can be combined in a variety ofways without departing from the spirit and scope of the present teachings, whether explicit orimplicit herein
  • a “p-type semiconductor material” or a “donor” material refers to asemiconductor material having holes as themajority current or charge carriers, for example, an organic semiconductor material.
  • a p-type semiconductormaterial when deposited on a substrate, it can provide a hole mobility in excess of about 10 -5 cm 2 /Vs. In the case of field-effect devices, a p-type semiconductor also can exhibit a currenton/off ratio of greater than about 10.
  • an “n-type semiconductor material” or an “acceptor” material refersto a semiconductor material havingelectrons as the majority current or charge carriers, for example, an organic semiconductor material.
  • an n-typesemiconductor material when deposited on a substrate, it can provide an electron mobility inexcess of about 10 - 5 cm 2 /Vs. In the case of field-effect devices, an n-type semiconductor alsocan exhibit a current on/off ratio of greater than about 10.
  • mobility refers to a measure of the velocity with which chargecarriers, for example, holes (or units of positive charge) in the case of a p-type semiconductormaterial and electrons (or units of negative charge) in the case of an n-type semiconductormaterial, move through the material under the influence of an electric field. This parameter, which depends on the device architecture, can be measured using a field-effect device orspace-charge limited current measurements.
  • a compound can be considered “ambient stable” or “stable atambient conditions” when a transistor incorporating the compound as its semiconductingmaterial exhibits a carrier mobility that is maintained at about its initial measurement whenthe compound is exposed to ambient conditions, for example, air, ambient temperature, andhumidity, over a period of time.
  • ambient stable if a transistor incorporating the compound shows a carrier mobility that does not varymore than 20%or more than 10%from its initial value after exposure to ambient conditions, including, air, humidity, and temperature, over a 3 day, 5 day, or 10 day period.
  • fill factor is the ratio (given as a percentage) of the actualmaximum obtainable power, (Pm or Vmp *Jmp) , to the theoretical (not actually obtainable) power, (Jsc *Voc) . Accordingly, FF can be determined using the equation:
  • Jmpand Vmp present the current density and voltage at the maximum power point (Pm) , respectively, this point being obtained by varying the resistance in the circuit until J *Vis at its greatest value; and Jscand Vocrepresent the short circuit current and the open circuitvoltage, respectively.
  • Fill factor is a key parameter in evaluating the performance of solarcells. Commercial solar cells typically have a fill factor of about 0.60%or greater.
  • the open-circuit voltage is the difference in the electricalpotentials between the anode and the cathode of a device when there is no external loadconnected.
  • the power conversion efficiency (PCE) of a solar cell is thepercentage of power converted from absorbed light to electrical energy.
  • the PCE of a solarcell can be calculated by dividing the maximum power point (Pm) by the input lightirradiance (E, in W/m 2 ) under standard test conditions (STC) and the surface area of the solarcell (Ac in m 2 ) .
  • STC typically refers to a temperature of 25°C and an irradiance of 1000W/m 2 with an air mass 1.5 (AM 1.5) spectrum.
  • a component such as a thin film layer
  • a component can be considered “photoactive” if it contains one or more compounds that can absorb photons to produceexcitons for the generation of a photocurrent.
  • solution-processable refers to compounds (e.g., polymers) , materials, or compositions that can be used in various solution-phase processes includingspin-coating, printing (e.g., inkjet printing, gravure printing, offset printing and the like) , spray coating, electrospray coating, drop casting, dip coating, blade coating, and the like.
  • a “semicrystalline polymer” refers to a polymer that has an inherenttendency to crystallize at least partially either when cooled from a melted state or depositedfrom solution, when subjected to kinetically favorable conditions such as slow cooling, orlow solvent evaporation rate and so forth.
  • the crystallization or lack thereof can be readilyidentified by using several analytical methods, for example, differential scanning calorimetry (DSC) and/or X-ray diffraction (XRD) .
  • annealing refers to a post-deposition heat treatment to thesemicrystalline polymer film in ambient or under reduced/increased pressure for a timeduration of more than 100 seconds
  • annealing temperature refers to the maximumtemperature that the polymer film is exposed to for at least 60 seconds during this process ofannealing.
  • annealing can result in an increase of crystallinity in the polymer film, where possible, thereby increasing field effect mobility.
  • the increase in crystallinity can be monitored byseveral methods, for example, by comparing the DSC orXRD measurements of the as-deposited and the annealed films.
  • polymeric compound refers to a molecule including a plurality of one or more repeating units connected by covalent chemical bonds.
  • Apolymeric compound can be represented by General Formula I:
  • each Ma and Mb is a repeating unit or monomer.
  • the polymeric compound can have only onetype of repeating unit as well as two or more types of different repeating units.
  • apolymeric compound has only one type of repeating unit, it can be referred to as ahomopolymer.
  • a copolymeric compound can include repeating unitswhere Ma and Mb represent two different repeating units.
  • theassembly of the repeating units in the copolymer can be head-to-tail, head-to-head, or tail-to-tail.
  • the copolymer can be a random copolymer, analternating copolymer, or a block copolymer.
  • General Formula I can be used to represent a copolymer of Ma and Mb having x mole fraction of Ma and y molefraction of Mb in the copolymer, where the manner in which comonomers Ma and Mb is repeated can be alternating, random, regiorandom, regioregular, or in blocks, with up to z comonomers present.
  • a polymeric compound can be further characterized by its degree ofpolymerization (n) and molar mass (e.g., number average molecular weight (M) and/orweight average molecular weight (Mw) depending on the measuring technique (s) ) .
  • halo or “halogen” refers to fluoro, chloro, bromo, and iodo.
  • alkyl refers to a straight-chain or branched saturated hydrocarbon group.
  • alkyl groups include methyl (Me) , ethyl (Et) , propyl (e.g., n-propyl andz'-propyl) , butyl (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) , pentyl groups (e.g., n-pentyl, z'-pentyl, -pentyl) , hexyl groups, and the like.
  • an alkyl group can have 1 to 40 carbon atoms (i.e., C1-40 alkyl group) , for example, 1-30 carbon atoms (i.e., C1-30 alkyl group) .
  • an alkyl group can have 1 to 6 carbon atoms, andcan be referred to as a “lower alkyl group” .
  • lower alkyl groups include methyl, ethyl, propyl (e.g., n-propyl and z'-propyl) , and butyl groups (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) .
  • alkyl groups can be substituted as described herein.
  • An alkyl group is generally not substituted with another alkyl group, an alkenyl group, or analkynyl group.
  • alkenyl refers to a straight-chain or branched alkyl group havingone or more carbon-carbon double bonds.
  • alkenyl groups include ethenyl, propenyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl groups, and thelike.
  • the one or more carbon-carbon double bonds can be internal (such as in 2-butene) orterminal (such as in 1-butene) .
  • an alkenyl group can have 2 to 40carbon atoms (i.e., C2-40 alkenyl group) , for example, 2 to 20 carbon atoms (i.e., C2-20 alkenylgroup) .
  • alkenyl groups can be substituted as described herein.
  • Analkenyl group is generally not substituted with another alkenyl group, an alkyl group, or analkynyl group.
  • a “fused ring” or a “fused ring moiety” refers to a polycyclic ringsystem having at least two rings where at least one of the rings is aromatic and such aromaticring (carbocyclic or heterocyclic) has a bond in common with at least one other ring that canbe aromatic or non-aromatic, and carbocyclic or heterocyclic.
  • aromaticring carbocyclic or heterocyclic
  • These polycyclic ring systems can be highly p-conjugated and optionally substituted as described herein.
  • heteroatom refers to an atom of any element other than carbon orhydrogen and includes, for example, nitrogen, oxygen, silicon, sulfur, phosphorus, andselenium.
  • aryl refers to an aromatic monocyclic hydrocarbon ring system ora polycyclic ring system in which two or more aromatic hydrocarbon rings are fused (i.e., having a bond in common with) together or at least one aromatic monocyclic hydrocarbonring is fused to one or more cycloalkyl and/or cycloheteroalkyl rings.
  • An aryl group canhave 6 to 24 carbon atoms in its ring system (e.g., C6-24 aryl group) , which can includemultiple fused rings.
  • a polycyclic aryl group can have 8 to 24 carbonatoms. Any suitable ring position of the aryl group can be covalently linked to the definedchemical structure.
  • aryl groups having only aromatic carbocyclic ring include phenyl, 1-naphthyl (bicyclic) , 2-naphthyl (bicyclic) , anthracenyl (tricyclic) , phenanthrenyl (tricyclic) , pentacenyl (pentacyclic) , and like groups.
  • polycyclicring systems in which at least one aromatic carbocyclic ring is fused to one or morecycloalkyl and/or cycloheteroalkyl rings include, among others, benzo derivatives ofcyclopentane (i.e., an indanyl group, which is a 5, 6-bicyclic cycloalkyl/aromatic ringsystem) , cyclohexane (i.e., a tetrahydronaphthyl group, which is a 6, 6-bicycliccycloalkyl/aromatic ring system) , imidazoline (i.e., a benzimidazolinyl group, which is a 5,6-bicyclic cycloheteroalkyl/aromatic ring system) , and pyran (i.e., a chromenyl group, which isa 6, 6-bicyclic cycloheteroalkyl/aromatic ring system) .
  • aryl groups includebenzodioxanyl, benzodioxolyl, chromanyl, indolinyl groups, and the like.
  • aryl groups can be substituted as described herein.
  • anaryl group can have one or more halogen substituents, and can be referred to as a “haloaryl” group.
  • Perhaloaryl groups i.e., aryl groups where all of the hydrogen atoms are replacedwith halogen atoms (e.g., -C6F5) , are included within the definition of “haloaryl” .
  • an aryl group is substituted with another aryl group and can be referred to as abiaryl group.
  • Each of the aryl groups in the biaryl group can be substituted as disclosedherein.
  • heteroaryl refers to an aromatic monocyclic ring systemcontaining at least one ring heteroatom selected from oxygen (O) , nitrogen (N) , sulfur (S) , silicon (Si) , and selenium (Se) or a polycyclic ring system where at least one of the ringspresent in the ring system is aromatic and contains at least one ring heteroatom.
  • Polycyclicheteroaryl groups include those having two or more heteroaryl rings fused together, as wellas those having at least one monocyclic heteroaryl ring fused to one or more aromaticcarbocyclic rings, non-aromatic carbocyclic rings, and/or non-aromatic cycloheteroalkylrings.
  • a heteroaryl group as a whole, can have, for example, 5 to 24 ring atoms and contain1-5 ring heteroatoms (i.e., 5-20 membered heteroaryl group) .
  • the heteroaryl group can beattached to the defined chemical structure at any heteroatom or carbon atom that results in astable structure.
  • heteroaryl rings do not contain O-O, S-S, or S-0 bonds.
  • one or more N or S atoms in a heteroaryl group can be oxidized (e.g., pyridine Noxidethiophene S-oxide, thiopheneS, S-dioxide) .
  • heteroaryl groups include, for example, the 5-or 6-membered monocyclic and 5-6 bicyclic ring systems shown below: where T is O, S, NH, N-alkyl, N-aryl, N- (arylalkyl) (e.g., N-benzyl) , SiH2, SiH (alkyl) , Si (alkyl) 2, SiH (arylalkyl) , Si (arylalkyl) 2, or Si (alkyl) (arylalkyl) .
  • T is O, S, NH, N-alkyl, N-aryl, N- (arylalkyl) (e.g., N-benzyl) , SiH2, SiH (alkyl) , Si (alkyl) 2, SiH (arylalkyl) , Si (arylalkyl) 2, or Si (alkyl) (arylalkyl) .
  • heteroarylrings examples include pyrrolyl, furyl, thienyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, isothiazolyl, thiazolyl, thiadiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, indolyl, isoindolyl, benzofuryl, benzothienyl, quinolyl, 2-methylquinolyl, isoquinolyl, quinoxalyl, quinazolyl, benzotriazolyl, benzimidazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzoxadiazolyl, benzoxazolyl, cinnolinyl, lH-indazolyl, 2H-ind
  • heteroaryl groups include 4, 5, 6, 7-tetrahydroindolyl, tetrahydroquinolinyl, benzothienopyridinyl, benzofuropyridinyl groups, and the like.
  • heteroaryl groups can be substituted as described herein.
  • a new approach is developed that achieves the same effect of optimum side chains without time-consuming and costly synthesis.
  • the new approach allows for random polymerization of two units whileusing existing commercially available side chains, such as 2-octyldodecyl and 2-decyltetradecyl alkyl chains.
  • one unit contains 2-octyldodecyl alkyl chains and the other unit contains 2-decyltetradecyl alkyl chains.
  • a randomly polymerized polymer can be obtained by adjusting the ratio of the two copolymer units with two different side chains.
  • the properties of the polymer may then be fine-tuned in order to achieve the same performance as PffBT4T-C9C13.
  • a new method of making random polymers has been developed by using two building blocks with same structure, except for the size of side chains.
  • Obtaining optimum size of side chains is a time-consuming process and sometimes particular side chains are not commercially available.
  • the aforementioned hurdle can be easily overcome.
  • by using a different ratio of two building blocks with the same structure (except for the size of side chains) to synthesize random polymers it is facile to tune the size of the side chains on polymers. This enables the enhancement of the power convertion efficiency up to 11.1%, or higher, and dramatically simplifies the tuning process, which is beneficial for both industrial and academicpurposes.
  • the present subject matter is directed to a conjugated polymer comprising five or more repeating units of the following formula
  • x and y are real numbers representing molar fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • each Ar 1 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar 1 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
  • each Ar 2 ’and Ar 2 is independently selected from the group consisting of substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar 2 ’and Ar 2 ”may contain one to five of said arylene or heteroarylene each of which may be fused or linked; wherein Ar 2 ’and Ar 2 ”have substitution groups including but not limited to alkyl side chains; and wherein Ar 2 ”has a nearly identical chemical structure to Ar 2 ’except substitution groups on Ar 2 ”differ from those on Ar 2 ’.
  • the conjugated polymer of the present subject matter comprises five or more repeating units of the following formula:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • each Ar 1 and Ar 2 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar 1 and Ar 2 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
  • the conjugated polymer of the present subject matter comprises five or more repeating units of the following formula:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • each Ar 1 , Ar 2 , and Ar 3 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar 1 , Ar 2 , and Ar 3 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
  • the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • each Z 1 is S or Se
  • each Z 2 is N or C-H
  • each Ar 1 and Ar 2 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar 1 and Ar 2 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
  • the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • each Ar 1 and Ar 2 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar 1 and Ar 2 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
  • the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • each Ar 1 and Ar 2 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar 1 and Ar 2 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
  • eachR 1 and R 2 is independently selected from the group consisting of branched alkyl groups with 2-40 C atoms; wherein R 1 is not the same as R 2 .
  • the conjugated polymer of the present subject matter comprises five or more repeating units of the following formula:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • eachR 1 and R 2 is independently selected from second branched alkyl groups with 2-40 C atoms; wherein R 1 is not the same as R 2 ; and
  • each Ar 1 and Ar 2 is independently selected from the group consisting of:
  • each Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 is S, O, or Se;
  • each X, X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , and X 8 is H, F, or Cl;
  • the average molecular weight of the conjugated polymer is in a range from 10,000 to 200,000 gram/mole.
  • a solution of the conjugated polymer exhibits a peak optical absorption spectrum red shift of at least 50 nm when the conjugated polymer solution is cooled from 140°C to room temperature.
  • the conjugated polymer of the present subject matter comprises one or more repeating units selected from the following formulas:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is about 1;
  • n is an integer that is 5 or greater
  • each Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , and Z 8 is S, O, or Se;
  • eachX, X 1 , X 2 , X 3 , and X 4 is H, F, or Cl;
  • eachR 1 , R 2, and R 3 is a second position branched side chain; wherein R 1 is not the same as R 2 .
  • the conjugated polymer of the present subject matter comprises five or more repeating units of the following formula:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • each Z 1 , Z 2 , Z 3 , Z 4 , and Z 5 is S, O, or Se;
  • each Z 6 is CH 2 , S, or O;
  • each Z 7 is H, F, or Cl.
  • the conjugated polymer of the present subject matter comprises five or more repeating units of the following formula:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • each Z 6 is CH 2 , S, or O;
  • each Z 7 is H, F, or Cl.
  • eachR 1 , R 2 , and R 3 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms; wherein R 2 is not the same as R 3 .
  • the conjugated polymer of the present subject matter comprises a formula selected from the group consisting of:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • eachR is selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms.
  • the conjugated polymer of the present subject matter exhibits temperature-dependent aggregation properties, characterized in that a solution of the conjugated polymer exhibits a peak optical absorption spectrum red shift of at least 50 nm when the conjugated polymer solution is cooled from 140°C to room temperature.
  • the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • each Z 1 and Z 2 is S, O, or Se;
  • each Z 3 is CH 2 , S, or O;
  • each Z 4 and Z 5 is H, F, or Cl;
  • the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1;
  • n is an integer that is 5 or greater
  • each Z 3 is CH 2 , S, or O;
  • each Z 4 and Z 5 is H, F, or Cl;
  • eachR 1 , R 2 and R 3 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms; wherein R 2 is not the same as R 3 .
  • the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is equal or less than 1.
  • the conjugated polymer of the present subject matter comprises a formula selected from the group consisting of:
  • x 1 is 0.25 or 0.5 or 0.75
  • x 2 and x 3 are 0.5;
  • n is an integer that is 5 or greater.
  • the present subject matter is directed to an organic electronic (OE) device comprising the conjugated polymer of the present subject matter.
  • the OE device is an organic solar cell (OSC) .
  • Formulations of the present teachings can exhibit semiconductor behavior such asoptimized light absorption/charge separation in a photovoltaic device; chargetransport/recombination/light emission in a light-emitting device; and/or high carrier mobilityand/or good current modulation characteristics in a field-effect device.
  • thepresent formulations can possess certain processing advantages such as solution-processabilityand/or good stability (e.g., air stability) in ambient conditions.
  • the formulations of the presentteachings can be used to prepare either p-type (donor or hole-transporting) , n-type (acceptoror electron-transporting) , or ambipolar semiconductor materials, which in turn can be used tofabricate various organic or hybrid optoelectronic articles, structures and devices, includingorganic photovoltaic devices and organic light-emitting transistors.
  • an organic electronic (OE) device comprises a coating or printing ink containing the present formulation. Another embodiment is further characterized in that the OE device is an organic field effect transistor (OFET) device. Another embodiment is further characterized in that the OE device is an organic photovoltaic (OPV) device.
  • OFET organic field effect transistor
  • OCV organic photovoltaic
  • the present subject matter is directed to a donor-acceptor conjugated polymer comprising one or more repeating units having a formula of:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and a sum of x and y is about 1;
  • each Ar 1 and Ar 2 is independently selected from the group consisting of an unsubstituted or substituted monocyclic, bicyclic, or polycyclic arylene and a monocyclic, bicyclic, and polycyclic heteroarylene; wherein each Ar 1 and Ar 2 may contain one to five of the unsubstituted or substituted monocyclic, bicyclic, or polycyclic arylene and the monocyclic, bicyclic, and polycyclic heteroarylene, each of which may be fused or linked; and
  • conjugated polymer is not poly (3-hexylthiophene-2, 5-diyl) (P3HT) .
  • Ar 1 is selected from the group consisting of:
  • each X 1 is independently selected from the group consisting of F, H, and OR 3 ;
  • Ar 2 is selected from the group consisting of:
  • each X 1 is independently selected from the group consisting of F, H, and OR 3 , and
  • the donor-acceptor conjugated polymer has an average molecular weight in a range of 10,000 to 100,000 gram/mole.
  • a solution of the donor- acceptor conjugated polymer exhibits a peak optical absorption spectrum red shift of at least 50 nm when the solution is cooled from 140°C to room temperature.
  • the donor-acceptor conjugated polymer has an optical bandgap of 2.2 eV or lower.
  • the donor-acceptor conjugated polymer has a structure of:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and the sum of x and y is about 1;
  • the donor-acceptor conjugated polymer has a structure of:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and a sum of x and y is about 1.
  • the donor-acceptor conjugated polymer is selected from the group consisting of:
  • the V7 polymer was synthesized, achieving 11.22%power conversion efficiency.
  • theV10 polymer was synthesized, achieving 10.14%power conversion efficiency.
  • the V15 polymer was synthesized, achieving 10.03%power conversion efficiency.
  • the present subject matter is directed to a formulation comprising:
  • a donor-acceptor conjugated polymer comprising one or more repeating units having a formula of:
  • x and y are real numbers representing mole fractions, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and a sum of x and y is about 1;
  • Ar 2 is selected from the group consisting of:
  • each X 1 is independently selected from the group consisting of F, H, and OR 3 ;
  • Any other polymer described herein can likewise be used in formulations with the organic solvent and the fullerene or non-fullerene acceptor.
  • the fullerene is selected from the group consisting of:
  • eachAr is independently selected from the group consisting of monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked;
  • each Ar 1 is independently selected from the group consisting of monocyclic, bicyclic and polycyclic heteroaryl groups, wherein each Ar 1 may contain one to five of said heteroaryl groups each of which may be fused or linked;
  • each Ar 2 is independently selected from aryl groups containing more than 6 atoms excluding H;
  • a fullerene ball represents a fullerene selected from the group consisting of C60, C70, C84, and other fullerenes.
  • the fullerene is substituted by one or more functional groups selected from the group consisting of:
  • each Ar is independently selected from the group consisting of monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, or may contain one to five such groups, either fused or linked;
  • each Ar 1 is independently selected from the group consisting of monocyclic, bicyclic and polycyclic heteroaryl groups, wherein each Ar 1 may contain one to five of said heteroaryl groups each of which may be fused or linked;
  • each Ar 2 is independently selected from aryl groups containing more than 6 atoms excluding H;
  • fullerene ball represents a fullerene selected from the group consisting of C60, C70, C84, and other fullerenes.
  • the formulation is further characterized in that the fullerene is selected from the group consisting of:
  • the formulation is further characterized in that the fullerene is selected from the group consisting of:
  • each m 1, 2, 4, 5, or 6;
  • each R 1 and R 2 is independently selected from the group consisting of C1-4 straight and branched chain alkyl groups
  • fullerene ball represents a fullerene from the group consisting of C60, C70, C84, and other fullerenes.
  • the formulation is further characterized in that the fullerene is selected from the group consisting of:
  • the non-fullerene acceptor is selected from the group consisting of:
  • the present subject matter is directed to an organic electronic (OE) device comprising a coating or printing ink comprising a formulation according to the present subject matter.
  • the OE device is an organic field effect transistor (OFET) device or an organic solar cell (OSC) device.
  • OFET organic field effect transistor
  • OSC organic solar cell
  • the OE device has a power conversion efficiency of up to 11.22%.
  • Step 1 Preparation of S3 (5, 6-Difluoro-4, 7-bis (4- (2-octyldodecyl) -2-thienyl) -2, 1, 3-benzothiadiazole)
  • Step 4 Preparationof V7, V10, and V15
  • the polymer can be synthesized by either microwave reaction or conventional reaction.
  • the solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH 2 Cl 2 , CHCl 3 , and toluene.
  • the polymer was finally collected from toluene.
  • the toluene solution was then concentrated by evaporation and precipitated into methanol.
  • the solid was collected by filtration and dried in vacuo to get the polymer as a dark green solid (137.2 mg, 88%) .
  • the mixture was cooled to room temperature and 10 mL CB was added before precipitating with methanol.
  • the solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH 2 Cl 2 and CHCl 3 .
  • the polymer was finally collected from CHCl 3 .
  • the CHCl 3 solution was then concentrated by evaporation and precipitated into methanol.
  • the solid was collected by filtration and dried in vacuo to get the polymer as a dark green solid (155.9 mg, 75%) .
  • the mixture was cooled to room temperature and 10 mL toluene was added before precipitating with methanol.
  • the solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH 2 Cl 2 , CHCl 3 , and toluene.
  • the polymer was finally collected from toluene.
  • the toluene solution was then concentrated by evaporation and precipitated into methanol.
  • the solid was collected by filtration and dried in vacuo to get the polymer as a dark green solid (61.1 mg, 86%) .
  • the solid was collected by filtration, and loaded into an extraction thimble and washed successively with CH2Cl2 and CHCl3. The polymer was finally collected from CHCl3. The CHCl3 solution was then concentrated by evaporation, precipitated into methanol. The solid was collected by filtration and dried in vacuo to get the polymer as dark red solid (76.4 mg, 50%) .
  • the solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH 2 Cl 2 and CHCl 3 .
  • the polymer was finally collected from CHCl 3 .
  • the CHCl 3 solution was then concentrated by evaporation and precipitated into methanol.
  • the solid was collected by filtration and dried in vacuo to get the polymer as a dark red solid (152.6 mg, 80%) .
  • the mixture was cooled to room temperature and 10 mL CB was added before precipitating with methanol.
  • the solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH 2 Cl 2 and CHCl 3 .
  • the polymer was finally collected from CHCl 3 .
  • the CHCl 3 solution was then concentrated by evaporation and precipitated into methanol.
  • the solid was collected by filtration and dried in vacuo to get the polymer as a dark green solid (40.0 mg, 30%) .
  • the mixture was cooled to room temperature and 10 mL CB was added before precipitating with methanol.
  • the solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH 2 Cl 2 and CHCl 3 .
  • the polymer was finally collected from CHCl 3 .
  • the CHCl 3 solution was then concentrated by evaporation and precipitated into methanol.
  • the solid was collected by filtration and dried in vacuo to get the polymer as a dark green solid (99.3 mg, 75%) .
  • the mixture was cooled to room temperature and 10 mL CB was added before precipitating with methanol.
  • the solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH 2 Cl 2 and CHCl 3 .
  • the polymer was finally collected from CHCl 3 .
  • the CHCl 3 solution was then concentrated by evaporation and precipitated into methanol.
  • the solid was collected by filtration and dried in vacuo to get the polymer as a dark green solid (117.9 mg, 72%) .
  • Pre-patterned ITO-coated glass with a sheet resistance of ⁇ 15 ⁇ per square was used as the substrate. It was cleaned by sequential ultrasonication in soap deionized water, deionized water, acetone, and isopropanol for 15 minutes at each step. The washed substrates were further treated with a UV-O 3 cleaner (Novascan, PSD Series digital UV ozone system) for 30 minutes. A topcoat layer of ZnO (Adiethylzinc solution, 15 wt%in toluene, diluted with tetrahydrofuran) was spin-coated onto the ITO substrate at a spinning rate of 5000 rpm for 30 seconds and then baked in air at 180°C for 20 minutes.
  • ZnO Adiethylzinc solution, 15 wt%in toluene, diluted with tetrahydrofuran
  • Active layer solutions (polymer: fullerene weight ratio 1: 1.2) were prepared in TMB with 2.5%of PN.
  • the polymer concentration is 14mgml-1 for PffBT4T-25OD, 12mgml-1 for PffBT4T-50OD, 10mgml-1 PffBT4T-100OD.
  • the active layer solution should be stirred on a hot plate at 100°C for at least 1 hour.
  • both the polymer solution and ITO substrate are preheated on a hot plate at 110°C.
  • Active layers were spin-coated from the warm polymer solution on the preheated substrate in a N2 glovebox at 600 r. p. m. .
  • the active layers were then treated with vacuum to remove the high-boiling-point additives.
  • the blend films were annealed at 100°C for 5 minutes before being transferred to the vacuum chamber of a thermal evaporator inside the same glovebox.
  • a thin layer (7 nm) of V2O5 was deposited as the anode interlayer, followed by deposition of 100nm of Al as the top electrode. All cells were encapsulated using epoxy inside the glovebox.
  • Device J–V characteristics were measured under AM1.5G (100 mW cm -2 ) using a Newport Class A solar simulator (94021A, a Xenon lamp with an AM1.5G filter) in air at room temperature.
  • a standard Si diode with KG5 filter was purchased from PV Measurements and calibrated by Newport Corporation. The light intensity was calibrated using the Si diode as a reference cell to bring spectral mismatch to unity.
  • J–V characteristics were recorded using a Keithley 2400 source meter unit. Typical cells hada device area of 5.9 mm 2 , defined by a metal mask with an aperture aligned with the device area.
  • EQEs were characterized using a Newport EQE system equipped with a standard Si diode. Monochromatic light was generated from a Newport 300 W lamp source. These test protocols are exactly the same as that used in previously certified OPVs.
  • FIG. 1 shows the J-V curves of V7: PC 71 BM-based solar cells processed from TMB or TMB-DIO.
  • FIG. 2 shows the UV-Vis absorption spectra of V7 at elevated temperatures in a 0.01 mg mL -1 CB solution
  • FIG. 3 shows the UV-Vis absorption spectra of V10 at elevated temperatures in a 0.01 mg mL -1 CB solution
  • FIG. 4 shows the UV-Vis absorption spectra of V15 at elevated temperatures in a 0.01 mg mL -1 CB solution.
  • the holemobilities were measured using the space charge limited current (SCLC) method, employing a device architecture of ITO/V 2 O 5 /blend film/V 2 O 5 /Al.
  • SCLC space charge limited current
  • ⁇ 0 is the permittivity of free space
  • ⁇ r is the relative permittivity of the material (assumed to be 3)
  • is the hole mobility
  • V appl is the applied voltage
  • V bi is the built-in voltage (0 V)
  • R is measured to be 10.8 ⁇ )
  • L is the thickness of the film.
  • the J ⁇ V appl and J 1/2 ⁇ (V appl -V bi -V s ) characteristics are shown in Fig. S2. By linearly fitting J 1/2 with V appl -V bi -V s , the mobilities were extracted from the slope and L:
  • the electron mobilities were measured using the SCLC method, employing a device architecture of ITO/ZnO/active layer/Ca/Al.
  • the mobilities were obtained by taking current-voltage curves and fitting the results to a space charge limited form, where the SCLC is described by:
  • ⁇ 0 is the permittivity of free space
  • ⁇ r is the relative permittivity of the material (assumed to be 3)
  • is the hole mobility
  • V appl is the applied voltage
  • V bi is the built-in voltage (0.7 V)
  • R is measured to be 10.8 ⁇ )
  • L is the thickness of the film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A conjugated polymer comprises five or more repeating units of the following formula wherein x, y, n, Ar1, Ar2', and Ar2" aredefined herein. Furthermore, an organic electronic (OE) device comprises the conjugated polymercomprising five or more repeating units of the following formula wherein x, y, n, Ar1, Ar2', and Ar2" aredefined herein. Further, the OE device may comprise an organic solar cell (OSC).

Description

[Title established by the ISA under Rule 37.2] RANDOMLY POLYMERIZED CONJUGATED POLYMERS CONTAINING RANDOM DISTRIBUTION OF DIFFERENT SIDE CHAINS
CROSS REFERENCE
The present application claims priority to provisional United States Patent Application No. 62/496,208, filed October 11, 2016, which was filed by the inventors hereof and is incorporated herein in its entirety.
TECHNICAL FIELD
The present subject matter generally relates to donor-acceptor conjugated polymers, methods for their preparation, and intermediates used therein. The present subject matter relates to the use of formulations containing such polymers as semiconductors in organic electronic (OE) devices, especially in organic photovoltaics (OPV) and organic field-effect transistor (OFET) devices, and to corresponding OE and OPV devices made from such formulations.
BACKGROUND
In recent years there has been growing interest in the use of organic semiconductors, including conjugated polymers, for various electronic applications. One area of importance is in the field of organic photovoltaics. Organic semiconductors (OSCs) have found use in the field of organic photovoltaics, as OSCs allow devices to be manufactured by solution-processing techniques, such as spin casting and printing. Compared to the evaporative techniques used to make inorganic thin film devices, solution processing can be carried out on a larger scale and is typically cheaper than evaporative techniques.
Many reports have shown that the size of side chains on conjugated polymers has a  large impact on the performance of organic solar cells. When side chains are too short, the polymer will be insoluble, which makes organic solar cells hard to fabricate. When side chains are too long, the mobility of the polymer will dramatically decrease, which leads to inferior performance. Moreover, the size of side chains affects the morphology of organic solar cells, which is the key factor in achieving efficient organic solar cells. Therefore, a large number of researchers have spent a great amount of time and effort focused on tuning the size of polymer side chains to optimize the performance of OPVs. Because researchers usually must carry out the synthesis from scratch in order to tune the synthesis, this is a time-consuming process.
Furthermore, sometimes the synthesis of some side chains cannot be prepared directly from commercially available materials. For example, the power conversion efficiency (PCE) of 11.7% (a record PCE to-date) was achieved based on the PffBT4T-C9C13: PC71BM single-junction organic solar cells. However, theside chains used in the 11.7%polymer were not the commonlyused 2-octyldodecyl or 2-decyltetradecyl alkyl chains, which are two alkyl chains commercially available at a very low price. Instead, the alkyl chain used in the 11.7%polymer was a specially tailored side chain that was synthesized in-house and had a long synthesis route. Although this side chain produced optimum performance, the cost of synthesizing this side chain is too high. Therefore, this example demonstrates the importance of having optimum side chains, but also highlights that a solution is needed to easily optimize side chains at a low cost. For organic solar cells to be commercially successful, it is necessary to make high performance organic solar cells having a low cost.
SUMMARY
In an embodiment, the present subject matter is directed to a conjugated polymer  comprising five or more repeating units of the following formula
Figure PCTCN2017105660-appb-000001
wherein
x and y are real numbers representing molar fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
each Ar1 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar1 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
each Ar2’and Ar2”is independently selected from the group consisting of substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar2’and Ar2”may contain one to five of said arylene or heteroarylene each of which may be fused or linked; wherein Ar2’and Ar2”have substitution groups including but not limited to alkyl side chains; and wherein Ar2”has a nearly identical chemical structure to Ar2’except substitution groups on Ar2”differ from those on Ar2’.
In an embodiment, the present subject matter is directed to an organic electronic (OE) device comprising the conjugated polymer of the present subject matter. In an embodiment, the OE device is an organic solar cell (OSC) .
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the J-V curves of V7: PC71BM-based solar cells processed from TMB or TMB-DIO.
FIG. 2 shows the UV-Vis absorption spectra of V7 at elevated temperatures in a 0.01 mg mL-1 CB solution. The insets indicate temperatures (units: ℃) .
FIG. 3 shows the UV-Vis absorption spectra of V10 at elevated temperatures in a 0.01 mg mL-1 CB solution. The insets indicate temperatures (units: ℃) .
FIG. 4 shows the UV-Vis absorption spectra of V15 at elevated temperatures in a 0.01 mg mL-1 CB solution. The insets indicate temperatures (units: ℃) .
DETAILED DESCRIPTION
Definitions
Throughout the application, where compositions are described as having, including, or comprising specific components, or where processes are described as having, including, orcomprising specific process steps, it is contemplated that compositions of the presentteachings can also consist essentially of, or consist of, the recited components, and that theprocesses of the present teachings can also consist essentially of, or consist of, the recited processsteps.
In the application, where an element or component is said to be included in and/orselected from a list of recited elements or components, it should be understood that theelement or component can be any one of the recited elements or components, or the elementor component can be selected from a group consisting of two or more of the recited elementsor components. Further, it should be understood that elements and/or features of acomposition, an apparatus, or a method described herein can be combined in a variety ofways without departing from the spirit and scope of the present teachings, whether explicit orimplicit herein
The use of the terms “include” , “includes” , “including” , “have” , “has” , or “having” should be generally understood as open-ended and non-limiting unless specifically  statedotherwise.
The use of the singular herein includes the plural (and vice versa) unless specificallystated otherwise. In addition, where the use of the term “about” is before a quantitativevalue, the present teachings also include the specific quantitative value itself, unlessspecifically stated otherwise. As used herein, the term “about” refers to a ±10%variationfrom the nominal value unless otherwise indicated or inferred.
It should be understood that the order of steps or order for performing certainactions is immaterial so long as the present teachings remain operable. Moreover, two ormore steps or actions may be conducted simultaneously.
As used herein, a “p-type semiconductor material” or a “donor” material refers to asemiconductor material having holes as themajority current or charge carriers, for example, an organic semiconductor material. In some embodiments, when a p-type semiconductormaterial is deposited on a substrate, it can provide a hole mobility in excess of about 10-5cm2/Vs. In the case of field-effect devices, a p-type semiconductor also can exhibit a currenton/off ratio of greater than about 10.
As used herein, an “n-type semiconductor material” or an “acceptor” material refersto a semiconductor material havingelectrons as the majority current or charge carriers, for example, an organic semiconductor material. In some embodiments, when an n-typesemiconductor material is deposited on a substrate, it can provide an electron mobility inexcess of about 10- 5cm2/Vs. In the case of field-effect devices, an n-type semiconductor alsocan exhibit a current on/off ratio of greater than about 10.
As used herein, “mobility” refers to a measure of the velocity with which chargecarriers, for example, holes (or units of positive charge) in the case of a p-type  semiconductormaterial and electrons (or units of negative charge) in the case of an n-type semiconductormaterial, move through the material under the influence of an electric field. This parameter, which depends on the device architecture, can be measured using a field-effect device orspace-charge limited current measurements.
As used herein, a compound can be considered “ambient stable” or “stable atambient conditions” when a transistor incorporating the compound as its semiconductingmaterial exhibits a carrier mobility that is maintained at about its initial measurement whenthe compound is exposed to ambient conditions, for example, air, ambient temperature, andhumidity, over a period of time. For example, a compound can be described as ambientstable if a transistor incorporating the compound shows a carrier mobility that does not varymore than 20%or more than 10%from its initial value after exposure to ambient conditions, including, air, humidity, and temperature, over a 3 day, 5 day, or 10 day period.
As used herein, fill factor (FF) is the ratio (given as a percentage) of the actualmaximum obtainable power, (Pm or Vmp *Jmp) , to the theoretical (not actually obtainable) power, (Jsc *Voc) . Accordingly, FF can be determined using the equation:
FF = (Vmp *Jmp) / (Jsc *Voc)
where Jmpand Vmprepresent the current density and voltage at the maximum power point (Pm) , respectively, this point being obtained by varying the resistance in the circuit until J *Vis at its greatest value; and Jscand Vocrepresent the short circuit current and the open circuitvoltage, respectively. Fill factor is a key parameter in evaluating the performance of solarcells. Commercial solar cells typically have a fill factor of about 0.60%or greater.
As used herein, the open-circuit voltage (Voc) is the difference in the electricalpotentials between the anode and the cathode of a device when there is no external  loadconnected.
As used herein, the power conversion efficiency (PCE) of a solar cell is thepercentage of power converted from absorbed light to electrical energy. The PCE of a solarcell can be calculated by dividing the maximum power point (Pm) by the input lightirradiance (E, in W/m2) under standard test conditions (STC) and the surface area of the solarcell (Ac in m2) . STC typically refers to a temperature of 25℃ and an irradiance of 1000W/m2 with an air mass 1.5 (AM 1.5) spectrum.
As used herein, a component (such as a thin film layer) can be considered “photoactive” if it contains one or more compounds that can absorb photons to produceexcitons for the generation of a photocurrent.
As used herein, “solution-processable” refers to compounds (e.g., polymers) , materials, or compositions that can be used in various solution-phase processes includingspin-coating, printing (e.g., inkjet printing, gravure printing, offset printing and the like) , spray coating, electrospray coating, drop casting, dip coating, blade coating, and the like.
As used herein, a “semicrystalline polymer” refers to a polymer that has an inherenttendency to crystallize at least partially either when cooled from a melted state or depositedfrom solution, when subjected to kinetically favorable conditions such as slow cooling, orlow solvent evaporation rate and so forth. The crystallization or lack thereof can be readilyidentified by using several analytical methods, for example, differential scanning calorimetry (DSC) and/or X-ray diffraction (XRD) .
As used herein, “annealing” refers to a post-deposition heat treatment to thesemicrystalline polymer film in ambient or under reduced/increased pressure for a timeduration of more than 100 seconds, and “annealing temperature” refers to the  maximumtemperature that the polymer film is exposed to for at least 60 seconds during this process ofannealing. Without wishing to be bound by any particular theory, it is believed thatannealing can result in an increase of crystallinity in the polymer film, where possible, thereby increasing field effect mobility. The increase in crystallinity can be monitored byseveral methods, for example, by comparing the DSC orXRD measurements of the as-deposited and the annealed films.
As used herein, a “polymeric compound” (or “polymer” ) refers to a moleculeincluding a plurality of one or more repeating units connected by covalent chemical bonds. Apolymeric compound can be represented by General Formula I:
*- (- (Ma) x— (Mb) y—) z*
General Formula I
wherein each Ma and Mb is a repeating unit or monomer. The polymeric compound can have only onetype of repeating unit as well as two or more types of different repeating units. When apolymeric compound has only one type of repeating unit, it can be referred to as ahomopolymer.
When a polymeric compound has two or more types of different repeatingunits, the term “copolymer” or “copolymeric compound” can be used instead. For example, a copolymeric compound can include repeating unitswhere Ma and Mb represent two different repeating units. Unless specified otherwise, theassembly of the repeating units in the copolymer can be head-to-tail, head-to-head, or tail-to-tail. In addition, unless specified otherwise, the copolymer can be a random copolymer, analternating copolymer, or a block copolymer. For example, General Formula I can be used to represent a copolymer of Ma and Mb having x mole fraction of Ma and y molefraction of Mb in the copolymer, where the manner in which comonomers Ma and Mb is repeated can be alternating, random, regiorandom, regioregular, or in blocks, with up to z  comonomers present. In addition toits composition, a polymeric compound can be further characterized by its degree ofpolymerization (n) and molar mass (e.g., number average molecular weight (M) and/orweight average molecular weight (Mw) depending on the measuring technique (s) ) .
As used herein, “halo” or “halogen” refers to fluoro, chloro, bromo, and iodo.
As used herein, “alkyl” refers to a straight-chain or branched saturated hydrocarbon group. Examples of alkyl groups include methyl (Me) , ethyl (Et) , propyl (e.g., n-propyl andz'-propyl) , butyl (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) , pentyl groups (e.g., n-pentyl, z'-pentyl, -pentyl) , hexyl groups, and the like. In various embodiments, an alkyl groupcan have 1 to 40 carbon atoms (i.e., C1-40 alkyl group) , for example, 1-30 carbon atoms (i.e., C1-30 alkyl group) . In some embodiments, an alkyl group can have 1 to 6 carbon atoms, andcan be referred to as a “lower alkyl group” . Examples of lower alkyl groups include methyl, ethyl, propyl (e.g., n-propyl and z'-propyl) , and butyl groups (e.g., n-butyl, z'-butyl, sec-butyl, tert-butyl) . In some embodiments, alkyl groups can be substituted as described herein. An alkyl group is generally not substituted with another alkyl group, an alkenyl group, or analkynyl group.
As used herein, “alkenyl” refers to a straight-chain or branched alkyl group havingone or more carbon-carbon double bonds. Examples of alkenyl groups include ethenyl, propenyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl groups, and thelike. The one or more carbon-carbon double bonds can be internal (such as in 2-butene) orterminal (such as in 1-butene) . In various embodiments, an alkenyl group can have 2 to 40carbon atoms (i.e., C2-40 alkenyl group) , for example, 2 to 20 carbon atoms (i.e., C2-20 alkenylgroup) . In some embodiments, alkenyl groups can be substituted as described herein. Analkenyl group is generally not substituted with another alkenyl group, an alkyl group, or  analkynyl group.
As used herein, a “fused ring” or a “fused ring moiety” refers to a polycyclic ringsystem having at least two rings where at least one of the rings is aromatic and such aromaticring (carbocyclic or heterocyclic) has a bond in common with at least one other ring that canbe aromatic or non-aromatic, and carbocyclic or heterocyclic. These polycyclic ring systemscan be highly p-conjugated and optionally substituted as described herein.
As used herein, “heteroatom” refers to an atom of any element other than carbon orhydrogen and includes, for example, nitrogen, oxygen, silicon, sulfur, phosphorus, andselenium.
As used herein, “aryl” refers to an aromatic monocyclic hydrocarbon ring system ora polycyclic ring system in which two or more aromatic hydrocarbon rings are fused (i.e., having a bond in common with) together or at least one aromatic monocyclic hydrocarbonring is fused to one or more cycloalkyl and/or cycloheteroalkyl rings. An aryl group canhave 6 to 24 carbon atoms in its ring system (e.g., C6-24 aryl group) , which can includemultiple fused rings. In some embodiments, a polycyclic aryl group can have 8 to 24 carbonatoms. Any suitable ring position of the aryl group can be covalently linked to the definedchemical structure. Examples of aryl groups having only aromatic carbocyclic ring (s) include phenyl, 1-naphthyl (bicyclic) , 2-naphthyl (bicyclic) , anthracenyl (tricyclic) , phenanthrenyl (tricyclic) , pentacenyl (pentacyclic) , and like groups. Examples of polycyclicring systems in which at least one aromatic carbocyclic ring is fused to one or morecycloalkyl and/or cycloheteroalkyl rings include, among others, benzo derivatives ofcyclopentane (i.e., an indanyl group, which is a 5, 6-bicyclic cycloalkyl/aromatic ringsystem) , cyclohexane (i.e., a tetrahydronaphthyl group, which is a 6, 6-bicycliccycloalkyl/aromatic ring system) , imidazoline (i.e., a benzimidazolinyl group, which is a  5,6-bicyclic cycloheteroalkyl/aromatic ring system) , and pyran (i.e., a chromenyl group, which isa 6, 6-bicyclic cycloheteroalkyl/aromatic ring system) . Other examples of aryl groups includebenzodioxanyl, benzodioxolyl, chromanyl, indolinyl groups, and the like. In someembodiments, aryl groups can be substituted as described herein. In some embodiments, anaryl group can have one or more halogen substituents, and can be referred to as a “haloaryl” group. Perhaloaryl groups, i.e., aryl groups where all of the hydrogen atoms are replacedwith halogen atoms (e.g., -C6F5) , are included within the definition of “haloaryl” . In certainembodiments, an aryl group is substituted with another aryl group and can be referred to as abiaryl group. Each of the aryl groups in the biaryl group can be substituted as disclosedherein.
As used herein, “heteroaryl” refers to an aromatic monocyclic ring systemcontaining at least one ring heteroatom selected from oxygen (O) , nitrogen (N) , sulfur (S) , silicon (Si) , and selenium (Se) or a polycyclic ring system where at least one of the ringspresent in the ring system is aromatic and contains at least one ring heteroatom. Polycyclicheteroaryl groups include those having two or more heteroaryl rings fused together, as wellas those having at least one monocyclic heteroaryl ring fused to one or more aromaticcarbocyclic rings, non-aromatic carbocyclic rings, and/or non-aromatic cycloheteroalkylrings. A heteroaryl group, as a whole, can have, for example, 5 to 24 ring atoms and contain1-5 ring heteroatoms (i.e., 5-20 membered heteroaryl group) . The heteroaryl group can beattached to the defined chemical structure at any heteroatom or carbon atom that results in astable structure. Generally, heteroaryl rings do not contain O-O, S-S, or S-0 bonds. However, one or more N or S atoms in a heteroaryl group can be oxidized (e.g., pyridine Noxidethiophene S-oxide, thiopheneS, S-dioxide) . Examples of heteroaryl groups include, for example, the 5-or 6-membered monocyclic and 5-6 bicyclic ring systems shown below: where T is O, S, NH, N-alkyl, N-aryl, N- (arylalkyl) (e.g., N-benzyl) , SiH2,  SiH (alkyl) , Si (alkyl) 2, SiH (arylalkyl) , Si (arylalkyl) 2, or Si (alkyl) (arylalkyl) . Examples of such heteroarylrings include pyrrolyl, furyl, thienyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, isothiazolyl, thiazolyl, thiadiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, indolyl, isoindolyl, benzofuryl, benzothienyl, quinolyl, 2-methylquinolyl, isoquinolyl, quinoxalyl, quinazolyl, benzotriazolyl, benzimidazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzoxadiazolyl, benzoxazolyl, cinnolinyl, lH-indazolyl, 2H-indazolyl, indolizinyl, isobenzofuyl, naphthyridinyl, phthalazinyl, pteridinyl, purinyl, oxazolopyridinyl, thiazolopyridinyl, imidazopyridinyl, furopyridinyl, thienopyridinyl, pyridopyrimidinyl, pyridopyrazinyl, pyridopyridazinyl, thienothiazolyl, thienoxazolyl, thienoimidazolyl groups, and the like. Further examples of heteroaryl groups include 4, 5, 6, 7-tetrahydroindolyl, tetrahydroquinolinyl, benzothienopyridinyl, benzofuropyridinyl groups, and the like. In some embodiments, heteroaryl groups can be substituted as described herein.
Furthermore, it should be understood that the drawings described herein are for illustration purposes only. The drawings are not necessarily to scale, with emphasis generally being placed upon illustrating the principles of the present teachings. The drawings are not intended to limit the scope of the present teachings in any way.
Randomly Polymerized D-APolymers
In the present subject matter, a new approach is developed that achieves the same effect of optimum side chains without time-consuming and costly synthesis. The new approach allows for random polymerization of two units whileusing existing commercially available side chains, such as 2-octyldodecyl and 2-decyltetradecyl alkyl chains. For example, one unit contains 2-octyldodecyl alkyl chains and the other unit contains 2-decyltetradecyl alkyl chains. A  randomly polymerized polymer can be obtained by adjusting the ratio of the two copolymer units with two different side chains. The properties of the polymer may then be fine-tuned in order to achieve the same performance as PffBT4T-C9C13. In this approach, it is not necessary to synthesize new side chains that are expensive and time-consuming. Instead, existing commercially available side chains may be used to reach the same optimum device performance.
It was surprisingly found that the randomly polymerized polymers containing a random distribution of alkyl side chains with different sizes can achieve excellent performance, despite the random nature of the polymer, as shown below.
Figure PCTCN2017105660-appb-000002
By intuition, one may expect that random polymerization might hurt the crystallinity, charge transport ability and thus the PSC performance of donor polymers. Particularly for these temperature-dependent-aggregation (TDA) polymers, their main advantage is the high crystallinity and strong inter-digitation between the alkyl chains. If the alkyl chains are randomly distributed, the alkyl chain inter-digitation and polymer crystallinity may be negatively affected.  Therefore, it is not obvious that a random polymer can achieve performance as good as PffBT4T-C9C13. Surprisingly, the present study showed that the donor polymers randomly polymerized using two monomers with even-numbered alkyl chains can work effectively, and produce high-efficiency PSCs. Most importantly, it was found that both structural and electronic properties of the random polymer can be finely tuned between the regular polymers that comprise only C8C12 or C10C14 alkyl chains. Furthermore, upon blending with fullerene acceptors, these randomly polymerized donor polymers with even-numbered alkyl chains can achieve a high PCE up to 11.1%, which is comparable to that obtained using odd-numbered, C9C13 alkyl chains.
Therefore, in an embodiment ofthe present subject matter, a new method of making random polymers has been developed by using two building blocks with same structure, except for the size of side chains. Obtaining optimum size of side chains is a time-consuming process and sometimes particular side chains are not commercially available. By using the present approach, the aforementioned hurdle can be easily overcome. In particular, by using a different ratio of two building blocks with the same structure (except for the size of side chains) to synthesize random polymers, it is facile to tune the size of the side chains on polymers. This enables the enhancement of the power convertion efficiency up to 11.1%, or higher, and dramatically simplifies the tuning process, which is beneficial for both industrial and academicpurposes.
In an embodiment, the present subject matter is directed to a conjugated polymer comprising five or more repeating units of the following formula
Figure PCTCN2017105660-appb-000003
wherein
x and y are real numbers representing molar fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
each Ar1 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar1 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
each Ar2’and Ar2”is independently selected from the group consisting of substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar2’and Ar2”may contain one to five of said arylene or heteroarylene each of which may be fused or linked; wherein Ar2’and Ar2”have substitution groups including but not limited to alkyl side chains; and wherein Ar2”has a nearly identical chemical structure to Ar2’except substitution groups on Ar2”differ from those on Ar2’.
In an embodiment, the conjugated polymer of the present subject matter comprises five or more repeating units of the following formula:
Figure PCTCN2017105660-appb-000004
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
each Ar1 and Ar2is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar1 and Ar2 may contain one to five of said arylene or  heteroarylene each of which may be fused or linked; and
each R1andR2 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R1is not the same as R2.
In an embodiment, the conjugated polymer of the present subject matter comprises five or more repeating units of the following formula:
Figure PCTCN2017105660-appb-000005
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
each Ar1, Ar2, and Ar3 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar1, Ar2, and Ar3 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
each R1 and R2 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are  optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R1is not the same as R2.
In an embodiment, the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
Figure PCTCN2017105660-appb-000006
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
each Z1 is S or Se;
each Z2 is N or C-H;
each Ar1 and Ar2is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar1and Ar2 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
each R1 and R2 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-,  and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R1is not the same as R2.
In an embodiment, the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
Figure PCTCN2017105660-appb-000007
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
each Ar1 and Ar2is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar1and Ar2 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
each R1 and R2 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms  unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R1is not the same as R2.
In an embodiment, the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
Figure PCTCN2017105660-appb-000008
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
each Ar1 and Ar2is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar1and Ar2 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
eachR1 and R2 is independently selected from the group consisting of branched alkyl groups with 2-40 C atoms; wherein R1is not the same as R2.
In an embodiment, the conjugated polymer of the present subject matter comprises five or more repeating units of the following formula:
Figure PCTCN2017105660-appb-000009
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and  the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
eachR1 and R2 is independently selected from second branched alkyl groups with 2-40 C atoms; wherein R1is not the same as R2; and
each Ar1 and Ar2is independently selected from the group consisting of:
Figure PCTCN2017105660-appb-000010
Figure PCTCN2017105660-appb-000011
Figure PCTCN2017105660-appb-000012
wherein
each Z1, Z2, Z3, Z4, Z5, and Z6 is S, O, or Se;
each X, X1, X2, X3, X4, X5, X6, X7, and X8 is H, F, or Cl; and
each R, R3, and R4 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl,  heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group.
In an embodiment, the average molecular weight of the conjugated polymer is in a range from 10,000 to 200,000 gram/mole. In an embodiment, a solution of the conjugated polymer exhibits a peak optical absorption spectrum red shift of at least 50 nm when the conjugated polymer solution is cooled from 140℃ to room temperature.
In an embodiment, the conjugated polymer of the present subject matter comprises one or more repeating units selected from the following formulas:
Figure PCTCN2017105660-appb-000013
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and  the sum of x and y is about 1;
n is an integer that is 5 or greater;
each Z1, Z2, Z3, Z4, Z5, Z6, Z7, and Z8 is S, O, or Se;
eachX, X1, X2, X3, and X4 is H, F, or Cl; and
eachR1, R2, and R3 is a second position branched side chain; wherein R1is not the same as R2.
In an embodiment, the conjugated polymer of the present subject matter comprises five or more repeating units of the following formula:
Figure PCTCN2017105660-appb-000014
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
each Z1, Z2, Z3, Z4, and Z5 is S, O, or Se;
each Z6 is CH2, S, or O;
each Z7 is H, F, or Cl; and
each R1, R2, and R3 is independently selected from the group consisting of straight-chain,  branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R2is not the same as R3.
In an embodiment, the conjugated polymer of the present subject matter comprises five or more repeating units of the following formula:
Figure PCTCN2017105660-appb-000015
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
each Z6 is CH2, S, or O;
each Z7 is H, F, or Cl; and
eachR1, R2, and R3 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms; wherein R2is not the same as R3.
In an embodiment, the conjugated polymer of the present subject matter comprises a formula selected from the group consisting of:
Figure PCTCN2017105660-appb-000016
Figure PCTCN2017105660-appb-000017
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater; and
eachR is selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms.
In an embodiment, the conjugated polymer of the present subject matter exhibits temperature-dependent aggregation properties, characterized in that a solution of the conjugated polymer exhibits a peak optical absorption spectrum red shift of at least 50 nm when the conjugated polymer solution is cooled from 140℃ to room temperature.
In an embodiment, the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
Figure PCTCN2017105660-appb-000018
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
each Z1 and Z2 is S, O, or Se;
each Z3 is CH2, S, or O;
each Z4 and Z5 is H, F, or Cl; and
each R1, R2, and R3 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R2is not the same as R3.
In an embodiment, the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
Figure PCTCN2017105660-appb-000019
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1;
n is an integer that is 5 or greater;
each Z3 is CH2, S, or O;
each Z4 and Z5 is H, F, or Cl; and
eachR1, R2 and R3 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms; wherein R2is not the same as R3.
In an embodiment, the conjugated polymer of the present subject matter comprises five or more repeating unit of the following formula:
Figure PCTCN2017105660-appb-000020
wherein x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is equal or less than 1.
In an embodiment, the conjugated polymer of the present subject matter comprises a formula selected from the group consisting of:
Figure PCTCN2017105660-appb-000021
Figure PCTCN2017105660-appb-000022
wherein
x1 is 0.25 or 0.5 or 0.75;
x2 and x3 are 0.5; and
n is an integer that is 5 or greater.
In an embodiment, the present subject matter is directed to an organic electronic (OE) device comprising the conjugated polymer of the present subject matter. In an embodiment, the OE device is an organic solar cell (OSC) .
Formulations of the present teachings can exhibit semiconductor behavior such asoptimized light absorption/charge separation in a photovoltaic device; chargetransport/recombination/light emission in a light-emitting device; and/or high carrier mobilityand/or good current modulation characteristics in a field-effect device. In addition, thepresent formulations can possess certain processing advantages such as solution-processabilityand/or good stability (e.g., air stability) in ambient conditions. The formulations of the presentteachings can be used to prepare either p-type (donor or hole-transporting) , n-type (acceptoror electron-transporting) , or ambipolar semiconductor materials, which in turn can be used tofabricate various organic or hybrid optoelectronic articles, structures and devices, includingorganic photovoltaic devices and organic light-emitting transistors.
In an embodiment, an organic electronic (OE) device comprises a coating or printing ink containing the present formulation. Another embodiment is further characterized in that the  OE device is an organic field effect transistor (OFET) device. Another embodiment is further characterized in that the OE device is an organic photovoltaic (OPV) device.
In an embodiment, the present subject matter is directed to a donor-acceptor conjugated polymer comprising one or more repeating units having a formula of:
Figure PCTCN2017105660-appb-000023
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and a sum of x and y is about 1;
each R1 and R2 is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 20-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by –O–, –S–, –C (O) –, –C (O–) –O–, –O–C (O) –, –O–C (O) –O–, –CR0=CR00–, or –C≡C–, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein each R1 and R2 are not all identical;
each Ar1 and Ar2 is independently selected from the group consisting of an unsubstituted or substituted monocyclic, bicyclic, or polycyclic arylene and a monocyclic, bicyclic, and polycyclic heteroarylene; wherein each Ar1 and Ar2 may contain one to five of the unsubstituted or substituted monocyclic, bicyclic, or polycyclic arylene and the monocyclic, bicyclic, and  polycyclic heteroarylene, each of which may be fused or linked; and
wherein the conjugated polymer is not poly (3-hexylthiophene-2, 5-diyl) (P3HT) .
In an embodiment, Ar1 is selected from the group consisting of:
Figure PCTCN2017105660-appb-000024
wherein
each X1 is independently selected from the group consisting of F, H, and OR3; and
each R3 and R is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy,  heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group.
In an embodiment, Ar2 is selected from the group consisting of:
Figure PCTCN2017105660-appb-000025
wherein
each X1 is independently selected from the group consisting of F, H, and OR3, and
each R3 is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, aryxycarbonyl, heteroarylcarbonyloxy, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group.
In an embodiment, the donor-acceptor conjugated polymer has an average molecular weight in a range of 10,000 to 100,000 gram/mole. In an embodiment, a solution of the donor- acceptor conjugated polymer exhibits a peak optical absorption spectrum red shift of at least 50 nm when the solution is cooled from 140℃ to room temperature. In an embodiment, the donor-acceptor conjugated polymer has an optical bandgap of 2.2 eV or lower.
In an embodiment, the donor-acceptor conjugated polymer has a structure of:
Figure PCTCN2017105660-appb-000026
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and the sum of x and y is about 1;
each R1 and R2 is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 20-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by –O–, –S–, –C (O) –, –C (O–) –O–, –O–C (O) –, –O–C (O) –O–, –CR0=CR00–, or –C≡C–, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; and wherein each R1 and R2 are not all identical.
In an embodiment, the donor-acceptor conjugated polymer has a structure of:
Figure PCTCN2017105660-appb-000027
wherein
x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y < 1, and a sum of x and y is about 1.
In an embodiment, x=0.25, y=0.75, and the donor-acceptor conjugated polymer has a power conversion efficiency (PCE) of up to 10.14%. In an embodiment, x=0.5, y=0.5, and the donor-acceptor conjugated polymer has a power conversion efficiency (PCE) of up to 11.22%. In an embodiment, x=0.75, y=0.25, and the donor-acceptor conjugated polymer has a power conversion efficiency (PCE) of up to 10.03%. In an embodiment, the unit comprising x mole fraction and the unit comprising y mole fraction are repeated in a random manner.
In an embodiment, the donor-acceptor conjugated polymer is selected from the group consisting of:
Figure PCTCN2017105660-appb-000028
Figure PCTCN2017105660-appb-000029
For instance, in anon-limiting embodiment, the V7 polymer was synthesized, achieving 11.22%power conversion efficiency. In an embodiment, theV10 polymer was synthesized, achieving 10.14%power conversion efficiency. In an embodiment, the V15 polymer was synthesized, achieving 10.03%power conversion efficiency.
Formulations Comprising the D-APolymers
In an embodiment, the present subject matter is directed to a formulation comprising:
an organic solvent,
a fullerene or non-fullerene acceptor, and
a donor-acceptor conjugated polymer comprising one or more repeating units having a formula of:
Figure PCTCN2017105660-appb-000030
wherein x and y are real numbers representing mole fractions, wherein 0 < x < 1, 0 < y <1, and a sum of x and y is about 1;
wherein each R1 and R2 is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 20-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by –O–, –S–, –C (O) –, –C (O–) –O–, –O–C (O) –, –O–C (O) –O–, –CR0=CR00–, or –C≡C–, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I,  or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein each R1 and R2 are not all identical;
whereinAr1 is selected from the group consisting of:
Figure PCTCN2017105660-appb-000031
wherein Ar2 is selected from the group consisting of:
Figure PCTCN2017105660-appb-000032
wherein each X1 is independently selected from the group consisting of F, H, and OR3
wherein each R3 and R is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group.
Any other polymer described herein can likewise be used in formulations with the organic solvent and the fullerene or non-fullerene acceptor.
In an embodiment, the fullerene is selected from the group consisting of:
Figure PCTCN2017105660-appb-000033
wherein
each n = 1, 2, 4, 5, or 6;
eachAr is independently selected from the group consisting of monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked;
each Rx is independently selected from the group consisting of Ar, straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by –O–, –S–, –C (O) –, –C (O–) –O–, –O–C (O) –, –O–C (O) –O–, –CR0=CR00–, or –C≡C–, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and  R00 are independently a straight-chain, branched, or cyclic alkyl group;
each R is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by –O–, –S–, –C (O) –, –C (O–) –O–, –O–C (O) –, –O–C (O) –O–, –CR0=CR00–, or –C≡C–, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
each R1 is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by –O–, –S–, –C (O) –, –C (O–) –O–, –O–C (O) –, –O–C (O) –O–, –CR0=CR00–, or –C≡C–, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein the number of carbon that R1 contains is larger than 1, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
each Ar1 is independently selected from the group consisting of monocyclic, bicyclic and polycyclic heteroaryl groups, wherein each Ar1 may contain one to five of said heteroaryl groups each of which may be fused or linked;
each Ar2 is independently selected from aryl groups containing more than 6 atoms excluding H; and
wherein a fullerene ball represents a fullerene selected from the group consisting of C60, C70, C84, and other fullerenes.
In an embodiment, the fullerene is substituted by one or more functional groups selected from the group consisting of:
Figure PCTCN2017105660-appb-000034
wherein
each n = 1-6;
each Ar is independently selected from the group consisting of monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, or may contain one to five such groups, either fused or linked;
each Rx is independently selected from the group consisting of Ar, straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by –O–, –S–, –C (O) –, –C (O–) –O–, –O–C (O) –, –O–C (O) –O–, –CR0=CR00–, or –C≡C–, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to  30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
each R1 is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by –O–, –S–, –C (O) –, –C (O–) –O–, –O–C (O) –, –O–C (O) –O–, –CR0=CR00–, or –C≡C–, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein the number of carbon that R1 contains is larger than 1, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
each R is independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by –O–, –S–, –C (O) –, –C (O–) –O–, –O–C (O) –, –O–C (O) –O–, –CR0=CR00–, or –C≡C–, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
each Ar1 is independently selected from the group consisting of monocyclic, bicyclic and polycyclic heteroaryl groups, wherein each Ar1 may contain one to five of said heteroaryl groups each of which may be fused or linked;
each Ar2 is independently selected from aryl groups containing more than 6 atoms  excluding H; and
wherein the fullerene ball represents a fullerene selected from the group consisting of C60, C70, C84, and other fullerenes.
In some embodiments, the formulation is further characterized in that the fullerene is selected from the group consisting of:
Figure PCTCN2017105660-appb-000035
In an embodiment, the formulation is further characterized in that the fullerene is selected from the group consisting of:
Figure PCTCN2017105660-appb-000036
wherein
each n = 1-6;
each m = 1, 2, 4, 5, or 6;
each q = 1-6;
each R1 and R2 is independently selected from the group consisting of C1-4 straight and branched chain alkyl groups; and
wherein the fullerene ball represents a fullerene from the group consisting of C60, C70, C84, and other fullerenes.
In an embodiment, the formulation is further characterized in that the fullerene is selected from the group consisting of:
Figure PCTCN2017105660-appb-000037
Figure PCTCN2017105660-appb-000038
In an embodiment, the non-fullerene acceptor is selected from the group consisting of:
Figure PCTCN2017105660-appb-000039
Figure PCTCN2017105660-appb-000040
wherein each R is independently selected from the group consisting of Ar, straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optionally replaced by –O–, –S–, –C (O) –, –C (O–) –O–, –O–C (O) –, –O–C (O) –O–, –CR0=CR00–, or –C≡C–, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or  denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group.
In an embodiment, the present subject matter is directed to an organic electronic (OE) device comprising a coating or printing ink comprising a formulation according to the present subject matter. In an embodiment, the OE device is an organic field effect transistor (OFET) device or an organic solar cell (OSC) device. In an embodiment, the OE device has a power conversion efficiency of up to 11.22%.
EXAMPLES
Example 1: Synthetic Route to V7, V10, and V15
The synthetic route to V7, V10, and V15 is shown below in Scheme 1.
Scheme 1:
Figure PCTCN2017105660-appb-000041
Step 1: Preparation of S3 (5, 6-Difluoro-4, 7-bis (4- (2-octyldodecyl) -2-thienyl) -2, 1, 3-benzothiadiazole)
A solution of 3- (2-octyldodecyl) thiophene (S2, 5.00 g, 13.7 mmol) in 50 mL THF wascooled to -78℃ under N2. A solution of lithium diisopropylamide (2 M, 8.3 mL, 16.6mmol) was added dropwise and the mixture was stirred at -78℃ for 1 hour and then returned to 0℃ and stirred for an additional 1 hour. The mixture was then cooled to -78℃, and tri-n-butyltin chloride (6.50 g, 20 mmol) was added in one portion. The reaction mixture was returned to room temperature and stirred overnight. A solution of KF in water was added, and the organic phase was washed with water three times, then dried with Na2SO4. The solvent was evaporated to get the crude product as a yellow oil, which was directly used without further purification.
A mixture of 2- (tri-n-butylstannyl) -4- (2-octyldodecyl) thiophene (1.96 g, ~3 mmol) , 4, 7-dibromo-5, 6-difluoro-2, 1, 3-benzothiadiazole (S1, 330mg, 1 mmol) , Pd2 (dba) 3 (11mg, 0.02 mmol) , and P (o-tol) 3 (24 mg, 0.08 mmol) in 10 mL THF was refluxed overnight under N2. The reaction mixture was then cooled to room temperature, and the solvent was evaporated. The residue was purified by flash column chromatography (eluent: n-hexane) to get the product as a yellow solid (650 mg, 73%) .
1H NMR (400 MHz, CDCl3) δ 8.11 (s, 2H) , 7.19 (s, 2H) , 2.66 (d, J = 6.7 Hz, 4H) , 1.77 –1.62 (m, 2H) , 1.42 –1.14 (m, 64H) , 0.97 –0.84 (m, 12H) . 19F NMR (376 MHz, CDCl3) δ -128.27 (s, 2F) .
13C NMR (100 MHz, CDCl3) δ 149.75 (dd, J = 257.9, 20.2 Hz) , 148.94 (t, J = 4.1Hz) , 142.36, 132.81 (t, J = 3.8 Hz) , 130.99, 124.83, 111.69 (dd, J = 9.2, 4.3 Hz) , 38.97, 34.88, 33.34, 31.93, 30.05, 29.71, 29.67, 29.38, 26.66, 22.70, 14.12.
HRMS (MALDI+) Calcd for C54H86F2N2S3 (M +) : 896.5921, Found: 896.5943.
Step2: Preparation of S4a
S4a, or 5, 6-Difluoro-4, 7-bis (5-bromo-4- (2-octyldodecyl) -2-thienyl) -2, 1, 3-benzothiadiazole, was synthesized as follows. N-Bromosuccinimide (540 mg, 3.00 mmol) was added to a mixture of S3 (1.22 g, 1.36 mmol) and silica gel (20 mg) in 20 mL of chloroform at 0℃. The reaction mixture was warmed to room temperature and stirred overnight. After washing with water, the organic phase was dried with Na2SO4, and the solvent was evaporated. The residue was purified with flash column chromatography (eluent: n-hexane) to get the product as an orange solid (1.42 g, 99%) .
1H NMR (400 MHz, CDCl3) δ 7.94 (s, 2H) , 2.60 (d, J = 7.1 Hz, 4H) , 1.80 –1.70 (m, 2H) , 1.40 –1.15 (m, 64H) , 0.90 –0.77 (m, 12H) .
19F NMR (376 MHz, CDCl3) δ -128.10 (s, 2F) .
13C NMR (100 MHz, CDCl3) δ 149.54 (dd, J = 258.9, 20.3 Hz) , 148.26, 141.70, 132.25, 130.99, 124.83, 115.13 (t, J = 3.6 Hz) , 110.85 (d, J = 8.6 Hz) , 38.53, 34.08, 33.35, 31.94, 30.05, 29.73, 29.69, 29.67, 29.39, 26.56, 22.71, 14.13.
HRMS (MALDI+) Calcd for C54H84Br2F2N2S3 (M +) : 1052.4131, Found: 1052.4141.
Step3: Preparation of S4b
S4b, or5, 6-Difluoro-4, 7-bis (5-bromo-4- (2-octyldodecyl) -2-thienyl) -2, 1, 3-benzothiadiazole, was synthesized by a procedure similar to the synthesis of S4a.
Step 4: Preparationof V7, V10, and V15
The polymer can be synthesized by either microwave reaction or conventional reaction.
Preparation of V7
In a glovebox protected with N2, 0.8 mL of chlorobenzene (CB) was added to a mixture of monomer S4a (75.0 mg, 0.071 mmol) , monomer S4b (81.0 mg, 0.069 mmol) , 5, 5'-bis (trimethylstannyl) -2, 2'-bithiophene (69.1 mg, 0.140 mmol) , Pd2 (dba) 3 (1.1 mg, 0.002 mmol) and P (o-tol) 3 (2.4 mg, 0.008mmol) . The reaction mixture was then sealed and heated at 140℃for 2 days. The mixture was cooled to room temperature and 10 mL CB was added before precipitating with methanol. The solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH2Cl2, CHCl3, and toluene. The polymer was finally collected from toluene. The toluene solution was then concentrated by evaporation and precipitated into methanol. The solid was collected by filtration and dried in vacuo to get the polymer as a dark green solid (137.2 mg, 88%) .
Preparation of V10
In a glove box protected with N2, 0.8 mL of chlorobenzene (CB) was added to a mixture of monomer S4a (49.0 mg, 0.046 mmol) , monomer S4b (157.4 mg, 0.135 mmol) , 5, 5'-bis (trimethylstannyl) -2, 2'-bithiophene (89.2 mg, 0.095 mmol) , Pd2 (dba) 3 (1.1 mg, 0.002 mmol) and P (o-tol) 3 (2.4 mg, 0.008mmol) . The reaction mixture was then sealed and heated at 140℃ for 2 days. The mixture was cooled to room temperature and 10 mL CB was added before precipitating with methanol. The solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH2Cl2 and CHCl3. The polymer was finally collected from CHCl3. The CHCl3 solution was then concentrated by evaporation and precipitated into methanol. The solid was collected by filtration and dried in vacuo to get the polymer as a dark green solid (155.9 mg, 75%) .
Preparation of V15
In a glove box protected with N2, 0.4 mL of chlorobenzene (CB) was added to a mixture of monomer S4a (51.8 mg, 0.049 mmol) , S4b (19.3 mg, 0.017 mmol) , 5, 5'-bis(trimethylstannyl) -2, 2'-bithiophene (32.3 mg, 0.066 mmol) , Pd2 (dba) 3 (1.1 mg, 0.002 mmol) and P (o-tol) 3 (2.4 mg, 0.008mmol) . The reaction mixture was then sealed and heated at 140℃ for 1 day for microwave reaction. The mixture was cooled to room temperature and 10 mL toluene was added before precipitating with methanol. The solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH2Cl2, CHCl3, and toluene. The polymer was finally collected from toluene. The toluene solution was then concentrated by evaporation and precipitated into methanol. The solid was collected by filtration and dried in vacuo to get the polymer as a dark green solid (61.1 mg, 86%) .
Example 2: Synthetic Route to Z79 and Z80
The synthetic route to Z79 and Z80 is shown below in Scheme 2.
Scheme 2:
Figure PCTCN2017105660-appb-000042
Preparationof Z79
In a glove box protected with N2, 0.8 mL of chlorobenzene (CB) was added to a mixture of monomer Z1 (35.0 mg, 0.034 mmol) , monomer Z2 (116.4 mg, 0.102 mmol) , 5, 5'-bis (trimethylstannyl) -2, 2'-bithiophene (66.9 mg, 0.136 mmol) , Pd2 (dba) 3 (1.1 mg, 0.002 mmol) and P (o-tol) 3 (2.4 mg, 0.008mmol) . The reaction mixture was then sealed and heated at 140℃ for 2 days. The mixture was cooled to room temperature and 10 mL CB was added before precipitated with methanol. The solid was collected by filtration, and loaded into an extraction thimble and washed successively with CH2Cl2 and CHCl3. The polymer was finally collected from CHCl3. The CHCl3 solution was then concentrated by evaporation, precipitated into methanol. The solid was collected by filtration and dried in vacuo to get the polymer as dark red solid (76.4 mg, 50%) .
Preparationof Z80
In a glove box protected with N2, 0.8 mL of chlorobenzene (CB) was added to a mixture of monomer Z1 (90.0 mg, 0.087 mmol) , monomer Z2 (99.8 mg, 0.087mmol) , 5, 5'-bis (trimethylstannyl) -2, 2'-bithiophene (85.6 mg, 0.174 mmol) , Pd2 (dba) 3 (1.1 mg, 0.002 mmol) and P (o-tol) 3 (2.4 mg, 0.008mmol) . The reaction mixture was then sealed and heated at 140℃ for 2 days. The mixture was cooled to room temperature and 10 mL CB was added before  precipitating with methanol. The solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH2Cl2 and CHCl3. The polymer was finally collected from CHCl3. The CHCl3 solution was then concentrated by evaporation and precipitated into methanol. The solid was collected by filtration and dried in vacuo to get the polymer as a dark red solid (152.6 mg, 80%) .
Example 3: Synthetic Route to G1-G2
The synthetic route to G1 and G2 is shown below in Scheme 3.
Scheme 3:
Figure PCTCN2017105660-appb-000043
Preparationof G1-G2
In a glove box protected with N2, 0.4 mL of chlorobenzene (CB) was added to To a mixture of monomer G1 (37.7 mg, 0.023 mmol) , monomer G2 (82.0 mg, 0.047mmol) , 5, 6-difluoro-4, 7-bis (5- (trimethylstannyl) thiophen-2-yl) benzo [c] [1, 2, 5] thiadiazole (46.3mg, 0.070 mmol) , Pd2 (dba) 3 (1.1 mg, 0.002 mmol) and P (o-tol) 3 (2.4 mg, 0.008mmol) . The reaction mixture was then sealed and heated at 140℃ for 2 days. The mixture was cooled to room temperature and 10 mL CB was added before precipitating with methanol. The solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH2Cl2 and CHCl3. The polymer was finally collected from CHCl3. The CHCl3 solution was then concentrated by evaporation and precipitated into methanol. The solid was collected by filtration and dried in  vacuo to get the polymer as a dark green solid (40.0 mg, 30%) .
Example 4: Synthetic Route to V1-V2
The synthetic route to V1 and V2 is shown below in Scheme 4.
Scheme 4:
Figure PCTCN2017105660-appb-000044
Preparation ofV1-V2
In a glove box protected with N2, 3.4 mL of toluene and 0.6 mL of DMF were added to a mixture of monomer V1 (34.1 mg, 0.072 mmol) , monomer V2 (38.0 mg, 0.072mmol) , 2, 6-bis (trimethyltin) -4, 8-bis (5- (2-ethylhexyl) thiophen-2-yl) benzo [1, 2-b: 4, 5-b0] dithiophene (130.2 mg, 0.144 mmol) , and Pd (PPh34 (7.4 mg, 0.006 mmol) . The reaction mixture was then sealed and heated at 120℃ for 1 day. The mixture was cooled to room temperature and 10 mL CB was added before precipitating with methanol. The solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH2Cl2 and CHCl3. The polymer was finally collected from CHCl3. The CHCl3 solution was then concentrated by evaporation and  precipitated into methanol. The solid was collected by filtration and dried in vacuo to get the polymer as a dark green solid (99.3 mg, 75%) .
Example 5: Synthetic Route to V3-V4
The synthetic route to V3 and V4 is shown below in Scheme 5.
Scheme 5:
Figure PCTCN2017105660-appb-000045
Preparationof V3-V4
In a glove box protected with N2, 3.0 mL of toluene was added to a mixture of monomer V3 (36.0 mg, 0.047 mmol) , monomer V4 (41.3 mg, 0.047mmol) , 2, 6-bis (trimethyltin) -4, 8-bis (5- (2-ethylhexyl) thiophen-2-yl) benzo [1, 2-b: 4, 5-b0] dithiophene (85.0mg, 0.094 mmol) , and Pd (PPh34 (7.4 mg, 0.006 mmol) . The reaction mixture was then sealed and heated at 110℃for 1 day. The mixture was cooled to room temperature and 10 mL CB was added before precipitating with methanol. The solid was collected by filtration, loaded into an extraction thimble, and washed successively with CH2Cl2 and CHCl3. The polymer was finally collected from CHCl3. The CHCl3 solution was then concentrated by evaporation and precipitated into methanol. The solid was collected by filtration and dried in vacuo to get the polymer as a dark green solid (117.9 mg, 72%) .
Example 6: Solar Cell Fabrication and Testing
Pre-patterned ITO-coated glass with a sheet resistance of ~15Ω per square was used as the substrate. It was cleaned by sequential ultrasonication in soap deionized water, deionized water, acetone, and isopropanol for 15 minutes at each step. The washed substrates were further treated with a UV-O3 cleaner (Novascan, PSD Series digital UV ozone system) for 30 minutes. A topcoat layer of ZnO (Adiethylzinc solution, 15 wt%in toluene, diluted with tetrahydrofuran) was spin-coated onto the ITO substrate at a spinning rate of 5000 rpm for 30 seconds and then baked in air at 180℃ for 20 minutes. Active layer solutions (polymer: fullerene weight ratio 1: 1.2) were prepared in TMB with 2.5%of PN. The polymer concentration is 14mgml-1 for PffBT4T-25OD, 12mgml-1 for PffBT4T-50OD, 10mgml-1 PffBT4T-100OD. To completely dissolve the polymer, the active layer solution should be stirred on a hot plate at 100℃ for at least 1 hour.
Before spin coating, both the polymer solution and ITO substrate are preheated on a hot plate at 110℃. Active layers were spin-coated from the warm polymer solution on the preheated substrate in a N2 glovebox at 600 r. p. m. . The active layers were then treated with vacuum to remove the high-boiling-point additives. The blend films were annealed at 100℃ for 5 minutes before being transferred to the vacuum chamber of a thermal evaporator inside the same glovebox. At a vacuum level of 1×10-4 Pa, a thin layer (7 nm) of V2O5 was deposited as the anode interlayer, followed by deposition of 100nm of Al as the top electrode. All cells were encapsulated using epoxy inside the glovebox.
Device J–V characteristics were measured under AM1.5G (100 mW cm-2) using a Newport Class A solar simulator (94021A, a Xenon lamp with an AM1.5G filter) in air at room temperature. A standard Si diode with KG5 filter was purchased from PV Measurements and calibrated by Newport Corporation. The light intensity was calibrated using the Si diode as a  reference cell to bring spectral mismatch to unity. J–V characteristics were recorded using a Keithley 2400 source meter unit. Typical cells hada device area of 5.9 mm2, defined by a metal mask with an aperture aligned with the device area. EQEs were characterized using a Newport EQE system equipped with a standard Si diode. Monochromatic light was generated from a Newport 300 W lamp source. These test protocols are exactly the same as that used in previously certified OPVs.
FIG. 1 shows the J-V curves of V7: PC71BM-based solar cells processed from TMB or TMB-DIO.
Example 7: Optical Characterizations
Solution UV-Vis absorption spectra at elevated temperatures were collected on a Perkin Elmer Lambda 950 UV/VIS/NIR Spectrophotometer. The temperature of the cuvette was controlled with a Perkin Elmer PTP 6+6 Peltier System, which was supplied by a Perkin Elmer PCB 1500 Water Peltier System. Before each measurement, the system was held for at least 10 minutes at the target temperature to reach thermal equilibrium. A cuvette with a stopper (Sigma Z600628) was used to avoid volatilization during the measurement.
FIG. 2 shows the UV-Vis absorption spectra of V7 at elevated temperatures in a 0.01 mg mL-1 CB solution; FIG. 3 shows the UV-Vis absorption spectra of V10 at elevated temperatures in a 0.01 mg mL-1 CB solution; and FIG. 4 shows the UV-Vis absorption spectra of V15 at elevated temperatures in a 0.01 mg mL-1 CB solution.
Example 8: Mobility Characterizations
Hole mobility measurements
The holemobilities were measured using the space charge limited current (SCLC) method, employing a device architecture of ITO/V2O5/blend film/V2O5/Al. The mobilities were  obtained by taking current-voltage curves and fitting the results to a space charge limited form, wherethe SCLC is described by:
Figure PCTCN2017105660-appb-000046
where ε0 is the permittivity of free space, εr is the relative permittivity of the material (assumed to be 3) , μ is the hole mobility, Vappl is the applied voltage, Vbi is the built-in voltage (0 V) , Vs is the voltage drop from the substrate’s series resistance (Vs = IR, R is measured to be 10.8 Ω) and L is the thickness of the film. The J~Vappl and J1/2~ (Vappl-Vbi-Vs) characteristics are shown in Fig. S2. By linearly fitting J1/2 with Vappl-Vbi-Vs, the mobilities were extracted from the slope and L:
Figure PCTCN2017105660-appb-000047
Electron mobility measurements
The electron mobilities were measured using the SCLC method, employing a device architecture of ITO/ZnO/active layer/Ca/Al. The mobilities were obtained by taking current-voltage curves and fitting the results to a space charge limited form, where the SCLC is described by:
Figure PCTCN2017105660-appb-000048
where ε0 is the permittivity of free space, εr is the relative permittivity of the material (assumed to be 3) , μ is the hole mobility, Vappl is the applied voltage, Vbi is the built-in voltage (0.7 V) , Vs is the voltage drop from the substrate’s series resistance (Vs = IR, R is measured to be 10.8 Ω) and L is the thickness of the film. By linearly fitting J1/2 with Vappl-Vbi-Vs, the mobilities were extracted from the slope and L:
Figure PCTCN2017105660-appb-000049
The mobilities of V7, V10, and V15 are shown below in Table 1.
Table 1: Mobilities of Random Polymers V7, V10, and V15
Figure PCTCN2017105660-appb-000050
With the information contained herein, various departures and modifications from precise descriptions of the present subject matter will be readily apparent to those skilled in the art to which the present subject matter pertains, without departing from the spirit and the scope of the below claims. As such, the present subject matter is directed to any one or more of the embodiments, or elements thereof, described herein, or permutation or combination of some or all of the embodiments, or the elements thereof, described herein. The present subject matter is not considered limited in scope to the procedures, properties, or components defined, since the preferred embodiments and other descriptions are intended only to be illustrative of particular aspects of the presently provided subject matter.

Claims (20)

  1. A conjugated polymer comprising five or more repeating units of the following formula
    Figure PCTCN2017105660-appb-100001
    wherein
    x and y are real numbers representing molar fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater;
    each Ar1 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar1 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
    each Ar2’ and Ar2” is independently selected from the group consisting of substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar2’ and Ar2” may contain one to five of said arylene or heteroarylene each of which may be fused or linked; wherein Ar2’ and Ar2” have substitution groups including but not limited to alkyl side chains; and wherein Ar2” has a nearly identical chemical structure to Ar2’ except substitution groups on Ar2” differ from those on Ar2’.
  2. The conjugated polymerof claim 1, wherein the conjugated polymercomprises five or more repeating units of the following formula:
    Figure PCTCN2017105660-appb-100002
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater;
    each Ar1 and Ar2is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein each Ar1 and Ar2 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
    each R1 and R2 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R1 is not the same as R2.
  3. The conjugated polymerof claim 1, wherein the conjugated polymercomprisesfive or more repeating units of the following formula:
    Figure PCTCN2017105660-appb-100003
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and  the sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater;
    each Ar1, Ar2, and Ar3 is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar1, Ar2, and Ar3 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
    each R1 and R2 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R1 is not the same as R2.
  4. The conjugated polymer of claim 1, wherein the conjugated polymer comprises five or more repeating unit of the following formula:
    Figure PCTCN2017105660-appb-100004
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater;
    eachZ1 is S or Se;
    eachZ2 is N or C-H;
    each Ar1 and Ar2is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar1and Ar2 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
    each R1 and R2 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R1 is not the same as R2.
  5. The conjugated polymer of claim 1, wherein the conjugated polymer comprises five or more repeating unit of the following formula:
    Figure PCTCN2017105660-appb-100005
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the  sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater;
    each Ar1 and Ar2is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar1and Ar2 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
    each R1 and R2 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R1 is not the same as R2.
  6. The conjugated polymer of claim 1, wherein the conjugated polymer comprises five or more repeating unit of the following formula:
    Figure PCTCN2017105660-appb-100006
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater;
    each Ar1 and Ar2is independently selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar1and Ar2 may contain one to five of said arylene or heteroarylene each of which may be fused or linked; and
    eachR1 and R2 is independently selected from the group consisting of branched alkyl groups with 2-40 C atoms; wherein R1 is not the same as R2.
  7. The conjugated polymer of claim 1, wherein the conjugated polymer comprises five or more repeating units of the following formula:
    Figure PCTCN2017105660-appb-100007
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater;
    eachR1 and R2 is independently selected from second branched alkyl groups with 2-40 C atoms; wherein R1 is not the same as R2; and
    eachAr1 and Ar2is independently selected from the group consisting of:
    Figure PCTCN2017105660-appb-100008
    Figure PCTCN2017105660-appb-100009
    Figure PCTCN2017105660-appb-100010
    Figure PCTCN2017105660-appb-100011
    Figure PCTCN2017105660-appb-100012
    wherein
    eachZ1, Z2, Z3, Z4, Z5, and Z6is S, O, or Se;
    each X, X1, X2, X3, X4, X5, X6, X7, and X8 is H, F, or Cl; and
    each R, R3, and R4is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group.
  8. The conjugated polymer of claim 5, wherein the average molecular weight of the conjugated polymer is in a range from 10,000 to 200,000 gram/mole.
  9. The conjugated polymer of claim 1, wherein a solution of the conjugated polymer exhibits a  peak optical absorption spectrum red shift of at least 50 nm when the conjugated polymer solution is cooled from 140℃ to room temperature.
  10. The conjugated polymer of claim 1, wherein the conjugated polymercomprisesone or more repeating units selected from the following formulas:
    Figure PCTCN2017105660-appb-100013
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is about 1;
    n is an integer that is 5 or greater;
    each Z1, Z2, Z3, Z4, Z5, Z6, Z7, and Z8 is S, O, or Se;
    each X, X1, X2, X3, and X4 is H, F, or Cl; and
    eachR1, R2, and R3 is a second position branched side chain; whereinR1 is not the same as  R2.
  11. The conjugated polymer of claim 1, wherein the conjugated polymer comprises five or more repeating units of the following formula:
    Figure PCTCN2017105660-appb-100014
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater;
    eachZ1, Z2, Z3, Z4, and Z5is S, O, or Se;
    eachZ6 is CH2, S, or O;
    eachZ7 is H, F, or Cl; and
    each R1, R2, and R3 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms  unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R2 is not the same as R3.
  12. The conjugated polymer of claim 11, wherein the conjugated polymer comprises five or more repeating units of the following formula:
    Figure PCTCN2017105660-appb-100015
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater;
    eachZ6 is CH2, S, or O;
    eachZ7 is H, F, or Cl; and
    eachR1, R2, and R3 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms; wherein R2 is not the same as R3.
  13. The conjugated polymer of claim 11, wherein the conjugated polymer comprisesa formula selected from the group consisting of:
    Figure PCTCN2017105660-appb-100016
    Figure PCTCN2017105660-appb-100017
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater; and
    eachR is selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms.
  14. The conjugated polymer of claim 11, wherein the conjugated polymer exhibits temperature-dependent aggregation properties, characterized in that a solution of the conjugated polymer exhibits a peak optical absorption spectrum red shift of at least 50 nm when the conjugated polymer solution is cooled from 140℃ to room temperature.
  15. The conjugated polymer of claim 1, wherein the conjugated polymer comprises five or more repeating unit of the following formula:
    Figure PCTCN2017105660-appb-100018
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater;
    eachZ1 and Z2is S, O, or Se;
    eachZ3 is CH2, S, or O;
    eachZ4 and Z5 is H, F, or Cl; and
    each R1, R2, and R3 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group; wherein R2is not the same as R3.
  16. The conjugated polymer of claim 15, wherein the conjugated polymer comprises five or more  repeating unit of the following formula:
    Figure PCTCN2017105660-appb-100019
    wherein
    x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is equal or less than 1;
    n is an integer that is 5 or greater;
    eachZ3 is CH2, S, or O;
    eachZ4 and Z5 is H, F, or Cl; and
    eachR1, R2 and R3 is independently selected from the group consisting of straight-chain, branched, andcyclic alkyl with 2-40 C atoms; wherein R2is not the same as R3.
  17. The conjugated polymer of claim 15, wherein the conjugated polymer comprises five or more repeating unit of the following formula:
    Figure PCTCN2017105660-appb-100020
    wherein x and y are real numbers representing mole fractions, wherein 0<x<1, 0<y<1, and the sum of x and y is equal or less than 1.
  18. The conjugated polymer of claim 1, wherein the conjugated polymer comprisesa formula selected from the group consisting of:
    Figure PCTCN2017105660-appb-100021
    Figure PCTCN2017105660-appb-100022
    wherein
    x1 is 0.25 or 0.5 or 0.75;
    x2 and x3 are 0.5; and
    n is an integer that is 5 or greater.
  19. An organic electronic (OE) device comprising the conjugated polymer of claim 1.
  20. The organic electronic device of claim 19, wherein the OE device is an organic solar cell (OSC) .
PCT/CN2017/105660 2016-10-11 2017-10-11 Randomly polymerized conjugated polymers containing random distribution of different side chains WO2018068721A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780062951.3A CN109890867B (en) 2016-10-11 2017-10-11 Randomly polymerized conjugated polymers containing randomly distributed different side chains

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662496208P 2016-10-11 2016-10-11
US62/496,208 2016-10-11

Publications (1)

Publication Number Publication Date
WO2018068721A1 true WO2018068721A1 (en) 2018-04-19

Family

ID=61905169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105660 WO2018068721A1 (en) 2016-10-11 2017-10-11 Randomly polymerized conjugated polymers containing random distribution of different side chains

Country Status (2)

Country Link
CN (1) CN109890867B (en)
WO (1) WO2018068721A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108752569A (en) * 2018-06-07 2018-11-06 南方科技大学 A kind of amboceptor type polymer and its preparation method and application
CN109761996A (en) * 2018-12-24 2019-05-17 河南大学 A kind of thiophene [3,4-f] isobenzofuran -4,8- diketone and preparation method thereof
WO2020187867A1 (en) * 2019-03-19 2020-09-24 Raynergy Tek Inc. Organic semiconductors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061235B (en) * 2021-03-22 2023-08-08 位速科技股份有限公司 Copolymer and organic photovoltaic element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051556A (en) * 2012-09-05 2014-03-20 Kuraray Co Ltd π-ELECTRON CONJUGATED RANDOM COPOLYMER, AND PHOTOELECTRIC CONVERSION ELEMENT USING THE SAME
TW201412813A (en) * 2012-09-14 2014-04-01 Toray Industries Conjugated polymer, and electron-donating organic material, photovoltaic element material and photovoltaic element comprising same
CN104140521A (en) * 2014-07-11 2014-11-12 太原理工大学 Broad-absorption-spectrum ternary conjugated polymer donor material as well as preparation method and application of wide-absorption-spectrum ternary conjugated polymer donor material
CN104169347A (en) * 2012-03-16 2014-11-26 默克专利股份有限公司 Conjugated polymers
WO2014202184A1 (en) * 2013-06-21 2014-12-24 Merck Patent Gmbh Conjugated polymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169347A (en) * 2012-03-16 2014-11-26 默克专利股份有限公司 Conjugated polymers
JP2014051556A (en) * 2012-09-05 2014-03-20 Kuraray Co Ltd π-ELECTRON CONJUGATED RANDOM COPOLYMER, AND PHOTOELECTRIC CONVERSION ELEMENT USING THE SAME
TW201412813A (en) * 2012-09-14 2014-04-01 Toray Industries Conjugated polymer, and electron-donating organic material, photovoltaic element material and photovoltaic element comprising same
WO2014202184A1 (en) * 2013-06-21 2014-12-24 Merck Patent Gmbh Conjugated polymers
CN104140521A (en) * 2014-07-11 2014-11-12 太原理工大学 Broad-absorption-spectrum ternary conjugated polymer donor material as well as preparation method and application of wide-absorption-spectrum ternary conjugated polymer donor material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108752569A (en) * 2018-06-07 2018-11-06 南方科技大学 A kind of amboceptor type polymer and its preparation method and application
CN108752569B (en) * 2018-06-07 2021-04-30 南方科技大学 Double-receptor polymer and preparation method and application thereof
CN109761996A (en) * 2018-12-24 2019-05-17 河南大学 A kind of thiophene [3,4-f] isobenzofuran -4,8- diketone and preparation method thereof
CN109761996B (en) * 2018-12-24 2021-04-27 河南大学 Thiophene [3,4-f ] isobenzofuran-4, 8-diketone and preparation method thereof
WO2020187867A1 (en) * 2019-03-19 2020-09-24 Raynergy Tek Inc. Organic semiconductors
CN113631627A (en) * 2019-03-19 2021-11-09 天光材料科技股份有限公司 Organic semiconductor
JP2022525907A (en) * 2019-03-19 2022-05-20 レイナジー テック インコーポレイション Organic semiconductor

Also Published As

Publication number Publication date
CN109890867B (en) 2021-10-15
CN109890867A (en) 2019-06-14

Similar Documents

Publication Publication Date Title
US10263190B2 (en) Difluorobithiophene-based donor-acceptor polymers for electronic and photonic applications
US10680178B2 (en) Organic semiconductor formulation and application thereof
EP2828903B1 (en) Optoelectronic devices comprising polymeric blends
WO2015096797A1 (en) Polymer/fullerene formations and their use in electronic/photonic devices
WO2019137329A1 (en) Chlorinated benzodithiophene-based polymers for electronic and photonic applications
US9472764B2 (en) Conjugated polymers and their use in optoelectronic devices
EP2630676A1 (en) Conjugated polymers and their use in optoelectronic devices
WO2018068721A1 (en) Randomly polymerized conjugated polymers containing random distribution of different side chains
EP2828904A1 (en) Conjugated polymers and their use in optoelectronic devices
CN111418079B (en) Aromatic systems based on fused ring thiophenes
US11205753B2 (en) Use of sequential processing for highly efficient organic solar cells based on conjugated polymers with temperature dependent aggregation
WO2018068720A1 (en) Materials and facbrication methods for tandem organic photovoltaic cells
WO2017097246A1 (en) Fluorinated benzoxadiazole-based donor-acceptor polymers for electronic and photonic applications
CN110536915B (en) Vertical benzodithiophene-based donor-acceptor polymers for electronic and photonic applications
TW202017964A (en) Conjugated polymer and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859392

Country of ref document: EP

Kind code of ref document: A1