CN108983051A - 基于同步挤压小波变换的局部放电类型识别方法 - Google Patents

基于同步挤压小波变换的局部放电类型识别方法 Download PDF

Info

Publication number
CN108983051A
CN108983051A CN201810829627.6A CN201810829627A CN108983051A CN 108983051 A CN108983051 A CN 108983051A CN 201810829627 A CN201810829627 A CN 201810829627A CN 108983051 A CN108983051 A CN 108983051A
Authority
CN
China
Prior art keywords
signal
imt
synchronous
frequency
wavelet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810829627.6A
Other languages
English (en)
Other versions
CN108983051B (zh
Inventor
王文波
晋云雨
狄奇
赵彦超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201810829627.6A priority Critical patent/CN108983051B/zh
Publication of CN108983051A publication Critical patent/CN108983051A/zh
Application granted granted Critical
Publication of CN108983051B publication Critical patent/CN108983051B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明提供一种基于同步挤压小波变换的局部放电类型识别方法目的是针对变压器局部放电信号提出的一种识别方法,实现变压器局部放电信号的识别,首先,利用同步挤压小波变换对典型的变压器局部放电信号进行分解;然后,利用局部放电信号在不同分解尺度上能量和复杂度的差异,利用多尺度排列熵作为放电类型识别的特征量;最后,将提取到的特征量支持向量机分类器进行放电模式识别。本专利方法的局部放电信号平均识别准确率高于90%,明显优于其他常用的变压器局部放电识别方法。

Description

基于同步挤压小波变换的局部放电类型识别方法
技术领域
本发明涉及一种基于同步挤压小波变换的局部放电类型识别方法,电力系统信号处理领域。
背景技术
电力变压器是电力系统中最关键的设备之一,其安全性能的好坏影响着电网的安全有效运行。局部放电(Partial Discharge,PD)是引起电力变压器等大型高压设备绝缘损坏的主要原因,而不同局部放电类型对绝缘损害的程度不同,其形成的机理也各有差异。因此,快速准确地识别出不同的变压器局部放电类型,既为后续进行故障位置的判别提供了坚实有力的依据,也对维护电力系统的稳定有效运行具有重要的指导意义。
目前,检测设备局部放电的方法主要包括:脉冲电流法、超高频法、超声波法、光学法、化学法等。其中,由于超高频法(Ultra-High Frequency,UHF)具有现场安装方便、灵敏度高、抗干扰能力强等优点,在局部放单的在线监测中得到了广泛应用。
由于现场监测环境的复杂性,单从检测得到的超高频局部放电(UHF PD)信号本身出发,往往难以准确实现缺陷类型的判别。因此,需要对检测到的UHF PD信号进行特征提取,获得能够有效区分各类缺陷的特征量,从而实现缺陷类型的识别。有效的特征提取方法是进行缺陷识别的基础,特征量的选取直接影响识别结果的准确性。
目前,PD信号的特征提取方法主要分为两大类,一类是统计谱图法,通过采集多个工频周期的PD信号,构造二维或三维统计谱图,再从中提取统计特征、分形特征、数字图像特征等特征参数。对UHF PD信号而言,若采用统计谱图法,其采样率要求高,数据量大,处理数据速度慢,不利于在线监测,而且构造统计谱图需要PD的相位信息,但是在监测现场往往难以获得;另一类是波形分析法,通过采集单次UHF PD信号波形,提取信号的时域、频域或其他变换域特征。这种方法数据量小,处理速度快,且不需要放电相位信息,但由于PD脉冲激发的电磁波在传播过程中存在衰减和折反射,监测现场同时存在着严重的电磁干扰,传统的基于时域或频域的特征参数易受噪声污染,要准确提取PD信号的特征参数比较困难。
小波变换具有良好的时频局部化分析能力,利用小波变换可以同时得到信号局部的时域和频域信息,获得能够更加精确和有效描述信号的多尺度特征参数,在PD信号特征提取中得到了广泛应用。然而,由于小波变换只对低频部分做进一步分解,导致高频部分频率分辨率差。PD信号经小波变换分解后幅频响应曲线存在交错频段,子带间往往存在严重的频谱混叠和能量泄漏,因而从小波分解的子带中提取的多尺度特征参数往往不能精确描述PD信号的时频信息,不利于后续的分类识别。
发明内容
本发明的目的在于提供一种基于同步挤压小波变换的局部放电类型识别方法,以解决上述问题。
本发明采用了如下技术方案:
一种基于同步挤压小波变换的局部放电类型识别方法,其特征在于,包括:
步骤一、利用同步挤压小波变换对4种典型的变压器局部放电信号进行分解,利用SWT对时频面进行精确细致的划分,分解得到子带信号
时变信号f(t)一般以可分解为多个本征函数的叠加,即信号f(t)可表示为
式中:Ak(t)为第k个分量的瞬时振幅;Ak(t)为第k个分量的瞬时振幅,φk(t)为第k个分量的瞬时相位;r(t)为噪声或误差,K表示信号的分量个数,同步挤压小波变换通过细化小波变换的时频曲线,提取每一分量的幅值因子Ak(t)和瞬时频率φ′k(t)(k=1,2,…,K),同步挤压小波变换SWT根据小波变换后的系数Wf(a,b)在(a,b)附近的局部性质将系数Wf(a,b)重新分配给时频面内的不同点(ωf(a,b),b)(ωf(a,b)表示信号在(a,b)处的瞬时频率),从而使时频曲线更细更清晰,提高频率分辨率并减小模态混叠,使得分量信号重构时的精度更高,
同步挤压小波变换以信号的连续小波变换为基础,给定小波母函数ψ(t),信号f(t)的连续小波变换为
式中:ψ*表示母小波函数的共轭,a为尺度因子,b为平移因子,根据Plancherel定理,式(2)在频率域的等价变换为
式中,ξ是圆周率,分别是f(t)、ψ(t)的傅里叶变换,对最简单的信号f(t)=A cos(ωt),其傅里叶变换为根据式(3),其连续小波变换为
假定小波函数ψ具有快速衰减性,且在ξ=ω0处集中分布,则信号的小波系数Wf(a,b)将会在尺度处集中,但会在一定范围内沿尺度分布,
对于小波变换结果中任意一个“时间—尺度”点(b,a),通过小波系数求导可估计信号的瞬时频率,即
同步挤压小波变换在瞬时频率的基础上,建立(a,b)→[ωf(a,b),b]的映射,将小波系数Wf(a,b)由“时间—尺度”平面转化到“时间—频率”平面Wff(a,b),b],在SWT中,将任一中心频率ωl附近区间的小波系数值挤压到中心频率ωl上,获得同步挤压变换值Tfl,b),计算中,由于a,b,ω均离散,假设ai-ai-1=(Δa)i,同步挤压小波变换值Tfl,b)可表示为
通过一个时变信号f(t)比较同步挤压小波变换SWT与小波变换WT、短时傅里叶变换STFT的不同,f(t)由三个不同频率的信号叠加而成:0—0.7s为20Hz的余弦信号f1(t)=cos(40πt),0.3—1s为30Hz的余弦信号f2(t)=cos(60πt),0—1s为频率在80Hz振荡的余弦调频信号f3(t)=cos[160πt-5cos(30t)],同时对信号加入信噪比为3dB的高斯白噪声,对加入噪声后的信号分别利用经验模态分解,小波包变换和同步挤压小波变换SWT进行频谱分析,
同步挤压小波变换是可逆的,对于多分量信号,通过Tfl,b)不仅可以重构原始信号f(t),而且可以精确重构每一个分量信号fk(t),假设Lk(t)是时频图中以fk(t)的脊线为中心的一个小区间,则fk(t)的重构公式为
式中
步骤二、同步挤压小波变换SWT多尺度排列熵测度
将时频域的多尺度能量分布特征作为区分不同类型缺陷的特征量,同步挤压小波变换抽取信号不同振动频率的局部特性,计算同步挤压小波变换SWT排列墒值就能够发现信号中微小而短促的异常,在局部放电信号多尺度表示的基础上,定义如下沿尺度分布的同步挤压小波排列熵测度,
设局部放电信号经同步挤压窗口傅里叶变换后的内蕴模态类函数为IMTk(k=1,2,…,K),对模态类函数IMTk进行相空间重构,可得
式中:m、τ分别表示嵌入维数和延迟时间;Q=N-(m-1)τ,N表示的IMTk长度,将该矩阵的每一行作为一个重构分量,则可得到Q个重构分量,对(1)式中的第j个分量[IMT(j),IMT](j+τ),…,IMT(j+(m-1)τ)],对其元素按增序方式重新排列,设i1,i2,…,im表示重新排列后各元素所在位置的索引,即有IMT[j+(i1-1)τ]≤IMT[j+(i2-1)τ]≤…≤IMT[j+(im-1)τ],
如果有两个分量的值相等,即
IMT[j+(i1-1)τ]=IMT[j+(i2-1)τ]
则在排列时按照索引值i1和i2的大小来排列,即当i1<i2时,IMT[j+(i1-1)τ]排在IMT[j+(i2-1)τ]的前面,此时排列顺序为
IMT[j+(i1-1)τ]≤IMT[j+(i2-1)τ]
因此,对于IMTk所得到的重构矩阵,对其中的每一行进行重新排列后,都可以得到一组基于排列顺序的符号序列
S(r)=(i1,i2,…,im),其中r=1,2,…,q,且q≤m!
将重构矩阵中的每一行元素进行排列时,如果不考虑元素值的大小任意排列,则其m个元素共有m!中排列方法,即共有m!个符号序列(i1,i2,…,im),按元素值大小进行排列后的符号序列S(r)只是其中一种,总结每一种符号序列S(r)在重构矩阵排列中出现的次数,并计算其相应的概率,假设分别为P1,P2,…,Pq,则可以根据Shannon熵的定义计算内蕴模态类函数IMTk的q种不同符号序列的排列熵Ep(m),即
当重构矩阵的排列S(r)最为分散,也即每一个时,排列熵达到最大值Ep(m)=ln(m!),因此,排列熵Ep(m)的大小可以描述内蕴模态类函数IMTk中序列的随机程度:排列熵Ep(m)的值越小,表明IMTk中的数据越规则;排列熵Ep(m)的值越大,则表明IMTk中的数据越不规则,越接近于随机序列,排列熵Ep(m)的变化可以反映并放大了多尺度内蕴模态类函数IMTk中数据序列的细节变化,可以准确的检测出序列的突变,在局部放电分类时可获得较高的分辨率,为了便于使用,通常需要对Ep(m)进行归一化处理,即令则0≤Ep≤1,
步骤三、根据提取的排列熵,利用支持向量机SVM进行局部放电信号缺陷类型识别。
进一步,本发明的基于同步挤压小波变换的局部放电类型识别方法,还具有这样的特征:
步骤三中,SVM的核函数选择最常用的高斯径向基核函数,其表达式为
识别过程中,SVM采用一对一多分类模型,并采用2-折交叉验证方法确定SVM的最佳规则化系数C=0.3和核函数参数σ=0.65。
发明的有益效果
本发明的基于同步挤压小波变换的局部放电类型识别方法,通过同步挤压变换对局部放电信号的分解,克服了小波分解子带间存在频谱混叠和能量泄漏的缺点,使用的多尺度排列熵特征参数能够有效刻画UHF PD信号在时频域的能量分布和复杂度信息,具有较好的稳定性和抗干扰能力。
本专利方法的局部放电信号平均识别准确率高于90%,明显优于其他常用的变压器局部放电识别方法。
附图说明
图1是加噪余弦调频信号的时频分析结果图;
图2(a)是悬浮放电模型;
图2(b)是针板放电模型;
图2(c)是沿面放电模型;
图2(d)是气隙放电模型;
图3是UHF PD信号特征库的构造流程;
图4是4种UHF PD信号多尺度排列熵的95%置信区间。
具体实施方式
以下结合附图来说明本发明的具体实施方式。
步骤一、利用同步挤压小波变换对4种典型的变压器局部放电信号进行分解,利用同步挤压小波变换SWT可对时频面进行精确细致的划分,分解得到的子带信号
时变信号f(t)一般以可分解为多个本征函数的叠加,即信号f(t)可表示为
式中:Ak(t)为第k个分量的瞬时振幅;Ak(t)为第k个分量的瞬时振幅,φk(t)为第k个分量的瞬时相位;r(t)为噪声或误差,K表示信号的分量个数。同步挤压小波变换通过细化小波变换的时频曲线,有效提取每一分量的幅值因子Ak(t)和瞬时频率φ′k(t)(k=1,2,…,K)。作为一种特殊的重组方法,同步挤压小波变换SWT根据小波变换后的系数Wf(a,b)在(a,b)附近的局部性质将系数Wf(a,b)重新分配给时频面内的不同点(ωf(a,b),b)(ωf(a,b)表示信号在(a,b)处的瞬时频率),从而使时频曲线更细更清晰,提高频率分辨率并减小模态混叠,使得分量信号重构时的精度更高。
同步挤压小波变换以信号的连续小波变换为基础,给定小波母函数ψ(t),信号f(t)的连续小波变换为
式中:ψ*表示母小波函数的共轭,a为尺度因子,b为平移因子。根据Plancherel定理,式(2)在频率域的等价变换为
式中,ξ是圆周率,分别是f(t)、ψ(t)的傅里叶变换。对最简单的信号f(t)=Acos(ωt),其傅里叶变换为根据式(3),其连续小波变换为
假定小波函数ψ具有快速衰减性,且在ξ=ω0处集中分布,则信号的小波系数Wf(a,b)将会在尺度处集中,但会在一定范围内沿尺度分布。因此,已有研究表明,在时频图中,小波系数谱分布范围为较宽且边界模糊,对于较复杂的多分量信号,分量信号的小波系数谱图间往往存在严重的频谱混叠。
对于小波变换结果中任意一个“时间—尺度”点(b,a)。通过小波系数求导可估计信号的瞬时频率,即
文献的研究表明,尽管小波系数Wf(a,b)在各尺度a上均有分布,但无论a取何值,小波系数在平移因子b上的振荡特性均指向瞬时频率ωf(a,b)。因此,同步挤压小波变换在瞬时频率的基础上,建立(a,b)→[ωf(a,b),b]的映射,将小波系数Wf(a,b)由”时间—尺度”平面转化到“时间—频率”平面Wff(a,b),b]。在同步挤压小波变换SWT中,将任一中心频率ωl附近区间的小波系数值挤压到中心频率ωl上,获得同步挤压变换值Tfl,b),达到提高频率分辨率,减小频谱混叠的目的。实际计算中,由于a,b,ω均离散,假设ai-ai-1=(Δa)i,同步挤压小波变换值Tfl,b)可表示为
通过一个时变信号f(t)比较同步挤压小波变换SWT与小波变换WT、短时傅里叶变换STFT的不同,f(t)由三个不同频率的信号叠加而成:0—0.7s为20Hz的余弦信号f1(t)=cos(40πt),0.3—1s为30Hz的余弦信号f2(t)=cos(60πt),0—1s为频率在80Hz振荡的余弦调频信号f3(t)=cos[160πt-5cos(30t)],同时对信号加入信噪比为3dB的高斯白噪声。对加入噪声后的信号分别利用经验模态分解(empirical mode decomposition,EMD),小波包变换(wavelet packet transform,WPT)和同步挤压小波变换SWT进行频谱分析,分析结果如图1所示。可以看出,SWT变换的时频图更聚焦、更清晰,与EMD和WPT相比,具有更高的频率分辨率和时间分辨率,而且利用同步挤压小波变换可精确的提取各分量信号的时频谱。如图1中加噪余弦调频信号的时频分析所示,其中,图1(a)是EMD的时频分析,图1(b)是小波包的时频分析,图1(c)是SWT的时频分析。
同步挤压小波变换是可逆的,对于多分量信号,通过Tfl,b)不仅可以重构原始信号f(t),而且可以精确重构每一个分量信号fk(t)。假设Lk(t)是时频图中以fk(t)的脊线为中心的一个小区间,则fk(t)的重构公式为
式中对比EMD、小波包变换和SWT可知,如图1所示,EMD和小波包分解不能实现频带的精确划分,分解得到的子带间往往存在严重的频谱混叠和能量泄漏。若采用EMD或小波包变换对UHF PD信号进行分解,得到的子带信号并不能真实准确地反映UHF PD信号局部频段内的时域信息,从各子带信号中提取的多尺度特征参数,必然会受子带间频谱混叠和能量泄漏的影响,导致特征量不能精确描述UHF PD信号所包含的信息,不利于后续缺陷类型的识别。而利用SWT可对时频面进行精确细致的划分,分解得到的子带间不存在频谱混叠和能量泄漏,从各子带信号中提取的多尺度参数能够精确描述UHF PD信号的时频特征。因此,本文采用SWT对UHF PD信号进行处理。
步骤二、SWT多尺度排列熵测度
由于不同类型的绝缘缺陷产生PD的物理本质不同,会产生不同类型的放电脉冲,从而激发产生的UHF电磁波的时域波形和频域能量分布必然也存在较大差异;而同种类型的绝缘缺陷放电的物理过程和放电脉冲激发的超高频电磁波具有较强的相似性。由于单一尺度的时域或频域特征参数易受外界干扰,因此,将时频域的多尺度能量分布特征作为区分不同类型缺陷的特征量。而同步挤压小波变换SWT可以抽取信号不同振动频率的局部特性,因此计算SWT排列墒值就能够发现信号中微小而短促的异常。在局部放电信号多尺度表示的基础上,定义如下沿尺度分布的同步挤压小波排列熵测度。
设局部放电信号经同步挤压窗口傅里叶变换(synchrosqueezing windowFourier Transform,SWFT)后的内蕴模态类函数为IMTk(k=1,2,…,K),对模态类函数IMTk进行相空间重构,可得
式中:m、τ分别表示嵌入维数和延迟时间;Q=N-(m-1)τ,N表示的IMTk长度。。将该矩阵的每一行作为一个重构分量,则可得到Q个重构分量。对(1)式中的第j个分量[IMT(j),IMT](j+τ),…,IMT(j+(m-1)τ)],对其元素按增序方式重新排列,设i1,i2,…,im表示重新排列后各元素所在位置的索引,即有IMT[j+(i1-1)τ]≤IMT[j+(i2-1)τ]≤…≤IMT[j+(im-1)τ],
如果有两个分量的值相等,即
IMT[j+(i1-1)τ]=IMT[j+(i2-1)τ]
则在排列时按照索引值i1和i2的大小来排列,即当i1<i2时,IMT[j+(i1-1)τ]排在IMT[j+(i2-1)τ]的前面,此时排列顺序为
IMT[j+(i1-1)τ]≤IMT[j+(i2-1)τ]
因此,对于IMTk所得到的重构矩阵,对其中的每一行进行重新排列后,都可以得到一组基于排列顺序的符号序列
S(r)=(i1,i2,…,im),其中r=1,2,…,q,且q≤m!
将重构矩阵中的每一行元素进行排列时,如果不考虑元素值的大小任意排列,则其m个元素共有m!中排列方法,即共有m!个符号序列(i1,i2,…,im),按元素值大小进行排列后的符号序列S(r)只是其中一种。总结每一种符号序列S(r)在重构矩阵排列中出现的次数,并计算其相应的概率,假设分别为P1,P2,…,Pq,则可以根据Shannon熵的定义计算内蕴模态类函数IMTk的q种不同符号序列的排列熵Ep(m),即
当重构矩阵的排列S(r)最为分散,也即每一个时,排列熵达到最大值Ep(m)=ln(m!)。因此,排列熵Ep(m)的大小可以描述内蕴模态类函数IMTk中序列的随机程度:排列熵Ep(m)的值越小,表明IMTk中的数据越规则;排列熵Ep(m)的值越大,则表明IMTk中的数据越不规则,越接近于随机序列。排列熵Ep(m)的变化可以反映并放大了多尺度内蕴模态类函数IMTk中数据序列的细节变化,可以准确的检测出序列的突变,在局部放电分类时可获得较高的分辨率。为了便于使用,通常需要对Ep(m)进行归一化处理,即令则0≤Ep≤1。
步骤三、根据提取的排列熵,利用支持向量机SVM进行局部放电信号缺陷类型识别
局部放电信号的识别采用支持向量机(Support Vector Machine,SVM)分类器实现,SVM是在统计学习理论基础上发展起来的一种新型机器学习方法,它避免了人工神经网络方法的网络结构选择、过学习和欠学习及局部极小等问题,在学习精度和泛化能力间取得了良好的平衡,适用于求解高维、小样本、非线性情况下的模式分类和回归分析等问题。在本专利中采用的SVM核函数是高斯径向基核函数,使用一对一多分类模型,并采用2-折交叉验证方法确定SVM的最佳规则化系数和核函数参数。对4种局部放电类型的数据测试,选取一部分数据用来训练,另一部分用来测试。由于SWT分解得到的子带间不存在频谱混叠和能量泄漏,获取的多尺度特征量能够更加精确地描述原始信号的时频特征,以及SVM避免了人工神经网络方法的网络结构选择、过学习和欠学习及局部极小等问题,因而局部放电信号缺陷类型识别取得了更好的识别效果。
以下为一具体实例,基于同步挤压小波变换和多尺度特征参数的局部放电类型识别的具体步骤如下:
(1)放电信号采集
根据变压器内部的绝缘结构特征,局部放电主要划分为悬浮放电P1、针板放电P2、沿面放电P3和气隙放电P4四种类型,各类型的放电模型如图2所示。所有圆板电极直径为80mm,厚度为10mm,所有纸板厚度为1mm。其中图2(a)为模拟油中悬浮放电的电极结构,环氧板边缘放置一直径为0.3mm的金属颗粒;图2(b)为模拟油中电晕放电的针板极结构,针颈直径为0.2mm,针与板电极间的环氧板厚度为0.5mm,直径为1mm;图2(c)模拟油中沿面放电;图2(d)模拟绝缘内部气隙放电的模型结构,气隙由三层直径为60mm、厚度为1mm的环氧板组成,中心的圆孔直径为20mm。四种放电模型均放置在装有变压器油的油箱中在表1所示的实验室条件下对每种放电模型施加电压。表1中悬浮放电试验电压为15kV和24kV,表示为15/24,对应的试验样本个数表示为15/15。采用检测频带宽度为0.5~16MHz的高频传感器和TWPD-ZE局部放电分析仪进行放电信号采样,最高采样频率为20MHz,采样时间为20ms。
Tab.1局部放电模型的测试条件
放电类型 试验电压/kV 样本个数
气隙放电 10/15 40/40
沿面放电 15/20 40/40
针板放电 10/15 40/40
悬浮放电 15/24 40/40
在实验室条件下对每种局部放电模型施加电压,采用脉冲电流法,利用高性能示波器采集局部放电信号。为了避免试验的随机性,每种放电类型制作了40个样品。
(2)特征提取
选择Morlet小波作为小波基,对采集到的4种缺陷的UHF PD信号进行同步挤压分解,将SWT时频谱分为10个子带,对各子带利用SWT逆变换公式重构分量信号。从4种UHF PD信号样本库中分别随机选取50组数据作为训练样本,每种放电类型剩余的30组数据作为测试样本,按照图3所示的步骤完成对所有UHF PD信号的特征提取,得到4种UHF PD信号特征库。经统计分析,得到4种UHF PD信号多尺度排列谱熵特征的95%置信区间,如图4所示。
由图4可知,气隙放电和沿面放电的UHF PD信号的多尺度排列熵主要集中在400MHz以上的频段,而针板放电和悬浮放电的UHF PD信号的排列熵主要集中在400MHz以下的频段。由于不同类型的放电脉冲的波形和陡度不同,从而导致激发的UHF信号排列熵布具有较大的差异,说明利用多尺度排列熵特征来进行缺陷类型识别是可行的。
因此,4种放电模型局部放电超高频的子带排列熵特征存在明显差异,可以采用局部放电超高频信号特征参数进行局部放电模式识别。
(3)缺陷类型识别
UHF PD信号的识别采用支持向量机(Support Vector Machine,SVM)分类器实现,SVM是在统计学习理论基础上发展起来的一种新型机器学习方法,它避免了人工神经网络方法的网络结构选择、过学习和欠学习及局部极小等问题,在学习精度和泛化能力间取得了良好的平衡,适用于求解高维、小样本、非线性情况下的模式分类和回归分析等问题。实验中SVM的核函数选择最常用的高斯径向基核函数,其表达式为
识别过程中,SVM采用一对一多分类模型,并采用2-折交叉验证方法确定SVM的最佳规则化系数C=0.3和核函数参数σ=0.65。对每种放电类型的80组实验数据,选取50组用来训练,30组用来测试。识别结果如表2所示,表中单位为%。
表2局部放电识别结果
分别采用EMD和WPT对UHF PD信号进行分解(小波包分解时以db10小波为小波基,分解层数设为7),对每层分解系数提取相同的特征量,对比识别结果发现,采用SWT分解方法得到的识别率明显高于EMD方法和小波包分解方法。这是由于SWT分解得到的子带间不存在频谱混叠和能量泄漏,获取的多尺度特征量能够更加精确地描述原始信号的时频特征,因而取得了更好的识别效果。多尺度能量特征和多尺度能谱熵特征都取得了较好的识别结果,平均识别率高于90%。
本发明的方法通过同步挤压变换对局部放电信号的分解,克服了小波分解子带间存在频谱混叠和能量泄漏的缺点,使用的多尺度排列熵特征参数能够有效刻画UHFPD信号在时频域的能量分布和复杂度信息,具有较好的稳定性和抗干扰能力。本发明的方法适用于各类情况下的变压器局部放电信号识别。本发明的方法的局部放电信号平均识别准确率高于90%,明显优于其他常用的变压器局部放电识别方法。
效果:
同步挤压小波变换(Synchrosqueezing wavelet transform,SWT)是在小波变换的基础上发展起来的一种新的时频分析方法,它以连续小波变换为基础,通过对小波系数进行重组,从中提取时频曲线,因此具有极高的精度和频率分辨率。SWT分解后的子带间没有交叉项,子带间不存在频谱混叠和能量泄漏,子带信号能够精确描述原信号的时频特征,在时变信号谱分析、地震信号检测、声呐信号分析和机械故障诊断等领域得到了广泛的应用。利用SWT对4种典型的变压器局部放电信号进行处理,从UHF PD信号在时频域的多尺度排列熵分布的差异出发,研究能够有效区分不同绝缘缺陷的多尺度特征参数,并采用支持向量机分类器实现放电类型识别。
但是,现有的研究对基于同步挤压小波变换和多尺度特征参数的局部放电的识别专利方面没有太多的涉及。
针对以上问题,本专利提出基于同步挤压小波变换和多尺度特征参数的局部放电类别的识别,利用同步挤压小波变换高精度的时频域分析功能和对噪声的鲁棒性,提出一种基于同步挤压小波变换的局部放电特征提取方法。首先,利用同步挤压小波变换对4种典型的变压器局部放电信号进行分解,以克服实小波包分解子带间存在频谱混叠和能量泄漏的缺陷;然后,利用局部放电信号在不同分解尺度上能量和复杂度的差异,利用多尺度排列熵作为放电类型识别的特征量;最后,将提取到的特征量支持向量机分类器进行放电模式识别。实验结果表明,该方法可以取得比EMD和小波包分解更好的识别效果,证明了该方法的有效性。

Claims (2)

1.一种基于同步挤压小波变换的局部放电类型识别方法,其特征在于,包括:
步骤一、利用同步挤压小波变换对4种典型的变压器局部放电信号进行分解,利用同步挤压小波变换对时频面进行精确细致的划分,分解得到子带信号,
时变信号f(t)一般以可分解为多个本征函数的叠加,即信号f(t)可表示为
式中:Ak(t)为第k个分量的瞬时振幅;Ak(t)为第k个分量的瞬时振幅,φk(t)为第k个分量的瞬时相位;r(t)为噪声或误差,K表示信号的分量个数,同步挤压小波变换通过细化小波变换的时频曲线,提取每一分量的幅值因子Ak(t)和瞬时频率φ′k(t)(k=1,2,…,K),同步挤压小波变换根据小波变换后的系数Wf(a,b)在(a,b)附近的局部性质将系数Wf(a,b)重新分配给时频面内的不同点(ωf(a,b),b)(ωf(a,b)表示信号在(a,b)处的瞬时频率),从而使时频曲线更细更清晰,提高频率分辨率并减小模态混叠,使得分量信号重构时的精度更高,
同步挤压小波变换以信号的连续小波变换为基础,给定小波母函数ψ(t),信号f(t)的连续小波变换为
式中:ψ*表示母小波函数的共轭,a为尺度因子,b为平移因子,根据Plancherel定理,式(2)在频率域的等价变换为
式中,ξ是圆周率,分别是f(t)、ψ(t)的傅里叶变换,对最简单的信号f(t)=Acos(ωt),其傅里叶变换为根据式(3),其连续小波变换为
假定小波函数ψ具有快速衰减性,且在ξ=ω0处集中分布,则信号的小波系数Wf(a,b)将会在尺度处集中,但会在一定范围内沿尺度分布,
对于小波变换结果中任意一个“时间—尺度”点(b,a),通过小波系数求导可估计信号的瞬时频率,即
同步挤压小波变换在瞬时频率的基础上,建立(a,b)→[ωf(a,b),b]的映射,将小波系数Wf(a,b)由“时间—尺度”平面转化到“时间—频率”平面Wff(a,b),b],将任一中心频率ωl附近区间的小波系数值挤压到中心频率ωl上,获得同步挤压变换值Tfl,b),计算中,由于a,b,ω均离散,假设ai-ai-1=(Δa)i,同步挤压小波变换值Tfl,b)可表示为
通过一个时变信号f(t)比较同步挤压小波变换与小波变换WT、短时傅里叶变换STFT的不同,f(t)由三个不同频率的信号叠加而成:0—0.7s为20Hz的余弦信号f1(t)=cos(40πt),0.3—1s为30Hz的余弦信号f2(t)=cos(60πt),0—1s为频率在80Hz振荡的余弦调频信号f3(t)=cos[160πt-5cos(30t)],同时对信号加入信噪比为3dB的高斯白噪声,对加入噪声后的信号分别利用经验模态分解,小波包变换和同步挤压小波变换进行频谱分析,
同步挤压小波变换是可逆的,对于多分量信号,通过Tfl,b)不仅可以重构原始信号f(t),而且可以精确重构每一个分量信号fk(t),假设Lk(t)是时频图中以fk(t)的脊线为中心的一个小区间,则fk(t)的重构公式为
式中
步骤二、同步挤压小波变换多尺度排列熵测度
将时频域的多尺度能量分布特征作为区分不同类型缺陷的特征量,同步挤压小波变换抽取信号不同振动频率的局部特性,计算同步挤压小波变换排列墒值就能够发现信号中微小而短促的异常,在局部放电信号多尺度表示的基础上,定义如下沿尺度分布的同步挤压小波排列熵测度,
设局部放电信号经同步挤压窗口傅里叶变换后的内蕴模态类函数为IMTk(k=1,2,…,K),对模态类函数IMTk进行相空间重构,可得
式中:m、τ分别表示嵌入维数和延迟时间;Q=N-(m-1)τ,N表示的IMTk长度,将该矩阵的每一行作为一个重构分量,则可得到Q个重构分量,对(1)式中的第j个分量[IMT(j),IMT](j+τ),…,IMT(j+(m-1)τ)],对其元素按增序方式重新排列,设i1,i2,…,im表示重新排列后各元素所在位置的索引,即有IMT[j+(i1-1)τ]≤IMT[j+(i2-1)τ]≤…≤IMT[j+(im-1)τ],
如果有两个分量的值相等,即
IMT[j+(i1-1)τ]=IMT[j+(i2-1)τ]
则在排列时按照索引值i1和i2的大小来排列,即当i1<i2时,IMT[j+(i1-1)τ]排在IMT[j+(i2-1)τ]的前面,此时排列顺序为
IMT[j+(i1-1)τ]≤IMT[j+(i2-1)τ]
因此,对于IMTk所得到的重构矩阵,对其中的每一行进行重新排列后,都可以得到一组基于排列顺序的符号序列
S(r)=(i1,i2,…,im),其中r=1,2,…,q,且q≤m!将重构矩阵中的每一行元素进行排列时,如果不考虑元素值的大小任意排列,则其m个元素共有m!中排列方法,即共有m!个符号序列(i1,i2,…,im),按元素值大小进行排列后的符号序列S(r)只是其中一种,总结每一种符号序列S(r)在重构矩阵排列中出现的次数,并计算其相应的概率,假设分别为P1,P2,…,Pq,则可以根据Shannon熵的定义计算内蕴模态类函数IMTk的q种不同符号序列的排列熵Ep(m),即
当重构矩阵的排列S(r)最为分散,也即每一个时,排列熵达到最大值Ep(m)=ln(m!),因此,排列熵Ep(m)的大小可以描述内蕴模态类函数IMTk中序列的随机程度:排列熵Ep(m)的值越小,表明IMTk中的数据越规则;排列熵Ep(m)的值越大,则表明IMTk中的数据越不规则,越接近于随机序列,排列熵Ep(m)的变化可以反映并放大了多尺度内蕴模态类函数IMTk中数据序列的细节变化,可以准确的检测出序列的突变,在局部放电分类时可获得较高的分辨率,为了便于使用,通常需要对Ep(m)进行归一化处理,即令则0≤Ep≤1,
步骤三、根据提取的排列熵,利用支持向量机SVM进行局部放电信号缺陷类型识别。
2.如权利要求1所述的基于同步挤压小波变换的局部放电类型识别方法,其特征在于:
步骤三中,SVM的核函数选择最常用的高斯径向基核函数,其表达式为
识别过程中,SVM采用一对一多分类模型,并采用2-折交叉验证方法确定SVM的最佳规则化系数C=0.3和核函数参数σ=0.65。
CN201810829627.6A 2018-07-25 2018-07-25 基于同步挤压小波变换的局部放电类型识别方法 Expired - Fee Related CN108983051B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810829627.6A CN108983051B (zh) 2018-07-25 2018-07-25 基于同步挤压小波变换的局部放电类型识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810829627.6A CN108983051B (zh) 2018-07-25 2018-07-25 基于同步挤压小波变换的局部放电类型识别方法

Publications (2)

Publication Number Publication Date
CN108983051A true CN108983051A (zh) 2018-12-11
CN108983051B CN108983051B (zh) 2021-02-09

Family

ID=64551338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810829627.6A Expired - Fee Related CN108983051B (zh) 2018-07-25 2018-07-25 基于同步挤压小波变换的局部放电类型识别方法

Country Status (1)

Country Link
CN (1) CN108983051B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668733A (zh) * 2018-12-21 2019-04-23 苏州大学 变分非线性模式分解变转速轴承故障诊断方法
CN109709448A (zh) * 2019-03-06 2019-05-03 南京工程学院 一种基于同步挤压小波变换的配电网单相高阻接地故障选线方法
CN110133538A (zh) * 2019-05-16 2019-08-16 合肥工业大学 一种anpc三电平逆变器开路故障诊断方法及实验平台
CN110161123A (zh) * 2019-06-21 2019-08-23 南昌航空大学 一种新的基于磁致伸缩导波的缺陷检测方法
CN110244202A (zh) * 2019-06-21 2019-09-17 三峡大学 基于同步压缩小波变换域变压器局部放电去噪方法
CN110464517A (zh) * 2019-08-16 2019-11-19 杭州电子科技大学 基于小波加权排列熵的肌电信号识别方法
EP3699614A1 (en) * 2019-02-22 2020-08-26 Ormazabal Corporate Technology, A.I.E. Method and system of partial discharge recognition for diagnosing electrical networks
CN111735533A (zh) * 2020-06-08 2020-10-02 贵州电网有限责任公司 基于振动信号小波能谱特征的变压器直流偏磁判断方法
CN111781439A (zh) * 2020-05-28 2020-10-16 广西电网有限责任公司梧州供电局 一种电力电缆局部放电信号检测方法及装置
CN112348782A (zh) * 2020-10-27 2021-02-09 天津大学 一种基于复数可控金字塔的变化检测方法
CN112686182A (zh) * 2021-01-04 2021-04-20 华北电力大学(保定) 局部放电模式识别方法及终端设备
CN112698158A (zh) * 2020-11-13 2021-04-23 西安交通大学 一种变压器局部放电电气定位方法及装置
CN114062995A (zh) * 2021-11-15 2022-02-18 通号(长沙)轨道交通控制技术有限公司 基于电气量多特征融合的互感器故障诊断方法、设备及介质
CN114113943A (zh) * 2021-11-25 2022-03-01 广东电网有限责任公司广州供电局 基于电流和超声信号的变压器局放检测系统、方法及设备
CN114271836A (zh) * 2022-01-25 2022-04-05 合肥学院 一种基于小波变换的智能肌电检测处理方法及装置
CN115310499A (zh) * 2022-10-12 2022-11-08 极晨智道信息技术(北京)有限公司 一种基于数据融合的工业设备故障诊断系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140133483A1 (en) * 2012-11-14 2014-05-15 Broadcom Corporation Distributed Switch Architecture Using Permutation Switching
CN105956526A (zh) * 2016-04-22 2016-09-21 山东科技大学 基于多尺度排列熵的低信噪比微震事件辨识方法
CN107356843A (zh) * 2017-04-17 2017-11-17 武汉科技大学 基于分层阈值同步挤压小波的变压器局部放电故障诊断方法
CN108038580A (zh) * 2017-12-30 2018-05-15 国网江苏省电力公司无锡供电公司 基于同步挤压小波变换的光伏功率多模型综合预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140133483A1 (en) * 2012-11-14 2014-05-15 Broadcom Corporation Distributed Switch Architecture Using Permutation Switching
CN105956526A (zh) * 2016-04-22 2016-09-21 山东科技大学 基于多尺度排列熵的低信噪比微震事件辨识方法
CN107356843A (zh) * 2017-04-17 2017-11-17 武汉科技大学 基于分层阈值同步挤压小波的变压器局部放电故障诊断方法
CN108038580A (zh) * 2017-12-30 2018-05-15 国网江苏省电力公司无锡供电公司 基于同步挤压小波变换的光伏功率多模型综合预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
喻敏等: "同步挤压小波变换在电力系统低频振荡模态参数提取中的应用", 《电工技术学报》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668733A (zh) * 2018-12-21 2019-04-23 苏州大学 变分非线性模式分解变转速轴承故障诊断方法
EP3699614A1 (en) * 2019-02-22 2020-08-26 Ormazabal Corporate Technology, A.I.E. Method and system of partial discharge recognition for diagnosing electrical networks
CN109709448A (zh) * 2019-03-06 2019-05-03 南京工程学院 一种基于同步挤压小波变换的配电网单相高阻接地故障选线方法
CN110133538A (zh) * 2019-05-16 2019-08-16 合肥工业大学 一种anpc三电平逆变器开路故障诊断方法及实验平台
CN110244202B (zh) * 2019-06-21 2021-07-20 三峡大学 基于同步压缩小波变换域变压器局部放电去噪方法
CN110244202A (zh) * 2019-06-21 2019-09-17 三峡大学 基于同步压缩小波变换域变压器局部放电去噪方法
CN110161123A (zh) * 2019-06-21 2019-08-23 南昌航空大学 一种新的基于磁致伸缩导波的缺陷检测方法
CN110464517A (zh) * 2019-08-16 2019-11-19 杭州电子科技大学 基于小波加权排列熵的肌电信号识别方法
CN110464517B (zh) * 2019-08-16 2021-09-07 杭州电子科技大学 基于小波加权排列熵的肌电信号识别方法
CN111781439A (zh) * 2020-05-28 2020-10-16 广西电网有限责任公司梧州供电局 一种电力电缆局部放电信号检测方法及装置
CN111735533A (zh) * 2020-06-08 2020-10-02 贵州电网有限责任公司 基于振动信号小波能谱特征的变压器直流偏磁判断方法
CN111735533B (zh) * 2020-06-08 2022-05-13 贵州电网有限责任公司 基于振动信号小波能谱特征的变压器直流偏磁判断方法
CN112348782A (zh) * 2020-10-27 2021-02-09 天津大学 一种基于复数可控金字塔的变化检测方法
CN112348782B (zh) * 2020-10-27 2022-03-29 天津大学 一种基于复数可控金字塔的变化检测方法
CN112698158A (zh) * 2020-11-13 2021-04-23 西安交通大学 一种变压器局部放电电气定位方法及装置
CN112698158B (zh) * 2020-11-13 2022-04-12 西安交通大学 一种变压器局部放电电气定位方法及装置
CN112686182A (zh) * 2021-01-04 2021-04-20 华北电力大学(保定) 局部放电模式识别方法及终端设备
CN112686182B (zh) * 2021-01-04 2023-12-26 华北电力大学(保定) 局部放电模式识别方法及终端设备
CN114062995A (zh) * 2021-11-15 2022-02-18 通号(长沙)轨道交通控制技术有限公司 基于电气量多特征融合的互感器故障诊断方法、设备及介质
CN114113943A (zh) * 2021-11-25 2022-03-01 广东电网有限责任公司广州供电局 基于电流和超声信号的变压器局放检测系统、方法及设备
CN114271836A (zh) * 2022-01-25 2022-04-05 合肥学院 一种基于小波变换的智能肌电检测处理方法及装置
CN114271836B (zh) * 2022-01-25 2023-08-29 合肥学院 一种基于小波变换的智能肌电检测处理方法及装置
CN115310499A (zh) * 2022-10-12 2022-11-08 极晨智道信息技术(北京)有限公司 一种基于数据融合的工业设备故障诊断系统及方法

Also Published As

Publication number Publication date
CN108983051B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN108983051A (zh) 基于同步挤压小波变换的局部放电类型识别方法
CN107451557B (zh) 基于经验小波变换与局部能量的输电线路短路故障诊断方法
Ma et al. Interpretation of wavelet analysis and its application in partial discharge detection
Contin et al. Classification and separation of partial discharge signals by means of their auto-correlation function evaluation
CN106405339A (zh) 基于高低频小波特征关联的输电线路故障原因辨识方法
CN105572501B (zh) 一种基于sst变换和ls-svm的电能质量扰动识别方法
Liu et al. Deep learning and recognition of radar jamming based on CNN
CN110490071A (zh) 一种基于mfcc的变电站声信号特征提取方法
CN108229382A (zh) 振动信号特征提取方法、装置、存储介质和计算机设备
CN103983850A (zh) 基于压缩感知的电力系统谐波压缩信号重构与检测方法
CN109085468A (zh) 一种电缆局部放电绝缘缺陷的识别方法
CN106291281A (zh) 一种变电站设备局部放电定位系统及其方法
CN103335841A (zh) 一种采用脉冲小波能量谱分析的滚动轴承故障诊断方法
CN107340055A (zh) 一种基于多测度融合的随机共振微弱信号检测方法
Zhongrong et al. Application of complex wavelet transform to suppress white noise in GIS UHF PD signals
Chen et al. Analysis of the partial discharge of ultrasonic signals in large motor based on Hilbert-Huang transform
CN109932053A (zh) 一种用于高压并联电抗器的状态监测装置及方法
Xue et al. Application of feature extraction method based on 2D—LPEWT in cable partial discharge analysis
Wang et al. Analysis of partial discharge signal using the Hilbert-Huang transform
Shuyou et al. Extracting power transformer vibration features by a time-scale-frequency analysis method
CN112881879A (zh) 一种高压电缆终端局部放电模式识别方法、装置及设备
Uckol et al. Identification of corona discharges based on wavelet scalogram images with deep convolutional neural networks
Boczar et al. Analysis of the acoustic emission pulses generated by partial electrical discharges
CN104181508A (zh) 基于压缩感知的威胁雷达信号检测方法
CN103577877A (zh) 一种基于时频分析和bp神经网络的船舶运动预报方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210209

Termination date: 20210725