CN108960309B - 一种基于rbf神经网络自相关性剔除的动态过程监测方法 - Google Patents
一种基于rbf神经网络自相关性剔除的动态过程监测方法 Download PDFInfo
- Publication number
- CN108960309B CN108960309B CN201810658888.6A CN201810658888A CN108960309B CN 108960309 B CN108960309 B CN 108960309B CN 201810658888 A CN201810658888 A CN 201810658888A CN 108960309 B CN108960309 B CN 108960309B
- Authority
- CN
- China
- Prior art keywords
- matrix
- vector
- neural network
- rbf neural
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 93
- 230000008569 process Effects 0.000 title claims abstract description 59
- 238000012544 monitoring process Methods 0.000 title claims abstract description 42
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 33
- 230000008030 elimination Effects 0.000 title claims abstract description 9
- 238000003379 elimination reaction Methods 0.000 title claims abstract description 9
- 238000005070 sampling Methods 0.000 claims abstract description 18
- 239000011159 matrix material Substances 0.000 claims description 53
- 239000013598 vector Substances 0.000 claims description 51
- 238000012549 training Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 9
- 210000002569 neuron Anatomy 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000010606 normalization Methods 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 4
- 238000000513 principal component analysis Methods 0.000 claims description 4
- 238000003062 neural network model Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 claims 1
- 230000002159 abnormal effect Effects 0.000 abstract description 5
- 230000008859 change Effects 0.000 abstract description 4
- 239000000498 cooling water Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
序号 | 变量描述 | 序号 | 变量描述 | 序号 | 变量描述 |
1 | 物料A流量 | 12 | 分离器液位 | 23 | D进料阀门位置 |
2 | 物料D流量 | 13 | 分离器压力 | 24 | E进料阀门位置 |
3 | 物料E流量 | 14 | 分离器塔底流量 | 25 | A进料阀门位置 |
4 | 总进料流量 | 15 | 汽提塔等级 | 26 | A和C进料阀门位置 |
5 | 循环流量 | 16 | 汽提塔压力 | 27 | 压缩机循环阀门位置 |
6 | 反应器进料 | 17 | 汽提塔底部流量 | 28 | 排空阀门位置 |
7 | 反应器压力 | 18 | 汽提塔温度 | 29 | 分离器液相阀门位置 |
8 | 反应器等级 | 19 | 汽提塔上部蒸汽 | 30 | 汽提塔液相阀门位置 |
9 | 反应器温度 | 20 | 压缩机功率 | 31 | 汽提塔蒸汽阀门位置 |
10 | 排空速率 | 21 | 反应器冷却水出口温度 | 32 | 反应器冷凝水流量 |
11 | 分离器温度 | 22 | 分离器冷却水出口温度 | 33 | 冷凝器冷却水流量 |
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810658888.6A CN108960309B (zh) | 2018-06-11 | 2018-06-11 | 一种基于rbf神经网络自相关性剔除的动态过程监测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810658888.6A CN108960309B (zh) | 2018-06-11 | 2018-06-11 | 一种基于rbf神经网络自相关性剔除的动态过程监测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108960309A CN108960309A (zh) | 2018-12-07 |
CN108960309B true CN108960309B (zh) | 2021-11-05 |
Family
ID=64486259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810658888.6A Active CN108960309B (zh) | 2018-06-11 | 2018-06-11 | 一种基于rbf神经网络自相关性剔除的动态过程监测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108960309B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111694329B (zh) * | 2019-03-12 | 2022-03-18 | 宁波大学 | 一种基于分散式极限学习机的动态过程监测方法 |
CN110597238A (zh) * | 2019-10-18 | 2019-12-20 | 常州工学院 | 一种诊断方法及装置 |
CN111985546B (zh) * | 2020-08-10 | 2024-07-02 | 西北工业大学 | 基于单分类极限学习机算法的飞机发动机多工况检测方法 |
CN111929489B (zh) * | 2020-08-18 | 2021-12-28 | 电子科技大学 | 故障电弧电流的检测方法及系统 |
CN112364527B (zh) * | 2020-12-02 | 2021-09-07 | 岳文琦 | 一种基于aliesn在线学习算法的脱丁烷塔软测量建模方法 |
CN113946608B (zh) * | 2021-09-22 | 2024-05-31 | 宁波大学科学技术学院 | 一种基于在线rbf神经网络的风力发电机组运行状态监测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106355330A (zh) * | 2016-08-31 | 2017-01-25 | 郑州航空工业管理学院 | 基于径向基神经网络预测模型的多响应参数优化方法 |
CN106647650A (zh) * | 2016-09-22 | 2017-05-10 | 宁波大学 | 基于变量加权pca模型的分散式工业过程监测方法 |
CN107092242A (zh) * | 2017-06-02 | 2017-08-25 | 宁波大学 | 一种基于缺失变量pca模型的工业过程监测方法 |
CN107657351A (zh) * | 2017-10-26 | 2018-02-02 | 广州泰阳能源科技有限公司 | 一种基于plc与主元分析‑rbf神经网络的负荷预测系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9528979B2 (en) * | 2011-11-15 | 2016-12-27 | Technion Research And Development Foundation Ltd. | Breath analysis of pulmonary nodules |
CN104036328A (zh) * | 2013-03-04 | 2014-09-10 | 横河电机株式会社 | 自适应风电功率预测系统及预测方法 |
CN103714255A (zh) * | 2013-12-30 | 2014-04-09 | 北京信息科技大学 | 一种基于非线性故障重构的故障预测方法 |
CN105760344B (zh) * | 2016-01-29 | 2018-08-24 | 杭州电子科技大学 | 一种化学放热反应的分布式主元分析神经网络建模方法 |
-
2018
- 2018-06-11 CN CN201810658888.6A patent/CN108960309B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106355330A (zh) * | 2016-08-31 | 2017-01-25 | 郑州航空工业管理学院 | 基于径向基神经网络预测模型的多响应参数优化方法 |
CN106647650A (zh) * | 2016-09-22 | 2017-05-10 | 宁波大学 | 基于变量加权pca模型的分散式工业过程监测方法 |
CN107092242A (zh) * | 2017-06-02 | 2017-08-25 | 宁波大学 | 一种基于缺失变量pca模型的工业过程监测方法 |
CN107657351A (zh) * | 2017-10-26 | 2018-02-02 | 广州泰阳能源科技有限公司 | 一种基于plc与主元分析‑rbf神经网络的负荷预测系统 |
Non-Patent Citations (2)
Title |
---|
基于RBF网络和ARX模型的液压系统故障诊断方法;贺湘宇 等;《系统仿真学报》;20090105;第21卷(第1期);282-285 * |
多层径向基函数网络的算法改进及其应用;李建;《中国优秀硕士学位论文全文数据库 信息科技辑》;20150215(第2期);I138-662 * |
Also Published As
Publication number | Publication date |
---|---|
CN108960309A (zh) | 2018-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108960309B (zh) | 一种基于rbf神经网络自相关性剔除的动态过程监测方法 | |
CN108803520B (zh) | 一种基于变量非线性自相关性剔除的动态过程监测方法 | |
CN108897286B (zh) | 一种基于分散式非线性动态关系模型的故障检测方法 | |
CN112418277B (zh) | 旋转机械零部件剩余寿命预测方法、系统、介质、设备 | |
CN110009020B (zh) | 一种基于多核主元分析模型的非线性过程监测方法 | |
CN108469805B (zh) | 一种基于动态性最优选择的分散式动态过程监测方法 | |
CN109669415B (zh) | 一种基于结构化典型变量分析的动态过程监测方法 | |
CN108520111B (zh) | 一种基于正交成分最优选择与最优回归的软测量方法 | |
CN108845546B (zh) | 一种基于bp神经网络自回归模型的动态过程监测方法 | |
CN108375965B (zh) | 一种基于多变量块交叉相关性剔除的非高斯过程监测方法 | |
CN105868164B (zh) | 一种基于有监督的线性动态系统模型的软测量建模方法 | |
CN106897774A (zh) | 基于蒙特卡洛交叉验证的多个软测量算法集群建模方法 | |
CN108508865A (zh) | 一种基于分散式osc-pls回归模型的故障检测方法 | |
CN108445867B (zh) | 一种基于分散式icr模型的非高斯过程监测方法 | |
CN108919755A (zh) | 一种基于多块非线性交叉关系模型的分布式故障检测方法 | |
CN111913460B (zh) | 一种基于序列相关局部保持投影算法的故障监测方法 | |
CN108492026B (zh) | 一种基于集成正交成分最优化回归分析的软测量方法 | |
CN108345294B (zh) | 一种基于分散式主元回归模型的故障检测方法 | |
CN108427398B (zh) | 一种基于分散式ar-pls模型的动态过程监测方法 | |
CN108491878B (zh) | 一种基于多个误差生成模型的故障分类诊断方法 | |
CN108181893A (zh) | 一种基于pca-kdr的故障检测方法 | |
CN108572639B (zh) | 一种基于主成分自相关性剔除的动态过程监测方法 | |
CN111914384B (zh) | 一种基于自相关潜变量模型的化工过程状态监测方法 | |
CN105759787B (zh) | 一种基于切换有监督线性动态系统模型的故障诊断方法 | |
CN110008548B (zh) | 一种基于grnn分散式建模策略的故障检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231116 Address after: 8/F, Building 8, No. 303 Yushan Road, Jingkou District, Zhenjiang City, Jiangsu Province, 212003 Patentee after: Jiangsu Kumao Enterprise Service Co.,Ltd. Address before: Room 521, Information Institute, 818 Fenghua Road, Jiangbei District, Ningbo City, Zhejiang Province Patentee before: Ningbo University |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 8th Floor, Building 8, No. 303 Yushan Road, Jingkou District, Zhenjiang City, Jiangsu Province, China 212000 Patentee after: Zhenjiang Cool Cat Enterprise Service Co.,Ltd. Country or region after: China Address before: 8/F, Building 8, No. 303 Yushan Road, Jingkou District, Zhenjiang City, Jiangsu Province, 212003 Patentee before: Jiangsu Kumao Enterprise Service Co.,Ltd. Country or region before: China |