CN108956469A - 一种光谱仪系统和光谱分析方法 - Google Patents

一种光谱仪系统和光谱分析方法 Download PDF

Info

Publication number
CN108956469A
CN108956469A CN201810930403.4A CN201810930403A CN108956469A CN 108956469 A CN108956469 A CN 108956469A CN 201810930403 A CN201810930403 A CN 201810930403A CN 108956469 A CN108956469 A CN 108956469A
Authority
CN
China
Prior art keywords
light
monochromatic light
spectrometer system
determinand
microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810930403.4A
Other languages
English (en)
Other versions
CN108956469B (zh
Inventor
孟宪芹
王维
谭纪风
陈小川
孟宪东
高健
王方舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201810930403.4A priority Critical patent/CN108956469B/zh
Publication of CN108956469A publication Critical patent/CN108956469A/zh
Priority to PCT/CN2019/085562 priority patent/WO2020019812A1/en
Priority to US16/495,050 priority patent/US11344882B2/en
Priority to US16/617,696 priority patent/US11344884B2/en
Priority to PCT/CN2019/085526 priority patent/WO2020019809A1/en
Priority to PCT/CN2019/100610 priority patent/WO2020035003A1/zh
Priority to US16/643,015 priority patent/US11085821B2/en
Application granted granted Critical
Publication of CN108956469B publication Critical patent/CN108956469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0262Constructional arrangements for removing stray light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1804Plane gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1838Holographic gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1208Prism and grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/1234Continuously variable IF [CVIF]; Wedge type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J2003/1866Monochromator for three or more wavelengths
    • G01J2003/1876Polychromator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明实施例公开了一种光谱仪系统和光谱检测分析方法。光谱仪系统包括:采光装置和探测装置,采光装置包括分光结构和滤光结构,采光装置与探测装置之间设置有测试通道;分光结构用于将入射光分光为单色光后出射,照射到滤光结构上;滤光结构用于过滤单色光中的杂散光后出射目标波长范围的单色光,将出射的单色光通过测试通道中的待测物后,照射到探测装置上;探测装置用于接收目标波长范围的单色光与待测物发生反应后的光学信号,该光学信号为用于对待测物进行光谱分析的光学信号。本发明实施例解决了采用传统光谱仪进行分光时存在光谱叠级串色的现象而影响光谱仪检测效果的问题,以及传统光谱仪中存在的偏向角问题。

Description

一种光谱仪系统和光谱分析方法
技术领域
本申请涉及但不限于光电子技术领域,尤指一种光谱仪系统和光谱检测分析方法。
背景技术
随着光电子技术的发展,采用光谱仪光电信号进行光谱分析已成为物质检测的一种实施方案。
光谱仪的核心是光谱分光系统,根据分光原理不同,光谱仪分光系统可分为色散式和调制式,色散式分光系统例如包括棱镜、光栅、干涉仪等,调制式分光系统例如包括傅里叶变换光谱仪。色散式分光系统中,棱镜分光系统色散率低,分光性能较差;光栅分光可实现宽光谱测量,具有高的分辨率。在实际应用中,可以单独采用光栅,或者光栅和棱镜组合的色散式分光系统作为光谱仪的核心构件。然而,目前的光栅通常为大周期平面衍射光栅,存在光谱叠级串色的现象,即分光后得到的单色光中具有杂光,影响光谱仪的检测效果。另外,传统的光谱仪通过机械转轴转动狭缝位置,实现单色光的取出,这种取光结构存在偏向角的问题,在一定程度上影响了检测精度。
发明内容
为了解决上述技术问题,本发明实施例提供了一种光谱仪系统和光谱检测分析方法,以解决采用传统光谱仪进行分光,由于存在光谱叠级串色的现象而影响光谱仪检测效果的问题,以及传统光谱仪中存在的偏向角问题。
本发明实施例提供一种光谱仪系统,包括:采光装置和探测装置,所述采光装置包括设置于第一基板入光侧的分光结构和设置于所述第一基板出光侧的滤光结构,所述探测装置设置于所述采光装置接近所述滤光结构的一侧,且所述采光装置与所述探测装置之间设置有测试通道;
所述分光结构,用于将入射光分光为单色光后出射,照射到所述滤光结构上;
所述滤光结构,用于过滤所述单色光中的杂散光后出射目标波长范围的单色光,将出射的单色光通过所述测试通道中的待测物后,照射到所述探测装置上;
所述探测装置,用于接收所述目标波长范围的单色光与所述待测物发生反应后的光学信号,所述光学信号为用于对所述待测物进行光谱分析的光学信号。
可选地,如上所述的光谱仪系统中,所述分光结构包括用于形成至少一个像素的微结构图形;
每个所述微结构图形,用于将到达本微结构图形的入射光,分光为多个子像素的单色光后出射;
所述滤光结构包括与所述分光结构分光得到的多个子像素一一对应的多个滤光单元;
所述探测装置包括:第二基板,以及设置于所述第二基板接近所述滤光结构的一侧、且与所述多个滤光单元一一对应的多个探测单元;
每个所述滤光单元,用于过滤照射到本滤光单元上单色光中的杂散光后,出射一个子像素的单色光;
每个所述探测单元,用于接收从对应滤光单元出射的、且通过所述待测物的单色光。
可选地,如上所述的光谱仪系统中,所述分光结构包括所述第一基板接近入光侧依次设置的波导层、缓冲层和金属光栅层,所述金属光栅层中设置有所述微结构图形。
可选地,如上所述的光谱仪系统中,每个所述微结构图形中设置有多个不同周期的第一微结构单元;
每种所述第一微结构单元,用于将到达本第一微结构单元的入射光,以一个子像素的准直单色光出射。
可选地,如上所述的光谱仪系统中,每个所述微结构图形中设置有多个相同周期或不同周期的第二微结构单元,
每种所述第二微结构单元,用于将到达本第二微结构单元的入射光,以一个子像素的倾斜单色光出射。
可选地,如上所述的光谱仪系统中,所述滤光结构的每个所述滤光单元中设置有第三微结构单元,且每个所述第三微结构单元设置于对应子像素出射的倾斜单色光照射到所述滤光结构的区域;
每个所述第三微结构单元,用于接收从所述对应子像素出射的倾斜单色光,过滤所述倾斜单色光中的杂散光,并将所述倾斜单色光改变传输方向后准直出射。
可选地,如上所述的光谱仪系统中,所述微结构图形包括第一膜层,以及设置于所述第一膜层的第一平面外侧的第二膜层和设置于所述第一膜层的第二平面外侧的第三膜层,其中,所述第一膜层的第一平面和第二平面形成楔角。
每个所述微结构图形,用于将到达本微结构图形的入射光,分光为颜色呈线性变化的单色光后出射。
可选地,如上所述的光谱仪系统中,所述采光装置的第一基板周围除入光位置和出光位置之外的区域设置有阻光层,所述滤光结构中相邻滤光单元之间设置有阻光单元。
可选地,如上所述的光谱仪系统中,所述采光装置还包括:设置于所述分光结构入光侧的光源;
所述光源,用于发出准直光或非准直光。
可选地,如上所述的光谱仪系统中,所述探测装置还包括:设置于每个探测单元入光侧的微流通道;
每个所述微流通道,用于流入经过所述测试通道的所述待测物,使得从对应滤光单元出射的目标波长范围的单色光通过本微流通道中的待测物后,照射到对应探测单元上。
可选地,如上所述的光谱仪系统中,每个所述微流通道垂直于本微流通道对应的探测单元的入光侧。
可选地,如上所述的光谱仪系统中,还包括:与所述探测装置相连接的处理模块;
所述处理模块,用于处理所述探测装置获取的用于对所述待测物进行光谱分析的光学信号,以得到所述待测物的分析结果。
可选地,如上所述的光谱仪系统中,所述处理模块分别与所述探测装置中的每个所述探测单元相连接,在所述采光装置出射至少两个像素的准直单色光的情况下:
所述处理模块,还用于对不同像素中目标波长范围相同的单色光形成的光学信号进行光谱分析。
本发明实施例提供还一种采用如上述任一项所述的光谱仪系统执行的光谱检测分析方法,包括:
接收所述探测装置获取的光学信号,其中,所述光学信号为经过采光装置中的每个出光口出射的目标波长范围的单色光通过所述测试通道与所述待测物发生反应后形成的;
处理所述光学信号得到所述待测物的分析结果。
可选地,如上所述的光谱检测分析方法中,在所述光谱仪系统的采光装置出射至少两个像素的准直单色光的情况下,所述方法还包括:
对不同像素中目标波长范围相同的单色光形成的光学信号进行光谱分析。
本发明实施例提供的光谱仪系统和光谱检测分析方法,通过设置包括分光结构和滤光结构的采光装置,入射光经过分光结构后被分解为单色光出射,出射的单色光经过滤光结构的滤光作用,可以过滤掉单色光中杂散光后出射目标波长范围的单色光,出射的单色光通过采光装置和探测装置之间的测试通道时照射到待测物上,随后照射到探测装置上,因此,探测装置可以接收到目标波长范围的单色光与待测物发生反应后的光学信号,即获取到用于对待测物进行光谱分析的光学信号;本发明提供的光谱仪系统,采用分光结构和滤光结构叠加使用的分光效应,可以过滤出目标波长的单色光,并且该微结构的光谱仪系统无需大体积的机械传动组件就能实现目标波长单色光的定位取出,因此,解决了采用传统光谱仪进行分光,由于存在光谱叠级串色的现象而影响光谱仪检测效果的问题,以及传统光谱仪中存在的偏向角问题。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为本发明实施例提供的一种光谱仪系统的结构示意图;
图2为本发明实施例提供的另一种光谱仪系统的结构示意图;
图3为本发明实施例提供的光谱仪系统中一种分光结构的示意图;
图4为本发明实施例提供的又一种光谱仪系统的结构示意图;
图5为本发明实施例提供的光谱仪系统中一种微结构图形的结构示意图;
图6为本发明实施例提供的再一种光谱仪系统的结构示意图;
图7为采用本发明实施例提供的光谱仪系统中的分光结构分光后得到的光谱信息示意图;
图8为采用本发明实施例提供的光谱仪系统中的采光装置分光后得到的光谱信息示意图;
图9为单独采用红色彩膜滤光后得到的光谱信息示意图;
图10为本发明实施例提供的一种光谱检测分析方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明提供以下几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本发明实施例提供的一种光谱仪系统的结构示意图。本实施例提供的光谱仪系统10可以包括:采光装置100和探测装置200,其中,采光装置100包括:第一基板110、设置于第一基板110入光侧的分光结构120和设置于第一基板110出光侧的滤光结构130,探测装置200设置于接近采光装置100中滤光结构130的一侧,且采光装置100与探测装置200之间设置有测试通道300。
本发明实施例的上述结构中,分光结构120,用于将入射光分光为单色光后出射,照射到滤光结构130上;
滤光结构130,用于过滤单色光中的杂光后出射目标波长范围的单色光,将出射的单色光通过测试通道300中的待测物后,照射到探测装置200上;
探测装置200,用于接收目标波长范围的单色光与待测物发生反应后的光学信号,该光学信号为用于对该待测物进行分析的光学信号。
本发明实施例提供的光谱仪系统10,为一种微型的光谱仪,可用于测量微数据量级的待测物质,例如为纳米级的待测物。该光谱仪系统10主要包括采光装置100和探测装置200两部分结构,其中,采光装置100中包括用于将入射光分解为不同波长单色光的分光结构120,分光结构120例如可以是光栅结构、棱镜结构、光栅与棱镜结构的组合,或其它具有分光效果的结构,光栅结构可以是全息光栅或其它类型的光栅。由于上述分光结构120分光后形成的单色光中都存在一定量的杂散光,因此,本发明实施例的采光装置100中还包括滤光结构130,该滤光结构130可以为滤光彩膜或光栅结构,针对分光结构120分光得到的存在杂散光的单色光,滤光结构130可以吸收每种单色光中其他波长的光使其不通过,即过滤每种单色光中的杂散光后出射多种目标波长范围的单色光,出射的这些目标波长范围的单色光可以是以一定的方式排列开、且相互之间不会影响,例如,在采光装置100中具有多个出光口,在每个出光口出射特定目标波长范围的单色光。也就是说,采用本发明实施例中采光装置100的分光和滤光叠加效应,可以得到目标波长范围单色光。上述分光结构120和滤光结构130可以集成设置于一玻璃基板(即第一基板)上,该玻璃基板为光谱仪系统10的上玻璃基板,分光结构120设置于入光侧,用于对入射光进行分光后使单色光照射到滤光结构130上,滤光结构130则设置于上玻璃基板的出光侧,其滤除单色光中的杂散光后可以使出射的目标波长范围的单色光通过测试通道300照射到探测装置200上。
需要说明的是,本发明实施例的采光装置100最终出射的单色光可以为准直单色光或非准直单色光,可以根据实际产品的设计要求,设定从采光装置100出光口出射的目标波长范围单色光的方向;若采光装置100出射准直单色光,该准直单色光可以是分光结构120在分光后就形成准直单色光,滤光结构130只起到过滤杂散光的作用,也可以是分光结构130分光后并未形成准直单色光,而是散射分布的单色光,滤光结构130在滤光的同时对这些散射的单色光的传播方向进行调整,使其准直出射。在采光装置100出射准直单色光的情况下,该出射的准直单色光通过测试通道300的待测物后,可以准直或非准直的照射到探测装置200上,例如探测原理是通过分子散射来确定分子尺寸等方式的话,出射的准直单色光通过待测物后,会改变方向且非准直的照射到探测装置200上。在具体实现中,单色光照射到待测物上并与物质发生反应,会发生色散,即除了光波的幅度发生变化之外,光的频率也会变化,比如拉曼光谱,因此,探测装置200检测每种原来的单色光范围变小。图1所示实施例以入射光、分光结构120出射的单色光、滤光结构130出射的目标波长范围的单色光,以及照射到探测装置200上的单色光均以准直光为例予以示出。
在本发明实施例中,通过采光装置100得到多种单色光,且每种单色光均在特定的目标波长范围内,即每种目标波长范围的单色光中几乎没有杂散光。另外,探测装置200与采光装置100中间设置有测试通道300,且采光装置100的出光侧接近探测装置200,中间的测试通道300即为待测物流通通道。实际应用中,探测装置200与采光装置100可以通过封框胶310形成密闭空间,在检测过程中,将待测气体或待测液体注入测试通道300,在测试通道300中流过,不同目标波长范围的单色光穿过测试通道300时照射到待测物上,与待测物发生物理反应或化学反应后,照射到探测装置200上,因此,探测装置200接收到多种目标波长范围的单色光分别与待测物发生反应后的光学信号,这些光学信号可以用于对待测物进行分析,从而完成对特定物体或气体的标定、或者检测,即完成探测。
需要说明的是,本发明实施例提供的光谱仪系统10为一微型光谱仪,可以通过微纳结构过滤出特定波长的单色光,无需大体积的机械传动组件就能实现目标波长范围单色光的定位取出,因此,不存在现有光谱仪中偏向角的问题。该光谱仪系统10的应用范围较广,例如可以应用于物质检测、标定、分子诊断、食品检疫和细菌分类等物理、生物和化学领域。
本发明实施例提供的光谱仪系统,通过设置包括分光结构和滤光结构的采光装置,入射光经过分光结构后被分解为多种单色光出射,出射的单色光经过滤光结构的滤光作用,可以过滤掉单色光中杂散光后出射目标波长范围的单色光,出射的单色光通过采光装置和探测装置之间的测试通道时照射到待测物上,随后照射到探测装置上,因此,探测装置可以接收到目标波长范围的单色光与待测物发生反应后的光学信号,即获取到用于对待测物进行光谱分析的光学信号;本发明提供的光谱仪系统,采用分光结构和滤光结构叠加使用的分光效应,可以过滤出目标波长的单色光,并且该微结构的光谱仪系统无需大体积的机械传动组件就能实现目标波长单色光的定位取出,因此,解决了采用传统光谱仪进行分光,由于存在光谱叠级串色的现象而影响光谱仪检测效果的问题,以及传统光谱仪中存在的偏向角问题。
可选地,图2为本发明实施例提供的另一种光谱仪系统的结构示意图。在图1所示光谱仪系统10的结构基础上,本发明实施例中,分光结构120包括用于形成至少一个像素的微结构图形。
其中,每个微结构图形,用于将到达本微结构图形的入射光,分光为多个子像素的单色光后出射。
本发明实施例的滤光结构130包括与分光结构120分光得到的多个子像素一一对应的多个滤光单元131,并且探测装置200包括:第二基板210,以及设置于第二基板210接近滤光结构130的一侧、且与多个滤光单元131一一对应的多个探测单元220,这些探测单元220可以集成在第二基板210上,该第二基板210同样可以为玻璃基板,即为光谱仪系统10的下玻璃基板。
每个滤光单元131,用于过滤照射到本滤光单元131上单色光中的杂散光后,出射一个子像素的单色光;
每个探测单元220,用于接收从对应滤光单元131出射的、且通过待测物的单色光。
本发明实施例中,通过微结构图形形成的一个子像素中通常包括多个子像素,图2以一个像素中包括红色、绿色、蓝色(Red、Green、Blue,简称为:RGB)子像素为例予以示出,即每个微结构图形分解入射光后形成RGB子像素的单色光,包括红色光、绿色光和蓝色光,每个子像素的单色光照射到与之对应的滤光单元131上,每个滤光单元131的滤光效果是针对对应子像素的单色光而言的,例如,红色光照射到仅透射红色光的滤光单元131上,其它波长的光被吸收或反射,从滤光单元131出射的一个子像素的单色光,通过测试通道300的待测物后照射到该滤光单元131对应的探测单元220上。本发明实施例中的探测单元220例如为光敏探测器,这些光敏探测器与采光装置100的出光口(即滤光单元131)一一对应,两者间距依赖于光线耦合结构的出光方向的精度以及光敏探测器的信噪比需求,并使得出光口与光敏探测器的间距尽可能小(中间可以包含缓冲膜层等);其中,光敏探测器的类型,可以是电荷耦合器件(Charge-coupled Device,简称为:CCD)、互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,简称为:CMOS)器件、PIN型光电二极管等,本发明实施例中不做限定。
需要说明的是,本发明实施例中,分光结构120形成的多个子像素的单色光、与滤光单元131和探测单元220的数量相同,且为一一对应的关系,并且分光结构120中微结构图形的分光效果为:形成一个像素内的多个子像素的单色光,分光结构120中可以包括一个或多个微结构图形,图2所示光谱仪系统10以分光结构120中包括一个微结构图形,并以形成一个RGB像素为例予以示出。
可选地,在本发明实施例中,为了避免光线在采光装置100中的反射和滤光结构中各个单色光的相互影响,采光装置100的第一基板110周围除入光位置和出光位置之外的区域设置有阻光层140,滤光结构130中相邻滤光单元131之间可以设置有阻光单元141,上述阻光层140和阻光单元141可以选用具有遮光和吸光效果的材质。
可选地,在本发明实施例中,采光装置100还包括:设置于分光结构120入光侧的光源150,该光源150用于发出准直光或非准直光。该光源150可以由单色的半导体激光器芯片制成,也可由准直性比较好的多色的发光二极管(Light Emitting Diode,简称为:LED)芯片制成,但不限于这些类型。为了和分光结构的宽度匹配,可以使用激光器芯片或LED芯片条,或者在较稀的激光器芯片或LED芯片条前加一些扩束结构。在实际应用中,可以采用Micro-Lens设置于Micro-LED(即光源150)与分光结构120之间,作为扩束结构并提供准直入射光。需要说明的是,若光源150发出非准直光,由于衍射入射光角度太多,衍射级次太多,不同波长的光会存在叠加现象,降低了分光结构120的分光效果,因此,可以优选发出准直光的光源150。
可选地,图3为本发明实施例提供的光谱仪系统中一种分光结构的示意图,本发明实施例中的分光结构120可以为光栅结构,该光栅结构可以包括:第一基板110接近入光侧依次设置的波导层121、缓冲层122和金属光栅层123,金属光栅层123中设置有上述微结构图形,且金属光栅层123中设置的微结构图形可以是一组或多组,用于得到一个或多个像素的单色光。
在本发明实施例的一种可能的实现方式中,金属光栅层123中的微结构图形可以包括多个不同周期(p)的第一微结构单元123a,每种第一微结构单元123a,用于将到达本第一微结构单元123a的入射光,以一个子像素的准直单色光出射。在该实现方式中,光栅结构例如为全息光栅,可以实现对入射光的分光效果并准直出射,通过该全息光栅出射的每种波长的单色光对应一组具体的光栅周期,即对应一个特定周期的第一微结构单元123a。图3以分光结构120中包括三组第一微结构单元123a为例予以示出,该三组第一微结构单元123a可以一一对应的出射红光、绿光和蓝光。
在本发明实施例的另一种可能的实现方式中,金属光栅层123中的微结构图形可以包括多个相同周期或不同周期的第二微结构单元,每种第二微结构单元,用于将到达本第二微结构单元的入射光,以一个子像素的倾斜单色光出射。在该实现方式中,金属光栅层123中的光栅周期可以是相同的,也可以是不同的,这种光栅可以将一定波长范围的光(例如波长在400~800nm的光)以一定的角度色散开,该光栅结构同样可以实现透射分色的效果,分光后出射的单色光以一定的倾斜角度出射。
上述图3示意出光栅结构的侧视图和俯视图的对应关系,且以金属光栅层123中包括一组微结构图形为例予以示出,该光栅结构可以为全息光栅或其它类型的光栅,都可以实现对入射光的分色效果。以下通过全息光栅为例说明光栅的分光原理,全息光栅分光原理基于如下所示衍射光栅公式:
ni*sinθi–nd*sinθd=m*λ/Λ;其中,m=0、±1、±2、…… (1)
上述(1)式中,ni和nd分别为入射空间折射率和入射角度,m为衍射级次,Λ为光栅周期,λ为入射光波长,θd为衍射光方向与面板平面法线之间的夹角,nd为金属光栅层123、缓冲层122和波导层121以及第一基板210的等效折射率,上述三层(金属光栅层123、缓冲层122和波导层121)的折射率本身也很接近。
根据(1)式,设计通过光栅结构透射特定波长的单色光,例如设计过滤出400~750纳米(nm)的光中各种单色光,比如从蓝色到红色依次从左到右如图3中排布,图3中示意出过滤出蓝色光、绿色光和红色光的光栅结构,即整个全息光栅是非统一的光栅,根据过滤波长,设计特定的光栅周期,该周期(ρ)包括线宽(w)+间距(s)。光栅周期的设计和优化例如可以采用基于时域有限差分法(Finite-Difference Time-Domain,简称为:FDTD)光学仿真软件设计,并优化光栅结构的各项参数,例如过滤特定波长单色光的光栅周期和线宽。另外,考虑实际加工的可能性,对图3中第一金属光栅层123中微结构图形的蚀刻深度可以为整个第一金属光栅123的厚度。
举例来说,可以采用40nm的银(Silver,化学符号为:Ag)做上述金属光栅层123,缓冲层122可以为50nm的二氧化硅(SiO2),波导层121可以为100nm的氮化硅(SiNx),第一基板110可以是玻璃基板,也可以选用稳定性较好的树脂或者聚酯化合物,也可以用纸等其他基材做基板,第一基板110的厚度根据实际需求设定,本发明实施例对第一基板110的厚度不做具体限定。通过加工一维全息Ag金属光栅,分开白光,全息光栅周期在250~600nm范围内,可以以一级衍射分开400~750nm的白光,且光栅间距在0.25~0.4微米(um)左右时,即可实现蓝色光到红色光的透射出光。当全息光栅结构的线宽过大或者过小时,透射出光的波长、半峰宽、以及透射效率都会受一定程度的影响,因此需要合理的设计光栅结构的各项参数。
基于上述对光栅结构的说明,以及全息光栅分光的原理可知:如果光栅结构的出光口是半波长的光栅结构,则可以实现准直取出各个波长的单色光。其中,光栅结构的周期由需要出射的单色光的波长、出射和入射材料的折射率、入光角度和设计的出光方向决定共同决定,光栅的占空比一般为0.5,但在实际产品设计中可以偏离此值,比如出于调节出光的强度,平衡显示面板不同位置亮度的差异等目的。光栅的高度,根据要求某个波长或者某几个波长的光的强度决定,可以是几百纳米,也可以是微米级。另外,如果采用其他分光结构,以分光的特殊波长和出光角度要求,设计分光结构的具体形状,可以是内置的微反射镜,或者是其他微结构,本发明实施例不做具体限制。
可选地,本发明实施例中的滤光结构130可以采用滤光彩膜,滤光彩膜可以通过特定波长的光,并吸收其他波长的光,过滤掉单色光中的杂散光,以图2所示的采光装置100为例予以示出,设定分光结构120采用全息光栅,例如为图3中的光栅结构,且全息光栅分光形成的单色光准直出射,滤光彩膜的红色彩膜、绿色彩膜和蓝色彩膜一一对应的设置于全息光栅中不同周期光栅结构在滤光彩膜所在平面的正投影位置,使得全息光栅分光后形成的RGB三个子像素的单色光准直后,分别照射到滤光彩膜的红色彩膜、绿色彩膜和蓝色彩膜上,该滤光彩膜可以采用常规显示面板使用的普通彩膜,也可以采用量子点彩膜等其它彩膜。本发明实施例中优选量子点彩膜,由于普通彩膜,各色半峰宽较宽,不适合用于高精度的光谱检测,如果使用量子点彩膜,可以降低半峰宽,并提高检测精度。
需要说明的是,本发明实施例不限制全息光栅(即分光结构120)的每个微结构图形仅能分光形成RGB三个子像素的单色光,通过每个微结构图形的分光还可以形成更多子像素和其它颜色的单色光,图3所示分光结构120以包括三组第一微结构单元123a、且形成RGB三个子像素的单色光为例示出,若图3中分光结构120包括更多组不同周期的第一微结构单元123a,则可以形成更多子像素的单色光。另外,本发明实施例也不限制分光结构120仅能形成如图2中一个像素的单色光,图2以分光结构120中包括一个微结构图形为例予以示出,若在分光结构120中设置多个微结构图形则可以形成多个像素的单色光,相应地,滤光彩膜中彩膜的颜色和数量与全息光栅分光后形成像素的数量和每种像素中单色光的数量和颜色相匹配。
在上述分光结构120的光栅采用非全息光栅的实现方式中,即通过第二微结构单元分光后形成的单色光以倾斜角度出射的情况下,以实现从采光装置100出射的单色光为准直光为例予以说明。可选地,可以采用上述全息光栅作为滤光结构130,如图4所示,为本发明实施例提供的又一种光谱仪系统的结构示意图。图4所示光谱仪系统10以在图2所述光谱仪系统10的结构基础上为例予以示出,分光结构120和滤光结构130均为光栅结构,分光结构120为非全息光栅,例如为倾斜光栅,滤光结构130为全息光栅,该全息光栅设置于第一基板110的出光侧,其结构与图3所示光栅结构类似,该滤光结构130中可以设置有第三微结构单元132,且每个第三微结构单元132设置于对应子像素出射的倾斜单色光照射到滤光结构的区域。
本发明实施例中每个第三微结构单元132,用于接收从对应子像素出射的倾斜单色光,过滤倾斜单色光中的杂散光,并将倾斜单色光改变传输方向后准直出射。
在本发明实施例中,入射光经过第一个光栅(即非全息光栅)实现分光,其分光原理与上述全息光栅的透射分光原理类似,但是,分光后其它波长范围内,也会有不同程度的透射出光,这些出光会降低光谱仪的检测精度,采用设置于倾斜光栅(即分光结构120)出光侧的第二个光栅(即全息光栅),以主透射出光为主设计光栅,如倾斜光栅,利用倾斜光栅特性,只让某一小段波长的光以接近0度出射,其他波长的光被反射,从而被采光装置100周围的阻光结构吸收。图4所示采光装置100也可以实现对白光的分光,且分光精度较高,能实现高精度的微流测试或者标定。但是,这种方式需要第二个光栅(即全息光栅)与第一个光栅(即倾斜光栅)有较好的对位,且要根据出光波长再次设计不同光栅,实现再次分光。因此,这种结构的采光装置100的加工精度高,加工难度较大。
可选地,图5为本发明实施例提供的光谱仪系统中一种微结构图形的结构示意图。本发明实施例的分光结构120例如可以为线性渐变分光结构,该线性渐变分光结构同样包括用于形成至少一个子像素的微结构图形,该微结构图形包括第一膜层B,以及设置于第一膜层B的第一平面B1外侧的第二膜层A1和设置于第一膜层B的第二平面B2外侧的第三膜层A2,其中,第一膜层B的第一平面B1和第二平面B1形成楔角。
每个微结构图形,用于将到达本微结构图形的入射光,分光为颜色呈线性变化的单色光后出射。
在本发明实施例中,采用制作于第一基板110上的线性渐变分光结构实现宽光谱的分光效果,白光照射到线性渐变分光结构上,不同波长通过线性渐变分光结构时用法布里-珀罗(Fabry-Perot)腔分光。通过刻蚀或者特殊的沉积工艺,在两层A膜(包括A1和A2)之间加工出有楔角的B层,再在两层A膜上交替沉积B膜和A膜,形成Fabry-Perot腔。入射光在Fabry-Perot腔上下表面反复反射和折射后产生多束相干反射光和透射光,透射光在不同的位置透过而分色。其中A膜和B膜的材料可以是Ta2O5和SiO2,也可以是其他材料,本发明实施例不做具体限制。本发明实施例中的分光方式对楔角、A膜和B膜的层厚度,以及A/B膜叠加沉积的层数都有严格要求,对沉积工艺要求较高。
可选地,图6为本发明实施例提供的再一种光谱仪系统的结构示意图,图6以在图2所示光谱仪系统10的结构基础上为例予以示出。在本发明实施例中,探测装置200还包括:设置于每个探测单元220入光侧的微流通道230。
其中,每个微流通道230,用于流入经过测试通道300的待测物,使得从对应滤光单元131出射的目标波长范围的单色光通过本微流通道230中的待测物后,照射到对应探测单元220上。
本发明实施例中的微流通道230为微流体(即待测物)传输的通道,该通道的宽度和高度可以是纳米级的,也可以比之大或者小,根据实际应用来设计,本发明实施例对微流通道230大小不做限制。该微流通道230可以通过光刻、刻蚀的方法做在硅、玻璃或者聚合物,如聚二甲基硅氧烷(polydimethylsiloxane,简称为:PDMS)或者聚甲基丙烯酸甲酯(polymethyl methacrylate,简称为:PMMA)上,也可以在其他材料上,对微流通道230的材质和形成方式不做限制。微流沟道230的内壁依据实际使用的需求,一般在微流沟道230内涂覆疏/亲水膜层,使微流体在微流通道230内根据实验需求流动或者短暂滞留,如特氟龙-AF疏水层,可以使微流体尽可能不粘附在微流通道230内,而是根据需求流动。
在实际应用中,本发明实施例中的每个微流通道230可以垂直于本微流通道230对应的探测单元220的入光侧(图6以该设置方式为例予以示出),或者,每个微流通道230也可以与采光装置100对应出光口出射的单色光平行设置,也可以采用其它设置方式,微流通道230的设置原则可以为:使得采光装置100出射的目标波长范围的单色光可以入射到微流通道230内并与微流通道230内的待测物发生反应后,照射到对应的探测单元230上。
可选地,在本发明各实施例中,光谱仪系统10还可以包括:与探测装置200相连接的处理模块;
处理模块,用于处理探测装置200获取的用于对待测物进行光谱分析的光学信号,以得到该待测物的分析结果。
可选地,在本发明上述实施例中,处理模块可以分别与探测装置中的每个探测单元相连接,并且,在采光装置出射至少两个像素的准直单色光的情况下:
处理模块,还用于对不同像素中目标波长范围相同的单色光形成的光学信号进行光谱分析。
在本发明实施例中,光源150(例如包括Micro-LED光源、Micro-Lens透镜)和上述分光结构120(全息光栅)和滤光结构130可以集成设置于上玻璃基板(即第一基板110)上,下玻璃基板(即第二基板210)上集成有微流通道230和探测单元220(例如光敏探测器),从上玻璃基板出射的单色光的波长可以与下玻璃基板的探测单元220一一对应,以便准确监控透过待测物的光学信号。在检测过程中,点亮Micro-LED光源,入射光经过全息光栅的透射分光和滤光单元过滤杂光后,在上玻璃基板的下表面的不同出光口出射不同窄半峰宽的波段。下玻璃基板上的微流通道230中通过待测气体或者液体,特定目标波长范围波长的单色光与待测物进行物理或者化学反应,微流通道230下的探测单元220接收到最终的光学信号,再将数据回传给处理模块进行数据分析,从而完成对特定物体或气体的标定、或者检测,即完成探测。进一步地,本发明实施例的处理模块不仅可以对单独一个像素中每个子像素的单色光形成的光学信号进行分析,通过单一子像素的单色光得到待测物的分析结果,处理模块还可以对多个像素中相同波长的单色光形成的光学信号进行分析,即通过多个相同波长的单色得到待测物的多个分析结果,并对这些分析结果求平均值、均方根或者均方差等,本发明不做限制。
以下以分光形成RGB三色光为例说明本发明实施例中分光结构与滤光结构叠加使用的分光效果。图7为采用本发明实施例提供的光谱仪系统10中的分光结构120分光后得到的光谱信息示意图,横坐标为波长,单位为微米(um),纵坐标为透光率,单位为百分比(%)。
形成图7所示光谱信息的分光结构例如为全息光栅,该全息光栅可以分解波长范围为400~750nm的白光,当需要从白光中过滤出波长为630nm的红色光,且其它波长的光被反射,这部分光栅结构的几何参数可以为:周期是420nm,金属光栅层123的刻蚀高度是40nm,即Ag材料的金属光栅层被完全蚀刻,线宽是315nm,采用上述光栅结构的参数可以得到波长范围主要为620~645nm内的红色光被透射过滤通过,最强透射率达到90%。其他波长的光被吸收或者反射。同理,其他颜色,波长为540nm的绿色光和波长为450nm的蓝色光等,都可以以相同的原理透射过滤通过。以下表1中示出透射不同波长的单色光对金属光栅层的参数要求。
表1
波长(nm) 周期(nm) 刻蚀高度(nm) 线宽(nm)
红色光(630nm) 420 40 315
绿色光(540nm) 380 40 285
蓝色光(450nm) 280 40 210
上述表1所示各波长的单色光对应光栅结构的参数仅是一种示意性说明,表1中的参数还可以重新计算调整和优化,并不以此限制光栅结构的实际参数值。
图7所示光谱信息以全息光栅分光出波长范围为620~645nm的红色光,以及其它波长范围的单色光(包括绿色光和蓝色光)为例予以说明。可以看出,在红色光、绿色光和蓝色光的光谱区范围内,都具有其他波长范围杂散光。以分解出的红色光为例说明全息光栅的分光效果,在红色光谱区,除了波长范围为620~645nm的红色光通过全息光栅的外,其它波长范围的光也会透射出光栅,尤其波长范围为400~600nm的射入光,这部分透射出的光会影响光谱仪的检测精度和准确度,即这部分杂散光在光谱仪系统中是不希望存在的。
针对上述问题,本发明实施例采用分光结构120(例如全息光栅)与滤光结构130叠加使用的方案,过滤图7所示光谱信息中的杂散光,仅留下目标波长范围的单色光,对红色光谱区来说,仅留下目标范围为620~645nm的红色光,如图8所示,为采用本发明实施例提供的光谱仪系统中的采光装置分光后得到的光谱信息示意图。在实际应用中,滤光结构130例如可以采用滤光彩膜,针对图7所示的光谱信息,可以采用包括RGB子像素的滤光彩膜进行滤光处理,如图9所示,为单独采用红色彩膜滤光后得到的光谱信息示意图,横坐标为波长,单位为um,纵坐标为透光率,单位为%,红色彩膜可以过滤到达红色彩膜的其它波长范围的入射光,图9中可以看出通过红色彩膜的光的波长范围在600~750nm之间,其它波长的光(即波长范围在400~600nm的光)被红色彩膜吸收而不能通过,叠加滤光彩膜和全息光栅的分光效果,即为叠加图7和图9形成图8中红色光谱区的光谱信息。类似地,对于蓝色光采用蓝色彩膜,对于绿色光采用绿色彩膜即可得到图8所示的仅保留目标波长范围的单色光的光谱信息。
对比图7和图8的光谱信息,仅采用全息光栅分光得到的单色光中明显具有较多的杂散光,类似与现有技术的分光系统的分光效果,采用全息光栅叠加滤光彩膜的结构(即采用分光叠加滤光的作用效果)得到的目标波长范围的单色光中仅存在非常微量的杂散光。显然地,采用本发明实施例中的采光装置100可以在很大程度上改善光谱叠级串色的现象,从而提高光谱仪系统的检测效果。
基于本发明上述实施例提供的光谱仪系统,本发明实施例还提供一种光谱检测分析方法,该光谱检测分析方法由本发明上述任一实施例提供的光谱仪系统执行,如图10所示,为本发明实施例提供的一种光谱检测分析方法的流程图,该光谱检测分析方法包括如下步骤:
S310,接收探测装置获取的光学信号,其中,该光学信号为经过采光装置中的每个出光口出射的目标波长范围的单色光通过测试通道与待测物发生反应后形成的;
S320,处理光学信号得到待测物的分析结果。
本发明实施例提供的光谱检测分析方法由上述图1到图6所示任一实施中的光谱仪系统执行,该光谱仪系统的具体结构,其中各个部件所实现的功能,以及光谱分析的有益效果在上述实施例中已经详细描述,故在此不再赘述。本发明实施例中的步骤S310~S320可以由光谱仪系统中的处理模块,例如为处理器执行,其接收的光学信号为:光谱仪系统的采光装置对入射光进行分光和滤光后形成的目标波长范围的单色光,该单色光通过测试通道与待测物发生反应后形成的,通过采光装置的每个出光口得到的光学信号与该出光口出射的单色光一一对应,因此,该光学信号为特定目标波长范围的单色光与待测物进行物理或化学反应后形成的,可以通过对光学信号的光谱分析,得到待测物在上述特定目标波长范围的单色光照射下的物质分析结果。
上述实施例中已经说明光谱仪系统的采光装置,可以出射一个或多个像素的单色光,对于仅出射一个像素的单色光的应用场景来说,仅对该像素中每个子像素的单色光形成的光学信号进行光谱分析即可。
可选地,对于采光装置出射至少两个像素的单色光的应用场景,本发明实施例提供的方法还可以包括:
对不同像素中目标波长范围相同的单色光形成的光学信号进行光谱分析。
在本发明实施例中,不仅可以对单独一个像素中每个子像素的单色光形成的光学信号进行分析,通过单一子像素的单色光得到待测物的分析结果,还可以对多个像素中相同波长的单色形成的光学信号进行分析,即通过多个相同波长的单色光得到待测物的多个分析结果,并对这些分析结果求平均值、均方根或者均方差等,本发明不做限制。举例来说,采光装置出光口出射n个像素的单色光,这n个像素均包括红光、蓝光和绿光,可以分别对这个n个像素中的红光形成的光学信号求平均值、蓝光形成的光学信号求平均值、绿光形成的光学信号求平均值。
本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有可执行指令,该可执行指令被处理器执行时可以实现本发明上述任一实施例提供的光谱检测分析方法,该光谱检测分析方法可以用于对待测物进行分析,从而完成对特定物体或气体的标定、或者检测,即完成探测。本发明实施例提供的计算机可读存储介质的实施方式与本发明上述实施例提供的光谱检测分析方法基本相同,在此不做赘述。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (15)

1.一种光谱仪系统,其特征在于,包括:采光装置和探测装置,所述采光装置包括:第一基板、设置于所述第一基板入光侧的分光结构和设置于所述第一基板出光侧的滤光结构,所述探测装置设置于接近所述采光装置中滤光结构的一侧,且所述采光装置与所述探测装置之间设置有测试通道;
所述分光结构,用于将入射光分光为单色光后出射,照射到所述滤光结构上;
所述滤光结构,用于过滤所述单色光中的杂散光后出射目标波长范围的单色光,将出射的单色光通过所述测试通道中的待测物后,照射到所述探测装置上;
所述探测装置,用于接收所述目标波长范围的单色光与所述待测物发生反应后的光学信号,所述光学信号为用于对所述待测物进行光谱分析的光学信号。
2.根据权利要求1所述的光谱仪系统,其特征在于,所述分光结构包括用于形成至少一个像素的微结构图形;
每个所述微结构图形,用于将到达本微结构图形的入射光,分光为多个子像素的单色光后出射;
所述滤光结构包括与所述分光结构分光得到的多个子像素一一对应的多个滤光单元;
所述探测装置包括:第二基板,以及设置于所述第二基板接近所述滤光结构的一侧、且与所述多个滤光单元一一对应的多个探测单元;
每个所述滤光单元,用于过滤照射到本滤光单元上单色光中的杂散光后,出射一个子像素的单色光;
每个所述探测单元,用于接收从对应滤光单元出射的、且通过所述待测物的单色光。
3.根据权利要求2所述的光谱仪系统,其特征在于,所述分光结构包括所述第一基板接近入光侧依次设置的波导层、缓冲层和金属光栅层,所述金属光栅层中设置有所述微结构图形。
4.根据权利要求3所述的光谱仪系统,其特征在于,每个所述微结构图形中设置有多个不同周期的第一微结构单元;
每种所述第一微结构单元,用于将到达本第一微结构单元的入射光,以一个子像素的准直单色光出射。
5.根据权利要求3所述的光谱仪系统,其特征在于,每个所述微结构图形中设置有多个相同周期或不同周期的第二微结构单元,
每种所述第二微结构单元,用于将到达本第二微结构单元的入射光,以一个子像素的倾斜单色光出射。
6.根据权利要求5所述的光谱仪系统,其特征在于,所述滤光结构的每个所述滤光单元中设置有第三微结构单元,且每个所述第三微结构单元设置于对应子像素出射的倾斜单色光照射到所述滤光结构的区域;
每个所述第三微结构单元,用于接收从所述对应子像素出射的倾斜单色光,过滤所述倾斜单色光中的杂散光,并将所述倾斜单色光改变传输方向后准直出射。
7.根据权利要求2所述的光谱仪系统,其特征在于,所述微结构图形包括第一膜层,以及设置于所述第一膜层的第一平面外侧的第二膜层和设置于所述第一膜层的第二平面外侧的第三膜层,其中,所述第一膜层的第一平面和第二平面形成楔角;
每个所述微结构图形,用于将到达本微结构图形的入射光,分光为颜色呈线性变化的单色光后出射。
8.根据权利要求2~7中任一项所述的光谱仪系统,其特征在于,所述采光装置的第一基板周围除入光位置和出光位置之外的区域设置有阻光层,所述滤光结构中相邻滤光单元之间设置有阻光单元。
9.根据权利要求1~7中任一项所述的光谱仪系统,其特征在于,所述采光装置还包括:设置于所述分光结构入光侧的光源;
所述光源,用于发出准直光或非准直光。
10.根据权利要求2~7中任一项所述的光谱仪系统,其特征在于,所述探测装置还包括:设置于每个探测单元入光侧的微流通道;
每个所述微流通道,用于流入经过所述测试通道的所述待测物,使得从对应滤光单元出射的目标波长范围的单色光通过本微流通道中的待测物后,照射到对应探测单元上。
11.根据权利要求10所述的光谱仪系统,其特征在于,每个所述微流通道垂直于本微流通道对应的探测单元的入光侧。
12.根据权利要求1~7中任一项所述的光谱仪系统,其特征在于,还包括:与所述探测装置相连接的处理模块;
所述处理模块,用于处理所述探测装置获取的用于对所述待测物进行光谱分析的光学信号,以得到所述待测物的分析结果。
13.根据权利要求12所述的光谱仪系统,其特征在于,所述处理模块分别与所述探测装置中的每个所述探测单元相连接,在所述采光装置出射至少两个像素的准直单色光的情况下:
所述处理模块,还用于对不同像素中目标波长范围相同的单色光形成的光学信号进行光谱分析。
14.一种采用如权利要求1~13中任一项所述的光谱仪系统执行的光谱检测分析方法,包括:
接收所述探测装置获取的光学信号,其中,所述光学信号为经过采光装置中的每个出光口出射的目标波长范围的单色光通过所述测试通道与所述待测物发生反应后形成的;
处理所述光学信号得到所述待测物的分析结果。
15.根据权利要求14所述的光谱检测分析方法,其特征在于,在所述光谱仪系统的采光装置出射至少两个像素的准直单色光的情况下,所述方法还包括:
对不同像素中目标波长范围相同的单色光形成的光学信号进行光谱分析。
CN201810930403.4A 2018-07-26 2018-08-15 一种光谱仪系统和光谱分析方法 Active CN108956469B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201810930403.4A CN108956469B (zh) 2018-08-15 2018-08-15 一种光谱仪系统和光谱分析方法
PCT/CN2019/085562 WO2020019812A1 (en) 2018-07-26 2019-05-05 Microfluidic apparatus, and method of detecting substance in microfluidic apparatus
US16/495,050 US11344882B2 (en) 2018-07-26 2019-05-05 Microfluidic apparatus, and method of detecting substance in microfluidic apparatus
US16/617,696 US11344884B2 (en) 2018-07-26 2019-05-05 Microfluidic apparatus, method of detecting substance in microfluidic apparatus, and spectrometer
PCT/CN2019/085526 WO2020019809A1 (en) 2018-07-26 2019-05-05 Microfluidic apparatus, method of detecting substance in microfluidic apparatus, and spectrometer
PCT/CN2019/100610 WO2020035003A1 (zh) 2018-08-15 2019-08-14 光谱仪和使用其的光谱检测分析方法
US16/643,015 US11085821B2 (en) 2018-08-15 2019-08-14 Spectrometer and spectral detection and analysis method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810930403.4A CN108956469B (zh) 2018-08-15 2018-08-15 一种光谱仪系统和光谱分析方法

Publications (2)

Publication Number Publication Date
CN108956469A true CN108956469A (zh) 2018-12-07
CN108956469B CN108956469B (zh) 2021-01-26

Family

ID=64470316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810930403.4A Active CN108956469B (zh) 2018-07-26 2018-08-15 一种光谱仪系统和光谱分析方法

Country Status (3)

Country Link
US (1) US11085821B2 (zh)
CN (1) CN108956469B (zh)
WO (1) WO2020035003A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109612944A (zh) * 2019-01-02 2019-04-12 京东方科技集团股份有限公司 一种光谱检测系统和光谱检测分析方法
CN109946251A (zh) * 2019-03-29 2019-06-28 京东方科技集团股份有限公司 流体检测面板以及流体检测方法
CN110487734A (zh) * 2019-08-22 2019-11-22 京东方科技集团股份有限公司 一种光谱检测装置和检测方法
WO2020019812A1 (en) * 2018-07-26 2020-01-30 Boe Technology Group Co., Ltd. Microfluidic apparatus, and method of detecting substance in microfluidic apparatus
WO2020035003A1 (zh) * 2018-08-15 2020-02-20 京东方科技集团股份有限公司 光谱仪和使用其的光谱检测分析方法
WO2020142902A1 (zh) * 2019-01-08 2020-07-16 京东方科技集团股份有限公司 流体检测面板和流体检测装置
CN111461040A (zh) * 2020-04-07 2020-07-28 武汉华星光电技术有限公司 电子设备及其光学指纹识别模组
CN114127521A (zh) * 2019-07-16 2022-03-01 ams国际有限公司 用薄膜设备重建光波长谱
US20230075954A1 (en) * 2021-09-03 2023-03-09 Shenzhen Optiark Semiconductor Technologies Limited Optical expander device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780382B (zh) * 2018-07-31 2021-03-02 京东方科技集团股份有限公司 光学结构及其制作方法、光源系统、以及检测装置
US20230296511A1 (en) * 2020-08-20 2023-09-21 Maytronics Ltd. Multi-region optical filters and systems and methods using same
CN111882995B (zh) * 2020-08-31 2022-03-29 武汉天马微电子有限公司 显示面板及显示装置
CN114199377B (zh) * 2021-08-23 2023-12-05 南开大学 一种近红外纳米增强光谱仪
WO2023131464A1 (en) * 2022-01-04 2023-07-13 ams Sensors Germany GmbH Photodetector device and multi-color sensor
US11841270B1 (en) * 2022-05-25 2023-12-12 Visera Technologies Company Ltd. Spectrometer
CN115170508A (zh) * 2022-07-05 2022-10-11 广州立景创新科技有限公司 溢胶检测系统及其方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310796A (ja) * 2001-04-10 2002-10-23 Yokogawa Electric Corp 回折格子型マルチチャネル分光器およびその調整方法
US6940593B2 (en) * 2002-02-19 2005-09-06 Finisar Corporation Wedged optical filter stack
CN101263372A (zh) * 2005-05-17 2008-09-10 霍尼韦尔国际公司 光学微型光谱仪
CN102507448A (zh) * 2011-11-11 2012-06-20 深圳市锦瑞电子有限公司 生化分析仪的检测系统及检测方法
CN103842783A (zh) * 2011-10-04 2014-06-04 浜松光子学株式会社 分光传感器
CN105548096A (zh) * 2014-10-28 2016-05-04 全视技术有限公司 具有嵌入的微流体的色彩感测影像传感器和相关方法
CN107607475A (zh) * 2017-09-06 2018-01-19 京东方科技集团股份有限公司 微全分析系统及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522786B2 (en) * 2005-12-22 2009-04-21 Palo Alto Research Center Incorporated Transmitting light with photon energy information
US7518380B2 (en) * 2005-05-17 2009-04-14 Honeywell International Inc. Chemical impedance detectors for fluid analyzers
US8395768B2 (en) 2010-04-30 2013-03-12 Hewlett-Packard Development Company, L.P. Scattering spectroscopy apparatus and method employing a guided mode resonance (GMR) grating
CN103134587A (zh) 2013-01-29 2013-06-05 北京理工大学 一种基于体全息光栅组件分光的光谱分光成像系统光路
US9869589B2 (en) 2014-07-23 2018-01-16 Beijing Lenovo Software Ltd. Electronic device and information processing method
CN105444887B (zh) * 2014-07-23 2017-11-28 联想(北京)有限公司 一种光检测方法及电子设备
CN104515597B (zh) 2014-12-17 2016-08-24 中国科学院长春光学精密机械与物理研究所 采用体全息光栅和棱镜组合分光的光谱仪同轴光学系统
CN105806796A (zh) * 2016-03-24 2016-07-27 电子科技大学 分子传感器
KR20180028592A (ko) * 2016-09-08 2018-03-19 주식회사 아이티씨 다중 조명계를 포함하는 광분석기
CN206497030U (zh) * 2017-01-22 2017-09-15 北京格致同德科技有限公司 一种基于面阵列多波长滤光器的微型光谱分析系统
US10578486B2 (en) * 2017-07-12 2020-03-03 nanoLambda Korea Method of calibrating spectrum sensors in a manufacturing environment and an apparatus for effecting the same
US10557753B2 (en) * 2018-03-28 2020-02-11 Stmicroelectronics S.R.L. Spectrometer apparatus
CN108956469B (zh) * 2018-08-15 2021-01-26 京东方科技集团股份有限公司 一种光谱仪系统和光谱分析方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310796A (ja) * 2001-04-10 2002-10-23 Yokogawa Electric Corp 回折格子型マルチチャネル分光器およびその調整方法
US6940593B2 (en) * 2002-02-19 2005-09-06 Finisar Corporation Wedged optical filter stack
CN101263372A (zh) * 2005-05-17 2008-09-10 霍尼韦尔国际公司 光学微型光谱仪
CN103842783A (zh) * 2011-10-04 2014-06-04 浜松光子学株式会社 分光传感器
CN102507448A (zh) * 2011-11-11 2012-06-20 深圳市锦瑞电子有限公司 生化分析仪的检测系统及检测方法
CN105548096A (zh) * 2014-10-28 2016-05-04 全视技术有限公司 具有嵌入的微流体的色彩感测影像传感器和相关方法
CN107607475A (zh) * 2017-09-06 2018-01-19 京东方科技集团股份有限公司 微全分析系统及方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020019812A1 (en) * 2018-07-26 2020-01-30 Boe Technology Group Co., Ltd. Microfluidic apparatus, and method of detecting substance in microfluidic apparatus
WO2020019809A1 (en) * 2018-07-26 2020-01-30 Boe Technology Group Co., Ltd. Microfluidic apparatus, method of detecting substance in microfluidic apparatus, and spectrometer
US11085821B2 (en) 2018-08-15 2021-08-10 Boe Technology Group Co., Ltd. Spectrometer and spectral detection and analysis method using the same
WO2020035003A1 (zh) * 2018-08-15 2020-02-20 京东方科技集团股份有限公司 光谱仪和使用其的光谱检测分析方法
CN109612944A (zh) * 2019-01-02 2019-04-12 京东方科技集团股份有限公司 一种光谱检测系统和光谱检测分析方法
CN109612944B (zh) * 2019-01-02 2021-10-22 京东方科技集团股份有限公司 一种光谱检测系统和光谱检测分析方法
CN111742212A (zh) * 2019-01-08 2020-10-02 京东方科技集团股份有限公司 流体检测面板和流体检测装置
WO2020142902A1 (zh) * 2019-01-08 2020-07-16 京东方科技集团股份有限公司 流体检测面板和流体检测装置
US11255790B2 (en) 2019-01-08 2022-02-22 Boe Technology Group Co., Ltd. Fluid detection panel with filter structure and fluid detection device with filter structure
CN111742212B (zh) * 2019-01-08 2024-02-20 京东方科技集团股份有限公司 流体检测面板和流体检测装置
CN109946251A (zh) * 2019-03-29 2019-06-28 京东方科技集团股份有限公司 流体检测面板以及流体检测方法
CN114127521A (zh) * 2019-07-16 2022-03-01 ams国际有限公司 用薄膜设备重建光波长谱
CN110487734A (zh) * 2019-08-22 2019-11-22 京东方科技集团股份有限公司 一种光谱检测装置和检测方法
CN111461040A (zh) * 2020-04-07 2020-07-28 武汉华星光电技术有限公司 电子设备及其光学指纹识别模组
US20230075954A1 (en) * 2021-09-03 2023-03-09 Shenzhen Optiark Semiconductor Technologies Limited Optical expander device
US11789268B2 (en) * 2021-09-03 2023-10-17 Shenzhen Optiark Semiconductor Technologies Limited Optical expander device

Also Published As

Publication number Publication date
US11085821B2 (en) 2021-08-10
WO2020035003A1 (zh) 2020-02-20
CN108956469B (zh) 2021-01-26
US20200340859A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
CN108956469A (zh) 一种光谱仪系统和光谱分析方法
US9995623B2 (en) Ambient light assisted spectroscopy
CN106441564B (zh) 光学滤波器和分光仪
US7466409B2 (en) Method and apparatus for CMOS imagers and spectroscopy
US7894068B2 (en) Producing filters with combined transmission and/or reflection functions
CN106461460B (zh) 光学滤波器和分光计
US7701580B2 (en) Transmitting/reflecting emanating light with time variation
CN105899983B (zh) 导模共振设备
CN107110705B (zh) 用于将光谱信息转换为位置信息的装置的光学过滤器元件
CN108027313A (zh) 谐振周期性结构以及使用它们作为滤光器和传感器的方法
CN109642822A (zh) 光谱仪和利用其的光谱测量方法
RU2751443C2 (ru) Датчик для квазиодновременного измерения пропускания, и/или рассеяния вперед, и/или диффузного отражения и для одновременного измерения пропускания и рассеяния вперед или пропускания и диффузного отражения жидкого образца
US20150377780A1 (en) Plasmonic projected diffraction sensor
CN106482831A (zh) 一种分光器及其光谱仪
Hébert et al. Fundamentals of optics and radiometry for color reproduction
CN109564310A (zh) 光滤波器、光器件及制造光滤波器的方法
CN107765442A (zh) 多光谱虹膜装置
EP2085797B1 (en) Producing Filters with Combined Transmission and/or Reflection Functions
Shen et al. Fabrication and characterization of multi-stopband Fabry–Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology
EP2085762B1 (en) Transmitting/reflecting emanating light with time variation
JP2017521673A (ja) 少なくとも1つのoledまたはledから放射される光放射の空間分解及び波長分解検出のための装置
US11249226B2 (en) Micron-size plasmonic color sorter
CN110487734A (zh) 一种光谱检测装置和检测方法
JP2002318106A (ja) 着色膜の膜厚測定装置、及び着色膜の膜厚測定方法
CN109612944B (zh) 一种光谱检测系统和光谱检测分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant