CN108950493A - 环形银纳米间隙阵列及其制备方法和用途 - Google Patents

环形银纳米间隙阵列及其制备方法和用途 Download PDF

Info

Publication number
CN108950493A
CN108950493A CN201810851178.5A CN201810851178A CN108950493A CN 108950493 A CN108950493 A CN 108950493A CN 201810851178 A CN201810851178 A CN 201810851178A CN 108950493 A CN108950493 A CN 108950493A
Authority
CN
China
Prior art keywords
silver
silver nanoparticle
aluminum oxide
array
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810851178.5A
Other languages
English (en)
Other versions
CN108950493B (zh
Inventor
朱储红
孟国文
胡小晔
王秀娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201810851178.5A priority Critical patent/CN108950493B/zh
Publication of CN108950493A publication Critical patent/CN108950493A/zh
Application granted granted Critical
Publication of CN108950493B publication Critical patent/CN108950493B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种环形银纳米间隙阵列及其制备方法和用途。间隙阵列为组成银纳米棒阵列的银纳米棒的侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内,其中,银纳米棒长50‑1000nm、直径20‑300nm,根部的直径<棒直径,其与凸环壁间距0.33‑30nm,凸环高5‑70nm、环壁厚5‑25nm,密度为109‑1011/cm2,凸环的表面为银纳米颗粒膜;方法为先依次于通孔氧化铝模板的表面溅射银、原子层沉积氧化铝薄膜、蒸镀银膜和电沉积银纳米棒,再于得到的表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板的银膜表面电沉积铜膜后,将其置于碱或酸溶液中溶去模板和氧化铝薄膜,制得目的产物。它可作为SERS的活性基底来测量其上附着的痕量有机污染物。

Description

环形银纳米间隙阵列及其制备方法和用途
技术领域
本发明涉及一种间隙阵列及制备方法和用途,尤其是一种环形银纳米间隙阵列及其制备方法和用途。
背景技术
表面增强拉曼散射(SERS)光谱技术具有指纹识别能力和灵敏度高等优点,在化学、生物和医药等领域有着广泛的应用前景。为此,人们力图获得具有较高活性的SERS基底,做出了不懈的努力,如题为“Large-area Ag nanorod array substrates for SERS:AAO template-assisted fabrication,functionalization,and application indetection PCBs”,J.Raman Spectrosc.,2013,44,240-246(“大面积银纳米棒SERS衬底:氧化铝模板辅助制备,功能化和在检测多氯联苯方面的应用”,2013年德国Wiley出版社的《拉曼光谱期刊》44卷第240-246页)的文章。该文中提及的SERS衬底由棒间距小于10nm的银纳米棒组成;制备方法包括氧化铝模板的制作等。这种SERS衬底虽有着较高的SERS活性,却和其制备方法都存在着欠缺之处,首先,SERS衬底上的银纳米棒的间距是由氧化铝模板的孔间距决定的,难以做到精确的定位,尤为孔密度较高时;其次,制备方法不能获得具有较高密度的、等离激元间隙可控的SERS衬底。
发明内容
本发明要解决的技术问题为克服现有技术中的欠缺之处,提供一种密度高、等离激元间隙可控的环形银纳米间隙阵列。
本发明要解决的另一个技术问题为提供一种上述环形银纳米间隙阵列的制备方法。
本发明要解决的又一个技术问题为提供一种上述环形银纳米间隙阵列的用途。
为解决本发明的技术问题,所采用的技术方案为,环形银纳米间隙阵列包括衬底上的银纳米棒阵列,特别是:
所述组成银纳米棒阵列的银纳米棒的侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内;
所述侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内的银纳米棒的棒长为50-1000nm、棒直径为20-300nm;
所述侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内的银纳米棒根部的棒直径<银纳米棒的直径,其与银纳米凸环内壁的间距为0.33-30nm;
所述银纳米凸环的高为5-70nm、环壁厚为5-25nm,银纳米凸环的密度为109-1011/cm2
所述银纳米凸环的表面为银纳米颗粒膜。
作为环形银纳米间隙阵列的进一步改进:
优选地,衬底为银纳米颗粒膜下依次附有银膜和铜膜。
优选地,组成银纳米棒阵列的银纳米棒为六方有序排列。
为解决本发明的另一个技术问题,所采用的另一个技术方案为,上述环形银纳米间隙阵列的制备方法包括使用阳极氧化法获得通孔氧化铝模板,特别是完成步骤如下:
步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板,再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板;
步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜,再将其置于银电解液中以银膜为电极电沉积银纳米棒,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板;
步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜,再将其置于碱或酸溶液中溶去氧化铝模板和氧化铝薄膜,制得环形银纳米间隙阵列。
作为环形银纳米间隙阵列的制备方法的进一步改进:
优选地,蒸镀为离子溅射,或磁控溅射,或热蒸发。
优选地,银电解液为2-10g/L的硝酸银水溶液、1-10g/L的乙二胺四乙酸水溶液、5-30g/L的亚硫酸钠水溶液和5-20g/L的磷酸氢二钾水溶液的混合液。
优选地,铜电解液为0.2-20g/L的硝酸铜水溶液和1-50g/L的硼酸水溶液的混合液。
优选地,碱溶液为氢氧化钠溶液,或氢氧化钾溶液,或氢氧化锂溶液,酸溶液为磷酸溶液,或硫酸溶液,或草酸溶液。
为解决本发明的又一个技术问题,所采用的又一个技术方案为,上述环形银纳米间隙阵列的用途为:
将环形银纳米间隙阵列作为表面增强拉曼散射的活性基底,使用激光拉曼光谱仪测量其上附着的罗丹明6G(R6G),或福美双,或毒死蜱的含量。
作为环形银纳米间隙阵列的用途的进一步改进:
优选地,激光拉曼光谱仪的激发光的波长为532nm、功率为0.1-2mW、积分时间为1-30s。
相对于现有技术的有益效果是:
其一,对制得的目的产物使用扫描电镜进行表征,由其结果可知,目的产物为侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内的银纳米棒组成的银纳米棒阵列;其中,银纳米棒的棒长为50-1000nm、棒直径为20-300nm,银纳米棒根部的棒直径<银纳米棒的直径,其与银纳米凸环内壁的间距为0.33-30nm,银纳米凸环的高为5-70nm、环壁厚为5-25nm,银纳米凸环的密度为109-1011/cm2,银纳米凸环的表面为银纳米颗粒膜。这种由侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内的银纳米棒,以及银纳米棒根部与银纳米凸环内壁的间距和银纳米凸环的表面为银纳米颗粒膜组装成的目的产物,既由于银纳米棒组成的阵列,又因银纳米棒侧面包覆着的银纳米多孔管,还由于银纳米棒根部与银纳米凸环内壁之间存在着的间隙——环形银纳米间隙,以及银纳米凸环的密度为109-1011/cm2,更因银纳米凸环的表面为银纳米颗粒膜,而使其不仅具有了高密度的银纳米棒和银纳米凸环,银纳米多孔管和银纳米颗粒膜也提供了众多的等离激元,还有着银纳米棒根部与银纳米凸环内壁的等离激元间隙的精确可控,从而使目的产物的SERS灵敏度和可靠性均得到了极大的提升。
其二,将制得的目的产物作为SERS活性基底,经分别对罗丹明6G、农药福美双和毒死蜱进行不同浓度下的多次多批量的测试,当被测物罗丹明6G的浓度低至10-15mol/L、福美双的浓度低至0.5nmol/L、毒死蜱的浓度低至10nmol/L时,仍能将其有效地检测出来,且其检测的一致性和重复性于目的产物上的多点和任一点都非常的好。
其三,制备方法科学、有效。不仅制得了密度高、等离激元间隙可控的目的产物——环形银纳米间隙阵列,还使其具有了较高的SERS灵敏度,以及结构的均匀性和信号的重复性均非常高的性能,更有着便于简单廉价地批量制备大面积、高密度、等离激元间隙可控阵列的优点,进而使目的产物可作为SERS的活性基底来测量其上附着的痕量有机污染物。
附图说明
图1是目的产物的制备流程图。
图2是对获得的中间产物——表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板的剖面使用扫描电镜(SEM)进行表征的结果之一。SEM图像中没有氧化铝薄膜的箭头指示,是由于使用原子层沉积法沉积的氧化铝薄膜的厚度<10nm,因而无法在此用SEM清晰的观察到。
图3是对制备方法制得的目的产物使用扫描电镜进行表征的结果之一。其中,图1中的a图为目的产物的SEM图像;b图为a图的高倍率SEM图像,图中箭头指示的是环形纳米间隙的上端。
图4是对含有1fmol/L的罗丹明6G的目的产物使用激光拉曼光谱仪进行表征的结果之一。
图5是对含有0.5nmol/L的福美双的目的产物使用激光拉曼光谱仪进行表征的结果之一。
图6是对含有10nmol/L的毒死蜱的目的产物使用激光拉曼光谱仪进行表征的结果之一。
具体实施方式
下面结合附图对本发明的优选方式作进一步详细的描述。
首先从市场购得或自行制得:
孔密度为109-1011/cm2的通孔氧化铝模板;
作为碱溶液的氢氧化钠溶液、氢氧化钾溶液和氢氧化锂溶液;
作为酸溶液的磷酸溶液、硫酸溶液和草酸溶液。
接着:
实施例1
制备的具体步骤为:
步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板。再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板。
步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜;其中,蒸镀为离子溅射。再将其置于银电解液中以银膜为电极电沉积银纳米棒;其中,银电解液为2g/L的硝酸银水溶液、10g/L的乙二胺四乙酸水溶液、5g/L的亚硫酸钠水溶液和20g/L的磷酸氢二钾水溶液的混合液,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板。
步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜;其中,铜电解液为0.2g/L的硝酸铜水溶液和50g/L的硼酸水溶液的混合液。再将其置于碱(或酸)溶液中溶去氧化铝模板和氧化铝薄膜;其中,碱溶液为氢氧化钠溶液。制得近似于图3所示的环形银纳米间隙阵列。
实施例2
制备的具体步骤为:
步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板。再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板。
步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜;其中,蒸镀为离子溅射。再将其置于银电解液中以银膜为电极电沉积银纳米棒;其中,银电解液为4g/L的硝酸银水溶液、7g/L的乙二胺四乙酸水溶液、14g/L的亚硫酸钠水溶液和17g/L的磷酸氢二钾水溶液的混合液,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板。
步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜;其中,铜电解液为1g/L的硝酸铜水溶液和38g/L的硼酸水溶液的混合液。再将其置于碱(或酸)溶液中溶去氧化铝模板和氧化铝薄膜;其中,碱溶液为氢氧化钠溶液。制得近似于图3所示的环形银纳米间隙阵列。
实施例3
制备的具体步骤为:
步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板。再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板。
步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜;其中,蒸镀为离子溅射。再将其置于银电解液中以银膜为电极电沉积银纳米棒;其中,银电解液为6g/L的硝酸银水溶液、5g/L的乙二胺四乙酸水溶液、23g/L的亚硫酸钠水溶液和13g/L的磷酸氢二钾水溶液的混合液,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板。
步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜;其中,铜电解液为8g/L的硝酸铜水溶液和25g/L的硼酸水溶液的混合液。再将其置于碱(或酸)溶液中溶去氧化铝模板和氧化铝薄膜;其中,碱溶液为氢氧化钠溶液。制得如图3所示的环形银纳米间隙阵列。
实施例4
制备的具体步骤为:
步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板。再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板。
步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜;其中,蒸镀为离子溅射。再将其置于银电解液中以银膜为电极电沉积银纳米棒;其中,银电解液为8g/L的硝酸银水溶液、3g/L的乙二胺四乙酸水溶液、32g/L的亚硫酸钠水溶液和9g/L的磷酸氢二钾水溶液的混合液,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板。
步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜;其中,铜电解液为14g/L的硝酸铜水溶液和13g/L的硼酸水溶液的混合液。再将其置于碱(或酸)溶液中溶去氧化铝模板和氧化铝薄膜;其中,碱溶液为氢氧化钠溶液。制得近似于图3所示的环形银纳米间隙阵列。
实施例5
制备的具体步骤为:
步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板。再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板。
步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜;其中,蒸镀为离子溅射。再将其置于银电解液中以银膜为电极电沉积银纳米棒;其中,银电解液为10g/L的硝酸银水溶液、1g/L的乙二胺四乙酸水溶液、30g/L的亚硫酸钠水溶液和5g/L的磷酸氢二钾水溶液的混合液,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板。
步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜;其中,铜电解液为20g/L的硝酸铜水溶液和1g/L的硼酸水溶液的混合液。再将其置于碱(或酸)溶液中溶去氧化铝模板和氧化铝薄膜;其中,碱溶液为氢氧化钠溶液。制得近似于图3所示的环形银纳米间隙阵列。
再分别选择蒸镀为磁控溅射或热蒸发,以及选用作为碱溶液的氢氧化钠溶液或氢氧化钾溶液或氢氧化锂溶液,作为酸溶液的磷酸溶液或硫酸溶液或草酸溶液,重复上述实施例1-5,同样制得了如或近似于图3所示的环形银纳米间隙阵列。
环形银纳米间隙阵列的用途为:
将环形银纳米间隙阵列作为表面增强拉曼散射的活性基底,使用激光拉曼光谱仪测量其上附着的罗丹明6G(R6G),或福美双,或毒死蜱的含量,得到如或近似于图4或图5或图6所示的结果;其中,激光拉曼光谱仪的激发光的波长为532nm、功率为0.1-2mW、积分时间为1-30s。
显然,本领域的技术人员可以对本发明的环形银纳米间隙阵列及其制备方法和用途进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种环形银纳米间隙阵列,包括衬底上的银纳米棒阵列,其特征在于:
所述组成银纳米棒阵列的银纳米棒的侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内;
所述侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内的银纳米棒的棒长为50-1000nm、棒直径为20-300nm;
所述侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内的银纳米棒根部的棒直径<银纳米棒的直径,其与银纳米凸环内壁的间距为0.33-30nm;
所述银纳米凸环的高为5-70nm、环壁厚为5-25nm,银纳米凸环的密度为109-1011/cm2
所述银纳米凸环的表面为银纳米颗粒膜。
2.根据权利要求1所述的环形银纳米间隙阵列,其特征是衬底为银纳米颗粒膜下依次附有银膜和铜膜。
3.根据权利要求1所述的环形银纳米间隙阵列,其特征是组成银纳米棒阵列的银纳米棒为六方有序排列。
4.一种权利要求1所述环形银纳米间隙阵列的制备方法,包括使用阳极氧化法获得通孔氧化铝模板,其特征在于完成步骤如下:
步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板,再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板;
步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜,再将其置于银电解液中以银膜为电极电沉积银纳米棒,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板;
步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜,再将其置于碱或酸溶液中溶去氧化铝模板和氧化铝薄膜,制得环形银纳米间隙阵列。
5.根据权利要求4所述的环形银纳米间隙阵列的制备方法,其特征是蒸镀为离子溅射,或磁控溅射,或热蒸发。
6.根据权利要求4所述的环形银纳米间隙阵列的制备方法,其特征是银电解液为2-10g/L的硝酸银水溶液、1-10g/L的乙二胺四乙酸水溶液、5-30g/L的亚硫酸钠水溶液和5-20g/L的磷酸氢二钾水溶液的混合液。
7.根据权利要求4所述的环形银纳米间隙阵列的制备方法,其特征是铜电解液为0.2-20g/L的硝酸铜水溶液和1-50g/L的硼酸水溶液的混合液。
8.根据权利要求4所述的环形银纳米间隙阵列的制备方法,其特征是碱溶液为氢氧化钠溶液,或氢氧化钾溶液,或氢氧化锂溶液,酸溶液为磷酸溶液,或硫酸溶液,或草酸溶液。
9.一种权利要求1所述环形银纳米间隙阵列的用途,其特征在于:
将环形银纳米间隙阵列作为表面增强拉曼散射的活性基底,使用激光拉曼光谱仪测量其上附着的罗丹明6G(R6G),或福美双,或毒死蜱的含量。
10.根据权利要求9所述的环形银纳米间隙阵列的用途,其特征是激光拉曼光谱仪的激发光的波长为532nm、功率为0.1-2mW、积分时间为1-30s。
CN201810851178.5A 2018-07-24 2018-07-24 环形银纳米间隙阵列及其制备方法和用途 Active CN108950493B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810851178.5A CN108950493B (zh) 2018-07-24 2018-07-24 环形银纳米间隙阵列及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810851178.5A CN108950493B (zh) 2018-07-24 2018-07-24 环形银纳米间隙阵列及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN108950493A true CN108950493A (zh) 2018-12-07
CN108950493B CN108950493B (zh) 2020-05-15

Family

ID=64466059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810851178.5A Active CN108950493B (zh) 2018-07-24 2018-07-24 环形银纳米间隙阵列及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN108950493B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468376A (zh) * 2019-08-27 2019-11-19 吉林大学 一种碳包覆的银纳米棒阵列及其制备方法和应用
CN111778479A (zh) * 2020-07-08 2020-10-16 安徽大学 银纳米颗粒组装的空腔结构阵列及其制备方法和用途
CN111934185A (zh) * 2020-08-05 2020-11-13 合肥工业大学 基于银纳米棒超材料与发光体耦合的随机激光器制作方法
CN113278924A (zh) * 2021-04-29 2021-08-20 安徽大学 银纳米柱-多孔银纳米管-花瓣状银纳米凸起阵列及制备方法和用途
CN113278923A (zh) * 2021-04-29 2021-08-20 安徽大学 银纳米柱-银纳米管复合结构阵列及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910573A (zh) * 2012-10-24 2013-02-06 吉林大学 可揭除保护层的多级金属微纳结构阵列sers活性基底的制备方法
US20150369744A1 (en) * 2012-03-01 2015-12-24 Lawrence Livermore National Security, Llc Nanoscale structures on optical fiber for surface enhanced raman scattering and methods related thereto
KR20170129633A (ko) * 2016-05-17 2017-11-27 충남대학교산학협력단 표면증강 라만산란 기판, 이를 포함하는 분자 검출용 소자 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150369744A1 (en) * 2012-03-01 2015-12-24 Lawrence Livermore National Security, Llc Nanoscale structures on optical fiber for surface enhanced raman scattering and methods related thereto
CN102910573A (zh) * 2012-10-24 2013-02-06 吉林大学 可揭除保护层的多级金属微纳结构阵列sers活性基底的制备方法
KR20170129633A (ko) * 2016-05-17 2017-11-27 충남대학교산학협력단 표면증강 라만산란 기판, 이를 포함하는 분자 검출용 소자 및 이의 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUANG ZHULIN ETAL: "Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection", 《NANO RESEARCH》 *
WANG XIUJUAN ETAL: "In situ synthesis of pristine-graphene/Ag nanocomposites as highly sensitive SERS substrates", 《RSC ADVANCES》 *
ZHU CHUHONG ETAL: "Detection of Dithiocarbamate Pesticides with a Spongelike Surface-Enhanced Raman Scattering Substrate Made of Reduced Graphene Oxide-Wrapped Silver Nanocubes", 《ACS APPLIED MATERIALS & INTERFACES》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468376A (zh) * 2019-08-27 2019-11-19 吉林大学 一种碳包覆的银纳米棒阵列及其制备方法和应用
CN111778479A (zh) * 2020-07-08 2020-10-16 安徽大学 银纳米颗粒组装的空腔结构阵列及其制备方法和用途
CN111934185A (zh) * 2020-08-05 2020-11-13 合肥工业大学 基于银纳米棒超材料与发光体耦合的随机激光器制作方法
CN113278924A (zh) * 2021-04-29 2021-08-20 安徽大学 银纳米柱-多孔银纳米管-花瓣状银纳米凸起阵列及制备方法和用途
CN113278923A (zh) * 2021-04-29 2021-08-20 安徽大学 银纳米柱-银纳米管复合结构阵列及其制备方法和用途

Also Published As

Publication number Publication date
CN108950493B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
CN108950493A (zh) 环形银纳米间隙阵列及其制备方法和用途
Green et al. SERS substrates fabricated by island lithography: the silver/pyridine system
CN104099567B (zh) 银纳米柱簇阵列及其制备方法和用途
CN102233433B (zh) 银纳米片构成的微米半球及其制备方法和用途
CN102565024B (zh) 基于表面等离子体激元局域场耦合效应的表面增强拉曼散射基底
CN106967978B (zh) 金纳米颗粒组装的薄膜及其制备方法和用途
Hu et al. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates
CN111778479B (zh) 银纳米颗粒组装的空腔结构阵列及其制备方法和用途
CN101339128A (zh) 一种表面等离子体共振成像纳米结构阵列芯片的制备方法
CN111455319B (zh) 具有体增强拉曼散射效应的金-银纳米锥阵列及其制备方法和用途
Zhu et al. Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue
CN107478638A (zh) 银纳米颗粒组装的单层反蛋白石结构及其制备方法和用途
WO2017193415A1 (zh) 石墨烯修饰的复合平板ph传感器制备方法
CN103820826A (zh) 形貌可控的银纳米片组装结构阵列的制备方法及其产物的用途
Li et al. Free-standing Ag triangle arrays a configurable vertical gap for surface enhanced Raman spectroscopy
AU2015396661A1 (en) A polarization-independent SERS substrate
Wang et al. Electrodeposition of vertically standing Ag nanoplates and nanowires on transparent conductive electrode using porous anodic aluminum oxide template
CN107151807B (zh) 半球壳状多孔金微纳结构及其制备方法和用途
CN110146485B (zh) 金三角凹坑阵列材料及其制备方法和用途
Longoni et al. Surface enhanced Raman spectroscopy with electrodeposited copper ultramicro-wires with/without silver nanostars decoration
CN104977289A (zh) 贵金属有序纳米结构阵列及其制备方法和用途
Meng et al. 3D nanoscale chemical imaging of core–shell microspheres via microlensed fiber laser desorption postionization mass spectrometry
TW201229490A (en) A molecule carrier used for single molecule detection
Zeng et al. Highly reproducible surface-enhanced Raman scattering substrate for detection of phenolic pollutants
An et al. Shape-Preserving Transformation of Electrodeposited Macroporous Microparticles for Single-Particle SERS Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant