CN108941845A - 一种弧焊机器人空间圆弧摆焊插补方法 - Google Patents

一种弧焊机器人空间圆弧摆焊插补方法 Download PDF

Info

Publication number
CN108941845A
CN108941845A CN201810984979.9A CN201810984979A CN108941845A CN 108941845 A CN108941845 A CN 108941845A CN 201810984979 A CN201810984979 A CN 201810984979A CN 108941845 A CN108941845 A CN 108941845A
Authority
CN
China
Prior art keywords
point
circular arc
curve
coordinate
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810984979.9A
Other languages
English (en)
Other versions
CN108941845B (zh
Inventor
曹宇男
郭鑫鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Elite Robot Co Ltd
Original Assignee
Suzhou Elite Robot Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Elite Robot Co Ltd filed Critical Suzhou Elite Robot Co Ltd
Priority to CN201810984979.9A priority Critical patent/CN108941845B/zh
Publication of CN108941845A publication Critical patent/CN108941845A/zh
Application granted granted Critical
Publication of CN108941845B publication Critical patent/CN108941845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/022Welding by making use of electrode vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/13Differential equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Computing Systems (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种弧焊机器人空间圆弧摆焊插补方法,该方法在空间圆弧线插补方法的基础上,得到在圆柱面和平面上交替摆动的焊接轨迹,采用“L”型摆焊的方式,焊接轨迹在圆柱表面和平面之间交替进行,由于轨迹的起点终点和圆弧轨迹所在的平面都是通过示教确定的,所以底部的平面板件可以是空间的任意姿态,可以对摆焊轨迹进行加减速规划,从而得到很好的摆焊性能。

Description

一种弧焊机器人空间圆弧摆焊插补方法
技术领域
本发明涉及工业机器人领域,特别涉及一种弧焊机器人空间圆弧摆焊插补方法。
背景技术
现有的机器人摆焊工艺研究中,《弧焊机器人摆焊方法的研究》提出了五点图形示教摆焊的方法,该方法只能用于直线插补,工艺性能一般。《空间焊缝摆动轨迹的插补算法》设计了一种空间焊缝摆动轨迹的插补算法,该方法可以对空间直线和空间圆弧进行直线摆动焊接的插补,该算法无法引入速度规划,欠缺实际工艺的考虑。
现实工程中应用更为广泛的是圆筒焊件和平板焊件的焊接,采用摆焊可以得到比传统的简单圆弧得到更好的焊接性能,焊接更加牢固。中国专利CN201610219466.X公开了一种焊接圆弧焊缝的空间三角摆焊方法,该方法为机器人焊枪沿着圆弧焊缝方向做连续的空间三角形摆动,并不断向前移动,从而实现空间圆弧焊缝的三角摆动焊接,在运动内核上层进行插补规划,利用直线拟合圆弧焊缝的空间焊接路径,适用于圆柱体与平板之间的空间圆弧形焊缝的三角摆焊接。但是其工艺性能有明显缺陷,图1是其三角摆焊轨迹截面图,从图中可以看出焊接路径并不贴合焊缝,焊枪和焊缝之间有一段距离,焊料不能充分填充焊缝容易导致焊接不够牢固,并且由于焊缝余高过高会导致局部应力集中,容易导致焊接部位变形。
发明内容
本发明的目的在于克服现有技术存在的上述不足,提供一种弧焊机器人空间圆弧摆焊插补方法,采用在圆柱面和平板面之间进行“L”型摆焊的方式,焊接轨迹在圆柱表面和平板平面之间交替进行,焊接轨迹总是紧贴焊件表面,并且能与焊缝圆弧相交,这种焊接路径使得焊料和焊缝接触更加均匀,减小应力集中使得焊接更加可靠,并且由于焊接轨迹的起点终点和圆弧轨迹所在的平面都是通过示教确定的,所以底部的平面板件可以是空间的任意姿态。本发明还提供了一种精度高的正弦线插补方法,可以对摆焊轨迹进行加减速规划,从而能得到更佳的摆焊性能。
为了实现上述发明目的,本发明提供了以下技术方案:
一种弧焊机器人空间圆弧摆焊插补方法,用于平板焊件与圆柱形焊件的焊接,摆焊轨迹在平板面和圆柱面之间交替进行并且总是紧贴焊件表面,具体包括以下步骤:
A.通过机器人示教确定以下参数:焊接起点Ps=(xs,ys,zs),焊接终点Pe=(xe,ye,ze),圆弧中间参考点Pm=(xm,ym,zm),三点不共线,确定圆弧机器人基坐标系原点为(0,0,0),圆弧所在平面即平板所在的平面,圆柱面与之垂直;
B.获得圆柱面上的插补点坐标和平板面上的插补点坐标:
a)根据示教的三个点Ps、Pm、Pe,计算出圆弧的半径r、起点对应圆心角α、圆弧长L以及基坐标系{B}到圆弧平面坐标系{U}的变换矩阵
b)设平板面摆焊轨迹上的点为P',圆柱面摆焊轨迹上的点为P”,摆焊轨迹曲线的函数为y=f(x),摆焊轨迹曲线弧长公式为l=l(x),在任何时刻圆弧上总有一个点P与P'对应,二者之间距离最短,PP'连线垂直于圆弧的切线,P、P'和圆心O共线;以圆弧上的点P为原点建立坐标系{V},x轴与圆弧切线共线,指向插补前进方向,y轴指向PP'方向,坐标系{V}的x轴和圆弧坐标系{U}的x轴之间的夹角为ω,ω∈[0,2π];坐标系{U}先绕z轴旋转ω,再沿y轴平移r得到坐标系{V},ω在大小上等于OP连线与坐标系{U}y轴的夹角:
ω=α-lt/r-0.5π
其中α是圆弧起点对应的圆心角α∈[0,2π],lt是当前插补点对应的圆弧段长度lt∈[0,L],通过下式得到:
式中Δs是单个周期插补的位移,f'(x)是函数y=f(x)的导数,坐标系{U}
到坐标系{V}的变换矩阵为:
P'在坐标系{V}上的坐标值为:
P'在基坐标系{B}的坐标值可以通过下式得到:
P”在坐标系{V}上的坐标值为:
P'在基坐标系{B}的坐标值通过下式得到:
优选的,所述的步骤B中,所述摆焊轨迹曲线的函数为y=f(x):
令XYZ直角坐标系上的空间椭圆曲线PAPB上点的坐标为:P=(x y z)T,其中PA为曲线上的起始点,PB为曲线上的终点,经过齐次坐标变换将所述空间椭圆曲线转换为XZ平面上的平面椭圆曲线,且令XZ平面上的平面椭圆曲线上点的坐标为:P′=(x′0z′),那么将平面椭圆曲线上的点转换到空间椭圆曲线上的点的公式为:
P=T*P′+P0
其中矩阵T为3×3矩阵,表示平面椭圆曲线转换到空间椭圆曲线的旋转矩阵,P0表示平面椭圆曲线转换到空间椭圆曲线的平移量,并且P0为空间椭圆曲线的中心点坐标值;
将空间椭圆曲线上的点经过齐次坐标转换到平面椭圆曲线上的点的公式为:
P′=T-1*(P-P0)
其中矩阵T-1是矩阵T的逆矩阵;
设空间椭圆曲线的起始点PA坐标为:(xA yA zA)T,终点PB坐标为:(xB yB zB)T,且所述空间椭圆曲线上中点PC的坐标为:(xC yC zC)T,将空间椭圆曲线经过齐次坐标变换到平面椭圆曲线,令平面椭圆曲线表达式为:a>0且b>0,其中参数a和b的求法如下:
那么平面椭圆曲线上的点在参数坐标系下表示为:
其中θ为平面椭圆曲线对应的离心角。
与现有技术相比,本发明的有益效果:
1、采用在圆柱面和平板面之间进行“L”型摆焊的方式,焊接轨迹在圆柱表面和平板平面之间交替进行,焊接轨迹总是紧贴焊件表面,并且能与焊缝圆弧相交,这种焊接路径使得焊料和焊缝接触更加均匀,减小应力集中使得焊接更加可靠。
2、由于焊接轨迹的起点终点和圆弧轨迹所在的平面都是通过示教确定的,所以底部的平面板件可以是空间的任意姿态。
附图说明
图1是本发明三角摆轨迹截面示意图;
图2是本发明“L”型摆轨迹截面示意图;
图3是本发明摆焊轨迹立体示意图;
图4是本发明正弦插曲线插补示意图;
图5是本发明空间圆弧摆焊坐标系示意图;
图6是本发明圆柱体和平面对接摆焊坐标系示意图。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
如图1-6所示,确定以下参数:正弦线插补起点Ps=(xs,ys,zs),终点Pe=(xe,ye,ze),机器人坐标系远点为(0,0,0),起点和终点确定了摆焊前进的直线。正弦曲线的公式为y=Asin(Bx),式中A代表振幅,B决定正弦曲线的周期;
计算正弦曲线的弧长。正弦曲线弧微分公式为利用数值积分计算正弦曲线弧长,根据复化辛普森公式有
式中[a,b]代表所计算的正弦弧长的区间,a、b是积分的上下限是被积函数,n代表把积分区间[a,b]进行n等分,n越大迭代次数越多,精度越高,[xk,x(k+1)/2]是积分子区间,x1=a,
计算插补点坐标。插补过程中,由于每个插补周期路径很短,近似看作直线。根据弧微分公式有则有有了单个步长对应的坐标增量的关系,通过下式得到第个i插补点和第i-1个插补点坐标的关系:
式中xi-1是第i-1次插补的横坐标,xi是第i次插补的横坐标,xi∈[xS,xE];
处理误差,由于把正弦曲线的微分段当作直线处理会有误差,需要对每个插补点的x进行牛顿迭代处理来逼近精确值,牛顿迭代公式为其中xn是第n次迭代的x,f(xn)是xn对应的函数值,这里的函数是正弦曲线弧长的函数,而不是正弦函数本身,f'(xn)是xn点处函数的斜率。把正弦函数的弧长公式带入牛顿迭代公式得到:
其中l(xn)是上面的辛普森弧长计算公式,令其中a=0,b=xn;l(x)是程序给出的目标位移。l'(xn)是xn点处弧长函数曲线的斜率:
在程序中加入循环判断当丨xn+1-xn丨<em时迭代停止,可以得到满足精度需求的xn,em是设定的精度;
通过机器人示教确定以下参数:焊接起点Ps=(xs,ys,zs),焊接终点Pe=(xe,ye,ze),圆弧中间参考点Pm=(xm,ym,zm),三点不共线,确定圆弧设圆弧圆心为Po=(0,0,0),圆弧平面的法向量为半径为r。在圆弧平面上建立坐标系{U},坐标系远点在圆心,坐标系{U}到坐标系{B}的变换矩阵为:
其中φ为法向量与平面xoz的夹角,φ∈[0,2π],γ是在平面xoz的投影与平面yoz的夹角,γ∈[0,2π],容易证明。是可逆的;
进行圆柱面与平面对接摆焊的轨迹分为两部分,一是在圆弧平面上的轨迹,二是在圆柱面上的轨迹。设圆弧平面摆焊轨迹上的点为P',圆柱面上摆焊轨迹上的点为P”。任何时刻圆弧上总有一个点P与P'对应,二者之间距离最短,PP'连线垂直于圆弧的切线,可知P、P'和圆心O共线。以圆弧上的点P为原点建立坐标系{V},x轴与圆弧切线共线,指向插补前进方向,y轴指向PP'方向,坐标系{V}的x轴和圆弧坐标系{U}的x轴之间的夹角为ω。坐标系{V}可以通过坐标系{U}先绕z轴旋转ω,再沿y轴平移r得到。设圆弧起点圆心角为α,ω在大小上等于OP连线与坐标系{U}y轴的夹角,可以通过下式得到:
ω=α-lt/r-0.5π
其中α是圆弧起点对应的圆心角α∈[0,2π],lt是当前插补点对应的圆弧长lt∈[0,L],通过下式得到:
坐标系{U}到坐标系{V}的变换矩阵为:
P'在坐标系{V}上的坐标值为:
P'在基坐标系{B}的坐标值可以通过得到。
P”在坐标系{V}上的坐标值为:
P'在基坐标系{B}的坐标值可以通过得到。

Claims (2)

1.一种弧焊机器人空间圆弧摆焊插补方法,用于平板焊件与圆柱形焊件的焊接,其特征在于,摆焊轨迹在平板面和圆柱面之间交替进行并且总是紧贴焊件表面,具体包括以下步骤:
A.通过机器人示教确定以下参数:焊接起点Ps=(xs,ys,zs),焊接终点Pe=(xe,ye,ze),圆弧中间参考点Pm=(xm,ym,zm),三点不共线,确定圆弧机器人基坐标系原点为(0,0,0),圆弧所在平面即平板所在的平面,圆柱面与之垂直;
B.获得圆柱面上的插补点坐标和平板面上的插补点坐标:
a)根据示教的三个点Ps、Pm、Pe,计算出圆弧的半径r、起点对应圆心角α、圆弧长L以及基坐标系{B}到圆弧平面坐标系{U}的变换矩阵
b)设平板面摆焊轨迹上的点为P',圆柱面摆焊轨迹上的点为P”,摆焊轨迹曲线的函数为y=f(x),摆焊轨迹曲线弧长公式为l=l(x),在任何时刻圆弧上总有一个点P与P'对应,二者之间距离最短,PP'连线垂直于圆弧的切线,P、P'和圆心O共线;以圆弧上的点P为原点建立坐标系{V},x轴与圆弧切线共线,指向插补前进方向,y轴指向PP'方向,坐标系{V}的x轴和圆弧坐标系{U}的x轴之间的夹角为ω,ω∈[0,2π];坐标系{U}先绕z轴旋转ω,再沿y轴平移r得到坐标系{V},ω在大小上等于OP连线与坐标系{U}y轴的夹角:
ω=α-lt/r-0.5π
其中α是圆弧起点对应的圆心角α∈[0,2π],lt是当前插补点对应的圆弧段长度lt∈[0,L],通过下式得到:
式中Δs是单个周期插补的位移,f'(x)是函数y=f(x)的导数,坐标系{U}到坐标系{V}的变换矩阵为:
P'在坐标系{V}上的坐标值为:
P'在基坐标系{B}的坐标值可以通过下式得到:
P”在坐标系{V}上的坐标值为:
P'在基坐标系{B}的坐标值通过下式得到:
2.根据权利要求1所述的弧焊机器人空间圆弧摆焊插补方法,其特征在于,所述的步骤B中,所述摆焊轨迹曲线的函数为y=f(x):
令XYZ直角坐标系上的空间椭圆曲线PAPB上点的坐标为:P=(x y z)T,其中PA为曲线上的起始点,PB为曲线上的终点,经过齐次坐标变换将所述空间椭圆曲线转换为XZ平面上的平面椭圆曲线,且令XZ平面上的平面椭圆曲线上点的坐标为:P′=(x′ 0 z′),那么将平面椭圆曲线上的点转换到空间椭圆曲线上的点的公式为:
P=T*P′+P0
其中矩阵T为3×3矩阵,表示平面椭圆曲线转换到空间椭圆曲线的旋转矩阵,P0表示平面椭圆曲线转换到空间椭圆曲线的平移量,并且P0为空间椭圆曲线的中心点坐标值;
将空间椭圆曲线上的点经过齐次坐标转换到平面椭圆曲线上的点的公式为:
P′=T-1*(P-P0)
其中矩阵T-1是矩阵T的逆矩阵;
设空间椭圆曲线的起始点PA坐标为:(xA yA zA)T,终点PB坐标为:(xB yB zB)T,且所述空间椭圆曲线上中点PC的坐标为:(xC yC zC)T,将空间椭圆曲线经过齐次坐标变换到平面椭圆曲线,令平面椭圆曲线表达式为:a>0且b>0,其中参数a和b的求法如下:
那么平面椭圆曲线上的点在参数坐标系下表示为:
其中θ为平面椭圆曲线对应的离心角。
CN201810984979.9A 2018-08-28 2018-08-28 一种弧焊机器人空间圆弧摆焊插补方法 Active CN108941845B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810984979.9A CN108941845B (zh) 2018-08-28 2018-08-28 一种弧焊机器人空间圆弧摆焊插补方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810984979.9A CN108941845B (zh) 2018-08-28 2018-08-28 一种弧焊机器人空间圆弧摆焊插补方法

Publications (2)

Publication Number Publication Date
CN108941845A true CN108941845A (zh) 2018-12-07
CN108941845B CN108941845B (zh) 2021-08-24

Family

ID=64474322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810984979.9A Active CN108941845B (zh) 2018-08-28 2018-08-28 一种弧焊机器人空间圆弧摆焊插补方法

Country Status (1)

Country Link
CN (1) CN108941845B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109773376A (zh) * 2018-12-28 2019-05-21 南京埃斯顿机器人工程有限公司 一种焊接机器人的正弦摆焊方法
CN109960847A (zh) * 2018-12-28 2019-07-02 北京工业大学 一种基于空间变换原理的摆焊方法
CN110465949A (zh) * 2019-09-09 2019-11-19 北京配天技术有限公司 焊接机器人及其摆动轨迹的规划方法
CN110488758A (zh) * 2019-08-09 2019-11-22 南京埃斯顿自动化股份有限公司 一种基于PLCopen规范的轨迹过渡方法
CN112008305A (zh) * 2020-09-02 2020-12-01 南京埃斯顿自动化股份有限公司 一种焊接机器人的摆焊轨迹规划方法
CN113146637A (zh) * 2021-04-29 2021-07-23 张耀伦 一种机器人笛卡尔空间的运动规划方法
CN113199475A (zh) * 2021-04-28 2021-08-03 广西大学 一种适用于非标准圆弧的圆形摆弧路径的规划算法
CN113199476A (zh) * 2021-04-28 2021-08-03 广西大学 可快速调整焊枪姿态的圆弧8字形摆弧路径的规划算法
CN114248052A (zh) * 2020-09-21 2022-03-29 配天机器人技术有限公司 一种焊接机器人摆焊插补方法、设备及计算机存储介质
CN115453971A (zh) * 2022-09-23 2022-12-09 法奥意威(苏州)机器人系统有限公司 圆弧摆动路径规划方法、装置及规划设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557642A (ja) * 1991-08-26 1993-03-09 Hitachi Ltd 産業用ロボツトの制御装置
JP4998180B2 (ja) * 2007-09-28 2012-08-15 パナソニック株式会社 ウィービング動作制御方法
CN103568012A (zh) * 2013-10-24 2014-02-12 安徽埃夫特智能装备有限公司 一种弧焊机器人双平面摆弧轨迹的规划方法
CN105353725A (zh) * 2015-11-18 2016-02-24 南京埃斯顿机器人工程有限公司 用于工业机器人的过辅助点姿态空间圆弧插补方法
CN105665878A (zh) * 2016-04-11 2016-06-15 南京埃斯顿机器人工程有限公司 一种焊接机器人焊接圆弧焊缝的空间三角摆焊方法
CN105834629A (zh) * 2016-04-11 2016-08-10 南京埃斯顿机器人工程有限公司 一种焊接机器人焊接圆弧焊缝的平面三角摆焊方法
CN107102617A (zh) * 2017-06-26 2017-08-29 北京艾利特科技有限公司 一种高精度空间椭圆曲线实时插补方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557642A (ja) * 1991-08-26 1993-03-09 Hitachi Ltd 産業用ロボツトの制御装置
JP4998180B2 (ja) * 2007-09-28 2012-08-15 パナソニック株式会社 ウィービング動作制御方法
CN103568012A (zh) * 2013-10-24 2014-02-12 安徽埃夫特智能装备有限公司 一种弧焊机器人双平面摆弧轨迹的规划方法
CN105353725A (zh) * 2015-11-18 2016-02-24 南京埃斯顿机器人工程有限公司 用于工业机器人的过辅助点姿态空间圆弧插补方法
CN105665878A (zh) * 2016-04-11 2016-06-15 南京埃斯顿机器人工程有限公司 一种焊接机器人焊接圆弧焊缝的空间三角摆焊方法
CN105834629A (zh) * 2016-04-11 2016-08-10 南京埃斯顿机器人工程有限公司 一种焊接机器人焊接圆弧焊缝的平面三角摆焊方法
CN107102617A (zh) * 2017-06-26 2017-08-29 北京艾利特科技有限公司 一种高精度空间椭圆曲线实时插补方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109960847A (zh) * 2018-12-28 2019-07-02 北京工业大学 一种基于空间变换原理的摆焊方法
CN109773376B (zh) * 2018-12-28 2020-10-16 南京埃斯顿机器人工程有限公司 一种焊接机器人的正弦摆焊方法
CN109960847B (zh) * 2018-12-28 2023-09-01 北京工业大学 一种基于空间变换原理的摆焊方法
CN109773376A (zh) * 2018-12-28 2019-05-21 南京埃斯顿机器人工程有限公司 一种焊接机器人的正弦摆焊方法
CN110488758A (zh) * 2019-08-09 2019-11-22 南京埃斯顿自动化股份有限公司 一种基于PLCopen规范的轨迹过渡方法
CN110488758B (zh) * 2019-08-09 2021-05-25 南京埃斯顿自动化股份有限公司 一种基于PLCopen规范的轨迹过渡方法
CN110465949B (zh) * 2019-09-09 2021-11-09 北京配天技术有限公司 焊接机器人及其摆动轨迹的规划方法
CN110465949A (zh) * 2019-09-09 2019-11-19 北京配天技术有限公司 焊接机器人及其摆动轨迹的规划方法
CN112008305A (zh) * 2020-09-02 2020-12-01 南京埃斯顿自动化股份有限公司 一种焊接机器人的摆焊轨迹规划方法
CN112008305B (zh) * 2020-09-02 2021-12-28 南京埃斯顿自动化股份有限公司 一种焊接机器人的摆焊轨迹规划方法
CN114248052A (zh) * 2020-09-21 2022-03-29 配天机器人技术有限公司 一种焊接机器人摆焊插补方法、设备及计算机存储介质
CN114248052B (zh) * 2020-09-21 2024-05-03 配天机器人技术有限公司 一种焊接机器人摆焊插补方法、设备及计算机存储介质
CN113199476A (zh) * 2021-04-28 2021-08-03 广西大学 可快速调整焊枪姿态的圆弧8字形摆弧路径的规划算法
CN113199475A (zh) * 2021-04-28 2021-08-03 广西大学 一种适用于非标准圆弧的圆形摆弧路径的规划算法
CN113199476B (zh) * 2021-04-28 2023-10-31 广西大学 可快速调整焊枪姿态的圆弧8字形摆弧路径的规划算法
CN113199475B (zh) * 2021-04-28 2023-10-31 广西大学 一种适用于非标准圆弧的圆形摆弧路径的规划算法
CN113146637A (zh) * 2021-04-29 2021-07-23 张耀伦 一种机器人笛卡尔空间的运动规划方法
CN115453971A (zh) * 2022-09-23 2022-12-09 法奥意威(苏州)机器人系统有限公司 圆弧摆动路径规划方法、装置及规划设备
CN115453971B (zh) * 2022-09-23 2023-08-15 法奥意威(苏州)机器人系统有限公司 圆弧摆动路径规划方法、装置及规划设备

Also Published As

Publication number Publication date
CN108941845B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN108941845A (zh) 一种弧焊机器人空间圆弧摆焊插补方法
CN105665878B (zh) 一种焊接机器人焊接圆弧焊缝的空间三角摆焊方法
CN106671079B (zh) 一种实现变位机协同的焊接机器人运动控制方法
CN105834629B (zh) 一种焊接机器人焊接圆弧焊缝的平面三角摆焊方法
CN108527332A (zh) 一种基于结构光视觉传感器的焊缝轨迹离线校准方法
CN105598600A (zh) 一种箱型件焊缝自主寻位及轨迹自动生成方法
CN109262659B (zh) 一种机械臂关节传感器的零位校准方法和设备
CN109773376B (zh) 一种焊接机器人的正弦摆焊方法
CN108153707B (zh) 一种基于空间变换原理的弧焊机器人直线摆焊方法
CN107598919A (zh) 一种基于五点标定法的两轴变位机标定方法
CN112008305B (zh) 一种焊接机器人的摆焊轨迹规划方法
CN110465949A (zh) 焊接机器人及其摆动轨迹的规划方法
CN113199475B (zh) 一种适用于非标准圆弧的圆形摆弧路径的规划算法
CN109702294A (zh) 一种电弧增材制造的控制方法、系统及装置
JPH10314943A (ja) ロボットの初期溶接位置検出方法
CN102300668A (zh) 使用剖面几何形状的焊枪大小自动估计
Liu et al. A robot welding approach for the sphere-pipe joints with swing and multi-layer planning
CN106493205A (zh) 一种加热火枪头的校正方法及装置
CN104408226B (zh) 一种基于离心角变化的管板焊接的椭圆插补方法
CN110142533A (zh) 一种基于机器视觉与ai算法的自动焊接方法及焊接装置
CN114985868A (zh) 一种摆弧焊接方法及焊接机器人
CN113199476B (zh) 可快速调整焊枪姿态的圆弧8字形摆弧路径的规划算法
CN111098055B (zh) 一种管板智能焊接方法
CN114248052B (zh) 一种焊接机器人摆焊插补方法、设备及计算机存储介质
CN208304217U (zh) 一种多工位回转焊接机器人

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant