CN108931556A - 一种ws2气凝胶气体传感器的制备方法 - Google Patents

一种ws2气凝胶气体传感器的制备方法 Download PDF

Info

Publication number
CN108931556A
CN108931556A CN201810613708.2A CN201810613708A CN108931556A CN 108931556 A CN108931556 A CN 108931556A CN 201810613708 A CN201810613708 A CN 201810613708A CN 108931556 A CN108931556 A CN 108931556A
Authority
CN
China
Prior art keywords
aeroge
gas sensor
preparation
isopropanol
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810613708.2A
Other languages
English (en)
Inventor
闫文君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201810613708.2A priority Critical patent/CN108931556A/zh
Publication of CN108931556A publication Critical patent/CN108931556A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种WS2气凝胶气体传感器的制备方法,本发明首先制备WS2气凝胶,接着制备WS2气凝胶异丙醇悬浮液,再采用引线键合技术,将传感器芯片通过电路连线到封装基板上;最后将WS2气凝胶沉积到传感电极之间,并且确保敏感材料WS2气凝胶与传感电极之间为欧姆接触,制作成WS2气凝胶气体传感器。本发明中WS2气凝胶气敏传感器功耗较低,在无氧环境中对NO2的选择性探测和响应/恢复特性良好。

Description

一种WS2气凝胶气体传感器的制备方法
技术领域
本发明是关于半导体气体传感器的,尤其涉及一种适用于无氧环境中NO2探测的WS2气凝胶气体传感器的制备方法。
背景技术
层状WS2是一种类似于石墨烯的新型二维材料,单层WS2呈现一种S-W-S的三明治结构,具有独特的电学和光学特性,有望在气体传感器、能量存储、光电子、可穿戴电子器件等领域表现出良好的器件性能。
气凝胶,又称为干凝胶,其结构特征是拥有高通透性的圆筒形成多分枝纳米多孔三维网络结构,拥有极高孔隙率、极低的密度、高比表面积,看似脆弱不堪,实则坚固耐用,耐高温,承重力强,非常适用于航空航天方面。
在气体传感器的应用上,二维材料能够提供尽可能大的比表面积,但是当把材料做成器件时,器件封装会降低材料的比表面积。而三维WS2气凝胶既可以保持二维材料的层状特性,同时又具有大量交连孔洞,可在器件封装后提供更大的有效比表面积,有利于气体分子与气凝胶敏感材料的充分接触。对此,基于本课题组已有的半导体气体传感器的研究基础和对国内外研究现状的分析,本发明首次采用WS2气凝胶在无氧环境中进行NO2探测。
发明内容
本发明针对现有技术的不足,提出了一种适用于无氧环境中NO2探测的WS2气凝胶气体传感器的制备方法。
本发明一种适用于无氧环境中NO2探测的WS2气凝胶气体传感器的制备方法,具体步骤如下:
步骤一:WS2气凝胶的制备
将(NH4)2(WS4)溶于去离子水中,然后将该溶液置于液态氮中冻结,将冻结的溶液置于真空中干燥即得到(NH4)2(WS4)气凝胶;将(NH4)2(WS4)气凝胶置于管式炉中,在H2/Ar混合气氛中高温700-750℃热处理2-4h即得到WS2气凝胶。
步骤二:WS2气凝胶异丙醇悬浮液的制备;
将WS2气凝胶以分散于异丙醇水溶液中,超声振荡至气凝胶在异丙醇水溶液中分散均匀,得到质量浓度为0.5mg/ml的WS2气凝胶异丙醇悬浮液;其中异丙醇水溶液中异丙醇与水的体积比为8:1-10:1;
步骤三:采用引线键合技术,将传感器芯片通过电路连线到封装基板上;
步骤四:通过传感器芯片的加热电极将传感电极区域加热到80℃以上,采用滴涂法将WS2气凝胶沉积到传感电极之间,令WS2气凝胶连接两个传感电极,同时避免覆盖加热电极;加热2-3h使溶剂彻底挥发,并且确保敏感材料WS2气凝胶与传感电极之间为欧姆接触,制作成WS2气凝胶气体传感器。
作为优选,H2/Ar混合气氛中,H2占混合气体总体积的2%,Ar占混合气体总体积的98%;
作为优选,(NH4)2(WS4)气凝胶在H2/Ar混合气氛中高温700-750℃热处理4h。
有益效果:1、本发明中WS2气凝胶气体传感器功耗较低,工作温度为250℃时,功耗仅约4.6mW;2、本发明中WS2气凝胶气体传感器在无氧环境中对NO2的选择性探测良好;3、本发明中WS2气凝胶气体传感器在无氧环境中对NO2的响应/恢复特性良好。
附图说明
图1实施例中制得的WS2气凝胶SEM表面形貌图;
图2传感器示意图;
图3实施例中制得的WS2气凝胶气体传感器室温(20℃)下N2氛围中对2ppm NO2气体的响应曲线;
图4实施例中制得的WS2气凝胶气体传感器N2氛围中不同温度下对2ppm NO2气体的响应曲线;
图5实施例中制得的WS2气凝胶气体传感器250℃下在干燥空气和N2中对不同气体的探测灵敏度比较;
图6实施例中制得的WS2气凝胶气体传感器250℃下在干燥空气和N2中对不同浓度NO2气体的动态响应/恢复曲线。
具体实施方式
实施例1
1)WS2气凝胶的制备。首先将36mg(NH4)2(WS4)溶于1ml去离子水中,然后将该溶液置于液态氮中迅速冻结,将冻结的溶液置于真空中干燥即得到(NH4)2(WS4)气凝胶;将(NH4)2(WS4)气凝胶置于管式炉中,在2%H2/98%Ar混合气氛中750℃热处理4h,即可得到WS2气凝胶。
2)WS2气凝胶异丙醇悬浮液的制备。将WS2气凝胶以浓度0.5mg/ml分散于异丙醇和水的混合溶液中,异丙醇和水的比例为1:9,超声振荡至气凝胶在异丙醇水溶液中分散均匀。
3)采用引线键合技术,将传感器芯片通过电路连线到封装基板上,以便制作简易传感器。
4)通过传感器芯片上的加热电极将芯片传感电极区域加热到100℃,用移液枪将约0.01mg WS2气凝胶溶液滴涂到传感电极之间,加热3h使溶剂挥发完全,WS2气凝胶敏感材料沉积到传感电极芯片,连通传感电极,制作成简易的传感器。且通过对传感电极两端进行电流/电压测试确保敏感材料气凝胶与传感电极之间为欧姆接触。
实施例1中制得的WS2气凝胶SEM表面形貌如图1所示,从微观结构可以看出片状WS2互相连接,且具有大量的交连孔洞,这大大降低了材料的密度,增加了其比表面积。
实施例1中制得的WS2气凝胶气体传感器示意图如图2所示,WS2气凝胶敏感材料沉积在传感电极之间,连通传感电极。
实施例1中制得的WS2气凝胶气体传感器在室温20℃下对2ppm NO2气体的重复性响应/恢复曲线如图3所示,室温下该传感器遇到NO2气体电阻下降,在NO2气体中其电阻值很难达到平衡;去除NO2气体后,其电阻值有微弱恢复上升。可见该传感器可以在室温下探测NO2气体,但是敏感性能较差。
实施例1中制得WS2气凝胶气体传感器在不同温度(20、100、200、250、300℃)下对2ppm NO2气体的响应/恢复曲线如图4所示,可见随温度升高,该传感器对NO2气体的响应、恢复速度都在逐渐增加,而250和300℃温度下响应、恢复曲线非常接近,考虑到该传感器对NO2的响应、恢复特性、WS2气凝胶的热稳定性及器件功耗,可将250℃作为该传感器的最佳工作温度。
针对实施例1中制得的WS2气凝胶气体传感器分别在干燥空气中和N2氛围中进行了选择性测试,其测试结果如图5所示,在干燥空气中该传感器对一定浓度的NO2、NH3、H2和水蒸汽均具有不同程度的敏感性能,对2ppm NO2、800ppm NH3、2000ppm H2及40%相对湿度的灵敏度分别为0.36、0.12、0.18和0.12;但是在N2氛围中,该传感器对低浓度NO2气体表现出良好的选择性,对2ppm NO2、800ppm NH3、2000ppm H2及40%相对湿度的灵敏度分别为0.35、0.04、0.05和0.04。表明该发明的WS2气凝胶气体传感器可在无氧环境中进行NO2气体探测。
实施例1中制得的WS2气凝胶气体传感器250℃温度下在干燥空气和N2氛围中对不同浓度NO2气体的动态响应/恢复曲线如图6所示。在干燥空气中随NO2气体浓度由0.2上升到3ppm,该传感器对NO2的灵敏度由0.18逐渐增加到0.36,对低浓度NO2有明显的响应和较好的可逆恢复性;在N2氛围中,对相同浓度NO2的敏感性能较弱。
实施例2
1)WS2气凝胶的制备。首先将36mg(NH4)2(WS4)溶于1ml去离子水中,然后将该溶液置于液态氮中迅速冻结,将冻结的溶液置于真空中干燥即得到(NH4)2(WS4)气凝胶;将(NH4)2(WS4)气凝胶置于管式炉中,在5%H2/95%Ar混合气氛中700℃热处理2h,即可得到WS2气凝胶。
2)WS2气凝胶异丙醇悬浮液的制备。将WS2气凝胶以浓度0.5mg/ml分散于异丙醇和水的混合溶液中,异丙醇和水的比例为1:8,超声振荡至气凝胶在异丙醇水溶液中分散均匀。
3)采用引线键合技术,将传感器芯片通过电路连线到封装基板上,以便制作简易传感器。
4)通过传感器芯片上的加热电极将芯片传感电极区域加热到80℃,用移液枪将约0.01mg WS2气凝胶溶液滴涂到传感电极之间,加热2h使溶剂挥发完全,WS2气凝胶敏感材料沉积到传感电极芯片,连通传感电极,制作成简易的传感器。且通过对传感电极两端进行电流/电压测试确保敏感材料气凝胶与传感电极之间为欧姆接触。所制得的WS2气凝胶气体传感器在250℃干燥空气中对2ppm NO2的灵敏度极弱,仅约0.08。
实施例3
1)WS2气凝胶的制备。首先将36mg(NH4)2(WS4)溶于1ml去离子水中,然后将该溶液置于液态氮中迅速冻结,将冻结的溶液置于真空中干燥即得到(NH4)2(WS4)气凝胶;将(NH4)2(WS4)气凝胶置于管式炉中,在8%H2/92%Ar混合气氛中720℃热处理3h,即可得到WS2气凝胶。
2)WS2气凝胶异丙醇悬浮液的制备。将WS2气凝胶以浓度0.5mg/ml分散于异丙醇和水的混合溶液中,异丙醇和水的比例为1:10,超声振荡至气凝胶在异丙醇水溶液中分散均匀。
3)采用引线键合技术,将传感器芯片通过电路连线到封装基板上,以便制作简易传感器。
4)通过传感器芯片上的加热电极将芯片传感电极区域加热到90℃,用移液枪将约0.01mg WS2气凝胶溶液滴涂到传感电极之间,加热2.5h使溶剂挥发完全,WS2气凝胶敏感材料沉积到传感电极芯片,连通传感电极,制作成简易的传感器。且通过对传感电极两端进行电流/电压测试确保敏感材料气凝胶与传感电极之间为欧姆接触。所制得的WS2气凝胶气体传感器在250℃干燥空气中对2ppm NO2的灵敏度较弱,仅约0.12。
本发明采用动态配气法测量WS2气凝胶气体传感器在不同温度不同气氛下对待测气体的敏感性,灵敏度定义为其中Rg表示气体传感器在一定浓度的待检测气体中的阻值,Ra表示气体传感器在背景气体中的阻值。

Claims (3)

1.一种WS2气凝胶气体传感器的制备方法,其特征在于,该方法具体包括以下步骤:
步骤一:WS2气凝胶的制备
将(NH4)2(WS4)溶于去离子水中,然后将该溶液置于液态氮中冻结,将冻结的溶液置于真空中干燥即得到(NH4)2(WS4)气凝胶;将(NH4)2(WS4)气凝胶置于管式炉中,在H2/Ar混合气氛中高温700-750℃热处理2-4h即得到WS2气凝胶;
步骤二:WS2气凝胶异丙醇悬浮液的制备;
将WS2气凝胶以分散于异丙醇水溶液中,超声振荡至气凝胶在异丙醇水溶液中分散均匀,得到质量浓度为0.5mg/ml的WS2气凝胶异丙醇悬浮液;其中异丙醇水溶液中异丙醇与水的体积比为1:8-1:10;
步骤三:采用引线键合技术,将传感器芯片通过电路连线到封装基板上;
步骤四:通过传感器芯片的加热电极将传感电极区域加热到80℃以上,采用滴涂法将WS2气凝胶沉积到传感电极之间,令WS2气凝胶连接两个传感电极,同时避免覆盖加热电极;加热2-3h使溶剂彻底挥发,并且确保敏感材料WS2气凝胶与传感电极之间为欧姆接触,制作成WS2气凝胶气体传感器。
2.根据权利要求1所述的一种WS2气凝胶气体传感器的制备方法,其特征在于:H2/Ar混合气氛中,H2占混合气体总体积的2%,Ar占混合气体总体积的98%。
3.根据权利要求1所述的一种WS2气凝胶气体传感器的制备方法,其特征在于:(NH4)2(WS4)气凝胶在H2/Ar混合气氛中高温700-750℃热处理4h。
CN201810613708.2A 2018-06-14 2018-06-14 一种ws2气凝胶气体传感器的制备方法 Pending CN108931556A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810613708.2A CN108931556A (zh) 2018-06-14 2018-06-14 一种ws2气凝胶气体传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810613708.2A CN108931556A (zh) 2018-06-14 2018-06-14 一种ws2气凝胶气体传感器的制备方法

Publications (1)

Publication Number Publication Date
CN108931556A true CN108931556A (zh) 2018-12-04

Family

ID=64446429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810613708.2A Pending CN108931556A (zh) 2018-06-14 2018-06-14 一种ws2气凝胶气体传感器的制备方法

Country Status (1)

Country Link
CN (1) CN108931556A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790974A (zh) * 2019-11-25 2020-02-14 华南理工大学 一种应用于气体检测领域的纤维素-石墨烯气凝胶材料及其制备方法
CN111307880A (zh) * 2020-02-18 2020-06-19 杭州电子科技大学 基于mof核壳纳米结构的有机挥发性气体传感器的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539489A (zh) * 2012-02-09 2012-07-04 中国矿业大学 一种催化燃烧式瓦斯敏感元件的封装结构
CN106596665A (zh) * 2016-11-16 2017-04-26 常州大学 一种氧化铜掺氮石墨烯气凝胶的应用
CN107966485A (zh) * 2017-12-07 2018-04-27 中国石油化工股份有限公司 一种基于石墨烯试纸电极构建的电化学重金属检测仪及其检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539489A (zh) * 2012-02-09 2012-07-04 中国矿业大学 一种催化燃烧式瓦斯敏感元件的封装结构
CN106596665A (zh) * 2016-11-16 2017-04-26 常州大学 一种氧化铜掺氮石墨烯气凝胶的应用
CN107966485A (zh) * 2017-12-07 2018-04-27 中国石油化工股份有限公司 一种基于石墨烯试纸电极构建的电化学重金属检测仪及其检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WENJUN YAN ET AL.: "Conductometric gas sensing behavior of WS2 aerogel", 《FLATCHEM》 *
刘志明: "《生物质纳米纤维素及其功能材料的制备和表征》", 31 January 2017 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790974A (zh) * 2019-11-25 2020-02-14 华南理工大学 一种应用于气体检测领域的纤维素-石墨烯气凝胶材料及其制备方法
CN111307880A (zh) * 2020-02-18 2020-06-19 杭州电子科技大学 基于mof核壳纳米结构的有机挥发性气体传感器的制备方法
CN111307880B (zh) * 2020-02-18 2023-06-13 杭州电子科技大学 基于mof核壳纳米结构的有机挥发性气体传感器的制备方法

Similar Documents

Publication Publication Date Title
CN103630582B (zh) 一种mems湿度传感器及制备方法
CN108872325A (zh) 一种基于SnSe2/SnO2异质结的二氧化氮气体传感器、制备工艺及应用
TWI786062B (zh) 環境感測器與用於環境感測器的方法
CN106841326B (zh) 一种对乙醇敏感的氧化锌-氧化钴纳米中空多面体膜
Xiao et al. Fast-response ionogel humidity sensor for real-time monitoring of breathing rate
CN100523799C (zh) 聚电解质/本征导电聚合物复合湿敏元件及其制作方法
CN106680328A (zh) 一种气体传感器阵列及其制备方法
Chen et al. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry
CN108931556A (zh) 一种ws2气凝胶气体传感器的制备方法
CN101307452B (zh) 一种Ni/Si纳米线阵列的制备方法以及基于这种纳米线阵列的微纳湿度传感器
CN106124574B (zh) 氧化石墨烯量子点湿度传感器及其制备方法
CN101290302A (zh) 基于单根金属氧化物纳米线场效应管的微腔气敏传感器
WO2018159638A1 (ja) テラヘルツ波を利用した、受光素子ならびに給電素子に適した炭素膜およびテラヘルツ波検出装置
CN102730622A (zh) 一种微型热导检测器集成芯片及制造方法
CN107462343A (zh) 一种全打印柔性传感器及其制备工艺
CN212301394U (zh) 一种柔性可拉伸气体传感器
CN107144606A (zh) 一种氧化锌纳米棒‑碳纳米管乙醇传感器及其制备方法
CN109459469A (zh) 一种虚拟传感器阵列及其制备方法
CN106596625A (zh) 一种测量微尺度下自然对流换热系数的方法及装置
CN109433225A (zh) 一种钯/镍合金负载的石墨烯材料的制备方法及应用
CN203011877U (zh) 一种石墨烯薄膜湿度传感器
CN108469316A (zh) 表面接枝导电聚合物和共面型电极压力传感器及其制法
CN108680605A (zh) 一种ws2/石墨烯复合气凝胶气体传感器的制备方法
CN105699440A (zh) 一种氧化钨纳米花氢气传感器的制备方法
CN106526085B (zh) 一种可消除太阳辐射误差的探空湿度测量装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181204