WO2018159638A1 - テラヘルツ波を利用した、受光素子ならびに給電素子に適した炭素膜およびテラヘルツ波検出装置 - Google Patents

テラヘルツ波を利用した、受光素子ならびに給電素子に適した炭素膜およびテラヘルツ波検出装置 Download PDF

Info

Publication number
WO2018159638A1
WO2018159638A1 PCT/JP2018/007347 JP2018007347W WO2018159638A1 WO 2018159638 A1 WO2018159638 A1 WO 2018159638A1 JP 2018007347 W JP2018007347 W JP 2018007347W WO 2018159638 A1 WO2018159638 A1 WO 2018159638A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
terahertz wave
nanotube film
carbon
film
Prior art date
Application number
PCT/JP2018/007347
Other languages
English (en)
French (fr)
Inventor
行雄 河野
大地 鈴木
雄輝 落合
勉 長宗
智子 山岸
Original Assignee
国立大学法人東京工業大学
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 日本ゼオン株式会社 filed Critical 国立大学法人東京工業大学
Priority to JP2019503034A priority Critical patent/JP7264349B2/ja
Publication of WO2018159638A1 publication Critical patent/WO2018159638A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Definitions

  • the present invention relates to a carbon film and a terahertz wave detection device suitable for a light receiving element and a power feeding element using terahertz waves.
  • a frequency range of about 100 GHz to 30 THz is a frequency region called a terahertz wave.
  • Terahertz waves are in the middle of radio waves and light waves.
  • Terahertz waves have been regarded as a region of electromagnetic waves that are difficult to use because they do not have high-quality light sources, signal sources, and detectors.
  • the terahertz wave is the high frequency limit of electronic control by Eretronics and the low energy limit of light control.
  • terahertz waves have transparency as radio waves, straightness as light waves, and high absorptivity with respect to water, and have characteristics that are useful for analyzing physical properties of electrons and polymers in solids. Therefore, terahertz waves are expected to have a wide range of applications ranging from basic academic fields such as material science and biomolecular spectroscopy to practical fields such as security, information communication, environment, and medicine.
  • Patent Document 1 discloses a semiconductor chip in which a two-dimensional gas is formed at a certain position from the surface, a carbon nanotube provided in close contact with the surface of the semiconductor chip, a conductive source electrode, a drain electrode, and a gate electrode. A terahertz wave detection device is described.
  • the carbon nanotube extends along the surface of the semiconductor chip, both ends thereof are connected to the source electrode and the drain electrode, and the gate electrode is located at a certain distance from the side surface of the carbon nanotube.
  • Non-Patent Document 1 describes a detector capable of detecting the frequency of a terahertz wave.
  • Non-Patent Document 1 describes a new terahertz wave detection / spectroscopy / imaging technique using a low-dimensional electron system function of carbon nanotube array, graphene, and semiconductor heterointerface two-dimensional electron gas.
  • the present invention was devised in view of the above circumstances, and an object thereof is to provide a carbon film and a terahertz wave detection device suitable for a light receiving element and a power feeding element using a terahertz wave with high sensitivity and high performance.
  • a carbon film of the first aspect of the present invention is a carbon film used for a light receiving element and a power feeding element using terahertz waves, and the carbon film includes a plurality of carbon nanotubes. It is the comprised carbon nanotube structure, The thickness is 1 micrometer or more and 100 micrometers or less.
  • a carbon film according to a second aspect of the present invention is a carbon film used for a light receiving element and a power feeding element using a terahertz wave, and the carbon film includes a plurality of carbon nanotubes.
  • the thickness is 10 nm or more and 100 ⁇ m or less.
  • a carbon film according to a third aspect of the present invention is a carbon film used for a light receiving element and a power feeding element using terahertz waves, and the carbon film includes a plurality of carbon nanotubes formed on a support film.
  • the thickness of the carbon nanotube structure is 10 nm or more and 100 ⁇ m or less.
  • a terahertz wave detecting device is the carbon film according to any one of the first to third aspects of the present invention, the first electrode disposed on one side of the carbon film, and the other side of the carbon film. And a second electrode to be disposed.
  • a carbon film and a terahertz wave detection device suitable for a light receiving element and a power feeding element using a terahertz wave with high sensitivity and high performance.
  • the schematic diagram which shows the structure of the terahertz wave detection apparatus which concerns on Embodiment 1 of this invention.
  • the expansion perspective view which shows the irradiation state of a terahertz wave.
  • membrane The figure which shows the experimental result which normalized the relationship between the film thickness of a carbon nanotube film
  • the figure which shows the terahertz wave detection specimen used for evaluation The figure which shows the temperature by the terahertz wave according to the film thickness of the carbon nanotube film
  • FIG. 1 is a schematic diagram showing a configuration of a terahertz wave detection device 10 according to Embodiment 1 of the present invention.
  • the optimum conditions for carbon nanotubes used as detection elements of the terahertz wave detection device 10 are clarified.
  • the terahertz wave detection device 10 includes a carbon nanotube film (carbon film) 11 on a chip carrier substrate 17, a first electrode 12 bonded to one end of the carbon nanotube film 11, and a first bonded to the other end. Two electrodes 13 are provided.
  • the terahertz wave detection device 10 includes a carbon nanotube film 11 formed on the chip carrier substrate 17, and a first electrode 12 and a second electrode 13 that are disposed to face each other on a two-dimensional plane of the carbon nanotube film 11. It has.
  • the first electrode 12 and the second electrode 13 are a metal having the same thermal conductivity, a metal having different thermal conductivity, or the like.
  • the first electrode 12 and the second electrode 13 use gold (see FIG. 5) having high thermal conductivity.
  • a gold alloy may be used for the first electrode 12 and the second electrode 13.
  • the chip carrier substrate 17 may be a substrate made of any material as long as necessary conditions for the support substrate such as non-noise property, low thermal conductivity, insulation, weather resistance, and predetermined strength are satisfied.
  • An ammeter 14 is connected between the first electrode 12 and the second electrode 13.
  • the first electrode 12 is a source electrode
  • the second electrode 13 is a drain. Electrode.
  • a battery may be connected to measure the IV characteristics.
  • FIG. 2 is an enlarged perspective view showing an irradiation state of the terahertz wave 40.
  • a terahertz wave 40 is irradiated on the carbon nanotube film 11 near the first electrode 12 between the first electrode 12 and the second electrode 13. Note that the terahertz wave 40 may be irradiated onto the carbon nanotube film 11 near the second electrode 13 between the first electrode 12 and the second electrode 13.
  • Carbon nanotubes have high electrical conductivity and high mechanical strength, and are flexible. Carbon nanotubes absorb electromagnetic waves in a very wide frequency band from a frequency close to DC to the ultraviolet light region. In particular, light in a very wide frequency band from sub-terahertz to ultraviolet light can be absorbed. Therefore, the carbon nanotube is applied to the detection element of the terahertz wave detection device 10.
  • the carbon nanotube film 11 used as the detection element has the following characteristics.
  • the carbon nanotube film 11 is p-type as an example.
  • the carbon nanotube film 11 may be n-type or a combination of p-type and n-type.
  • the carbon nanotube film 11 includes single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multi-walled carbon nanotubes (MWCNTs). May be used and / or used together.
  • the single-walled carbon nanotube preferably contains 50% by weight or more, and more preferably contains 80% by weight or more. More preferably, the ratio of the standard deviation to the average diameter multiplied by 3 (3 ⁇ standard deviation / average diameter) is greater than 0.20 and less than 0.60, and is a t-plot obtained from an adsorption isotherm. It is preferable to use single-walled carbon nanotubes having a convex shape.
  • the carbon nanotube film 11 may be a mixture with fibrous carbon nanostructures other than carbon nanotubes.
  • the carbon nanotube film 11 is preferably composed of 75% by weight or more of a fibrous carbon nanostructure.
  • the carbon nanotube film 11 is preferably a self-supporting film that can maintain its shape as a film even when no support is present. Specifically, the carbon nanotube film 11 is more preferably maintained as a film without a support in a film thickness of 10 nm to 3 ⁇ m and an area of 1 mm 2 to 100 cm 2 .
  • the carbon nanotube film 11 is manufactured using a fibrous carbon nanostructure dispersion liquid disclosed in PCT / JP2016 / 002552.
  • the fibrous carbon nanostructure dispersion liquid is a mixture containing a fibrous carbon nanostructure and a solvent.
  • the solvent is not particularly limited, and examples thereof include aromatic hydrocarbons such as water, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and paradichlorobenzene. These may be used individually by 1 type as a solvent, and may use 2 or more types together.
  • the method for producing the carbon nanotube film 11 includes a step of forming a carbon film by removing the solvent from the fibrous carbon nanostructure dispersion liquid containing the fibrous carbon nanostructure and the solvent. Any of the following methods is used for the film forming step of the carbon nanotube film 11.
  • the fibrous carbon nanostructure dispersion liquid is filtered using a porous film-forming substrate, and the obtained filtrate is dried.
  • the carbon nanotube film 11 may be produced using a method other than the above.
  • the first electrode 12 (source electrode) and the second electrode 13 (drain electrode) are made of metal.
  • the metal used for the electrodes (12, 13) is Au.
  • Other electrode materials include Al, Mo, Ni, and Ti.
  • noble metals such as Cu, Ag, and Pt other than Au, aluminum group elements such as Ga and In other than Al, chromium group elements such as Cr and W other than Mo, and iron group elements such as Fe and Co other than Ni,
  • magnesium group elements such as Be, Mg, and Zn, and alloys of these metals may be used.
  • the first electrode 12 and the second electrode 13 may use the same kind of metal or different kinds of metals.
  • the electrode material is preferably a metal having a high thermal conductivity (thermal conductivity).
  • the thermal conductivity is a value obtained by dividing the amount of heat flowing per unit time through a unit area perpendicular to the heat flow by a temperature difference (temperature gradient) per unit length.
  • FIG. 3 is a diagram showing IV characteristics (at room temperature) of the terahertz wave detection device 10 when the terahertz wave 40 of 1.4 THz is irradiated.
  • the horizontal axis represents source-drain voltage [mV], and the vertical axis represents source-drain current [ ⁇ A]).
  • the thin solid line of the IV characteristic in FIG. 3 shows the case where the terahertz wave 40 is not irradiated (Off), and the thick solid line shows the case where the terahertz wave 40 is irradiated (On).
  • FIG. 4 shows the thermal conductivity (Thermal conductance [W / m / K]) (left vertical axis) of the electrode materials (Au, Al, Mo, Ni, Ti) and the response signal (Response [ ⁇ A]) of the terahertz wave 40. ) (Right vertical axis).
  • the response signal (Response [ ⁇ A]) is indicated by a response current when the terahertz wave 40 is irradiated.
  • the thermal conductivity (left vertical axis) of the electrode material is shown by a line graph in FIG. 4, and the response signal (right vertical axis) is shown by a bar graph.
  • the electrode thickness is 20 nm.
  • the thermal conductivity (line graph) increases in the order of Au>Al>Mo>Ni> Ti.
  • the sensitivity of the response signal (Response [ ⁇ A]) (bar graph) of the material of each electrode changes in the order of Au>Al>Mo>Ni> Ti.
  • the response current of Au is the largest, followed by Al.
  • the sensitivity is approximately halved from Al, followed by Mo, Ni, and Ti. From the above, the magnitude relationship of the thermal conductivity (line graph) and the magnitude relationship of the response signal (bar graph) in Au, Al, Mo, Ni, and Ti are the same. That is, as can be seen from FIG. 4, the higher the thermal conductivity, the higher the sensitivity. Therefore, detection sensitivity can be improved by increasing the thermal conductivity of the electrodes (11, 12).
  • FIG. 5 is a diagram showing the heat distribution inside the carbon nanotube film 11 when the terahertz wave 40 is irradiated onto the carbon nanotube film 11 near the first electrode 12. Looking at the heat distribution inside the carbon nanotube film 11, the portion where the first electrode 12 is present is at a high temperature, and the portion where the first electrode 12 is absent is at a low temperature.
  • the carbon nanotube film 11 absorbs the irradiated electromagnetic wave and generates heat, but heat is suddenly absorbed toward the first electrode 12 at a portion in contact with the first electrode 12. Therefore, the temperature of the entire area of the first electrode 12 first increases, and then the temperature of the carbon nanotube film 11 in the portion where the first electrode 12 is in contact increases. As a result, a large temperature gradient is generated in the carbon nanotube film 11 that forms the interface with the first electrode 12. Due to this temperature gradient, carriers thermally diffuse from the first electrode 12 side to the far side of the carbon nanotube film 11 from the first electrode 12, and a response is generated.
  • FIG. 6 is a diagram showing a terahertz response when the carbon nanotube film 11 is irradiated with a 29 Hz terahertz wave as shown in FIG. Since carriers are holes, a positive current response is shown on the power supply side (first electrode 12 side) and a negative current response is shown on the GND side (second electrode 13 side).
  • the detection principle of the terahertz wave 40 is the photothermal electromotive force effect (Seebeck effect).
  • the terahertz wave When the terahertz wave is irradiated to the boundary between the first electrode 12 and the carbon nanotube film 11, the carbon nanotube film 11 absorbs the terahertz wave and generates heat, thereby forming a thermal gradient. Carriers are diffused by this thermal gradient, and an electromotive force of a terahertz wave response is generated. From these experimental results and the like, it is understood that the electrode metal operates as a heat source by irradiation with terahertz waves, and an electromotive force is generated by this thermal gradient.
  • ⁇ Test carbon nanotube film> 7A and 7B show the dimensions of the first electrode 12, the carbon nanotube film 11, and the second electrode 13 used for the evaluation of the film thickness and the bundle diameter.
  • FIG. 7A is a top view, and FIG. FIG.
  • the first electrode 12 has a longitudinal dimension of 3.5 mm, a lateral dimension of 2 mm, and a thickness of 50 nm.
  • the second electrode 13 has a longitudinal dimension of 3.5 mm, a lateral dimension of 2 mm, and a thickness of 50 nm.
  • the carbon nanotube film 11 had a longitudinal dimension of 10 mm and a lateral dimension of 2 mm, and was evaluated by changing the film thickness.
  • FIG. 8 is a diagram illustrating an experimental state when the terahertz wave 40 is irradiated.
  • the first electrode 12 (source electrode) of the carbon nanotube film 11 is connected to the first connection 15 with a conductive polymer adhesive 15a such as Doutite (registered trademark). Connected through.
  • the second electrode 13 (drain electrode) of the carbon nanotube film 11 is connected to the second connection 16 via a conductive polymer adhesive 16a such as dootite.
  • the carbon nanotube film 11 is separated from the underlying chip carrier substrate 17 (see FIG. 1). Thereby, the characteristics of the carbon nanotube film 11 alone were evaluated.
  • FIG. 9 is a diagram showing the relationship between the film thickness of the carbon nanotube film 11 and the photoelectromotive force when the terahertz wave 40 of 29 THz and 22 mW is irradiated.
  • the horizontal axis represents the film thickness ( ⁇ m) of the carbon nanotube film 11, and the vertical axis represents the photoelectromotive force (mV) generated in the carbon nanotube film 11.
  • the photoelectromotive force is larger as the carbon nanotube film 11 is thinner, that is, the response of the terahertz wave 40 is better as the carbon nanotube film 11 is thinner.
  • an electromotive force of about 0.1 mV can be generated when the film thickness is about 150 ⁇ m, and an electromotive force of about 2 mV can be generated when the film thickness is 10 ⁇ m or less.
  • a photothermal electromotive force of 1.98 mV is confirmed when the film thickness is 4 ⁇ m. That is, the sensitivity is improved about 20 times by reducing the film thickness.
  • FIG. 10 is a schematic diagram showing the photothermoelectric effect. There is a relationship of the following formula (1) among the generated electromotive force ⁇ V, Seebeck coefficient S, and temperature gradient (temperature difference) ⁇ T.
  • the heat transfer area A is small, so that the heat transfer is slower than the formula (2), and the temperature gradient ⁇ T in the longitudinal direction of the carbon nanotube film 11 is large. For this reason, it is considered that the electromotive force ⁇ V increases from the equation (1), and the sensitivity increases. Further, if the film thickness is small, the heat transfer area A is small, and the heat transfer coefficient k is lower than that in the equation (2), so that the dimensionless figure of merit ZT is improved from the equation (3). Therefore, it was confirmed that the photoelectromotive force was larger as the film thickness of the carbon nanotube film 11 was thinner.
  • FIG. 11 shows the transient response of the carbon nanotube film 11 when irradiated with the THz wave 40 of 39 THz, and is a diagram showing the relationship between the film thickness of the carbon nanotube film 11 and the time constant.
  • the horizontal axis represents the film thickness ( ⁇ m) of the carbon nanotube film 11, and the vertical axis represents the time constant (s).
  • the time constant decreases as the film thickness of the carbon nanotube film 11 decreases.
  • a time constant of about 0.8 s when the film thickness is about 150 ⁇ m becomes a time constant of 40 ms when the film thickness is 2 ⁇ m. That is, when the film thickness is changed from 150 ⁇ m to 2 ⁇ m, the time constant is reduced by about 20 times, and the speed can be increased. This is because the thermal capacitance component decreases as the film thickness of the carbon nanotube film 11 decreases.
  • FIG. 12 is a diagram showing the relationship between the film thickness of the carbon nanotube film 11 and the resistance.
  • the horizontal axis represents the film thickness ( ⁇ m) of the carbon nanotube film 11, and the vertical axis represents the resistance ( ⁇ ). It is confirmed that the resistance decreases as the film thickness of the carbon nanotube film 11 increases.
  • the resistance R the cross-sectional area A1 of the carbon nanotube film 11, and the length l in the longitudinal direction of the carbon nanotube film 11, the resistance R is expressed by the following formula (4).
  • R l l / A1 When the film thickness of the carbon nanotube film 11 in FIG. 11 is reduced, A1 is reduced, and the resistance R is increased.
  • the heat capacity is reduced, and a temperature increase is likely to occur due to terahertz wave absorption. Therefore, the photoelectromotive force increases as the film thickness of the carbon nanotube film 11 decreases.
  • the absorbance with respect to the irradiated terahertz light decreases, so that the amount of heat generated becomes small.
  • the carbon nanotube film 11 cannot stand by itself, that is, if the carbon nanotube film 11 is not free standing, it is necessary to place it on the support substrate. From these things, it is preferable that the film thickness of the carbon nanotube film
  • membrane 11 is 1 micrometer or more.
  • the film thickness of the carbon nanotube film 11 in the terahertz wave detection device 10 is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the carbon nanotube film 11 using carbon nanotubes absorbs the terahertz wave 40 almost 100%. In other words, even if the wavelength is smaller than the wavelength of the terahertz wave 40, the temperature gradient ⁇ T in the equation (1) can be obtained. On the other hand, when only a material other than carbon nanotubes is used, if the film thickness is reduced, terahertz light is transmitted and does not warm. Accordingly, the problem that the detection efficiency decreases when the bulk material is used as the detection element and the plate thickness is made thinner than the wavelength can be solved by using the carbon nanotube film as the detection element.
  • the bundle diameter is a diameter of a plurality of carbon nanotubes gathered together while maintaining a fibrous shape.
  • a carbon nanotube film 11 having a bundle diameter of about 10 nm was prepared by using a carbon nanotube dispersion liquid obtained by dispersing carbon nanotubes with a known ultrasonic dispersing machine in a surfactant aqueous solution.
  • a carbon nanotube film 11 was produced using a carbon nanotube dispersion liquid in which carbon nanotubes having a bundle diameter of about 200 nm were dispersed in an ethanol solvent using a known ultrasonic dispersion machine.
  • FIG. 13 is an enlarged photograph of the carbon nanotube film 11 having a bundle diameter of about 10 nm.
  • FIG. 14 is an enlarged photograph of the carbon nanotube film 11 having a bundle diameter of about 200 nm. In FIG. 13 and FIG. 14, it is a bundle that can be visually observed in a fibrous form.
  • FIG. 15 is a bar graph showing the relationship between the carbon nanotube film 11 having a bundle diameter of about 200 nm and about 10 nm and the Seebeck coefficient.
  • the carbon nanotube film 11 with a bundle diameter of about 200 nm measures the Seebeck coefficient at a film thickness of 2 ⁇ m, 30 ⁇ m, and 57 ⁇ m
  • the carbon nanotube film 11 with a bundle diameter of about 10 nm has a film thickness of 32 ⁇ m, 51 ⁇ m, and 97 ⁇ m with a Seebeck coefficient.
  • the carbon nanotube film 11 with a bundle diameter of about 200 nm has an average Seebeck coefficient S of about 57 ⁇ V / K
  • the carbon nanotube film 11 with a bundle diameter of about 10 nm has an average Seebeck coefficient S of about 48 ⁇ V / K. there were. That is, sensitivity is improved about 1.2 times by changing the bundle diameter, about 10 nm, to about 200 nm. From this result, it can be seen that the larger the bundle diameter, the larger the Seebeck coefficient S, the thermoelectric effect is improved and the sensitivity is high.
  • FIG. 16 is a diagram showing the relationship between the film thickness of the carbon nanotube film 11 and noise equivalent power (NEP: Noise equivalent power) when the 29 THz terahertz wave 40 is irradiated.
  • the horizontal axis represents the film thickness ( ⁇ m), and the vertical axis represents NEP (pW / ⁇ Hz).
  • the black circle has a bundle diameter of about 200 nm, and the white circle has a bundle diameter of about 10 nm.
  • FIG. 16 shows that, regardless of the film thickness of the carbon nanotube film 11, the bundle diameter of about 200 nm is lower than the bundle diameter of about 10 nm. That is, the carbon nanotube film 11 having a large bundle diameter is more sensitive than the carbon nanotube film 11 having a small bundle diameter.
  • the carbon nanotube film 11 having a bundle diameter of about 200 nm is easier to maintain the properties of the carbon nanotube than the carbon nanotube film 11 having a bundle diameter of about 10 nm. Therefore, it is considered that the carbon nanotube film 11 with a bundle diameter of about 200 nm has a larger Seebeck coefficient than the carbon nanotube film 11 with a bundle diameter of about 10 nm. As a result, it is preferable that the state of the carbon nanotube is not destroyed.
  • the larger the bundle diameter the smaller the NEP and the better the sensitivity.
  • the bundle diameter exceeds 500 nm, it becomes difficult to form a film (film).
  • the bundle diameter is small, NEP becomes large and the sensitivity is lowered. Therefore, in practical use, the carbon nanotube film 11 having a bundle diameter of 100 nm or more and 500 nm or less is preferable because of high sensitivity and practicality.
  • the sensitivity and speed of the terahertz wave detecting device 10 can be increased by using the carbon nanotube film 11 having a thickness of 1 to 100 ⁇ m. Furthermore, the sensitivity can be further improved by setting the bundle diameter of the carbon nanotube film 11 to 100 nm or more and 500 nm or less.
  • the terahertz wave 40 can be effectively sensed.
  • a portion of the carbon nanotube film 11 near the first electrode 12 or a portion near the second electrode 13 is irradiated with the terahertz wave 40, thereby causing a temperature gradient (temperature difference) from the electrodes (12, 13) into the carbon nanotube film 11.
  • ⁇ T is generated, and the Seebeck effect can be caused (see formulas (1) and (3)).
  • the thermal conductivity is good, so that the detection sensitivity of the terahertz wave 40 can be improved (see FIG. 4).
  • FIG. 17A shows a terahertz wave detection specimen 10T used in simulations and experiments according to Embodiment 2 of the present invention.
  • the terahertz wave detection specimen 10T is provided with a gold (Au) electrode 22 on one side of a carbon nanotube film 21 having a width w and a film thickness t1. The other electrode is not shown.
  • FIG. 17A the terahertz wave detection specimen 10T was irradiated with a terahertz wave 40 of 39 THz.
  • FIG. 17B shows an example of the temperature distribution of the carbon nanotube film 21 of the terahertz wave detection specimen 10T. It can be seen that the temperature of the carbon nanotube film 21 in the vicinity of the gold electrode 22 irradiated with the terahertz wave 40 is the highest. The maximum temperature of the carbon nanotube film 21 was 48 ° C., and the minimum temperature was 22 ° C.
  • the simulation of the heat conduction of the carbon nanotube film 21 was performed as follows. In order to simulate the device shape dependence of heat conduction, steady state thermal analysis and transient thermal analysis were performed using the ANSYS software package (trade name). The simulation shows that the thermal conductivity of the carbon nanotube film 21 in the XY plane is 10 W / mK, the thermal conductivity of the Z axis is 0.1 W / mK, and the thermal conductivity of the electrode metal (gold) is 315 W under a stable temperature of 300 K. / MK, and the heat transfer rate of air was 10 W / mK.
  • the XY plane refers to a plane including the width direction of the carbon nanotube film 21, and the Z axis refers to the film thickness direction of the carbon nanotube film 21.
  • the carbon nanotube film 21 has a self-supporting shape without a base material and is exposed to the atmosphere.
  • the outside air temperature was set to 22 ° C.
  • the temperature distribution of the carbon nanotube film 21 was calculated by expressing the temperature as T and the time as t and solving the heat conduction equation of the following equation (5).
  • FIG. 18A shows the relationship between the film thickness t1 of the simulated carbon nanotube film 21 and the time constant
  • FIG. 18B shows the experimental result of the relationship between the film thickness t1 of the carbon nanotube film 21 and the time constant (s).
  • the horizontal axis represents the film thickness t1 ( ⁇ m) of the carbon nanotube film 21
  • the vertical axis represents the time constant (s).
  • FIG. 19 shows how to obtain the time constant (s) in the experiment used in FIG. 18B.
  • FIG. 19 shows a transient response of the terahertz wave detection specimen 10T.
  • the horizontal axis represents elapsed time (s)
  • the vertical axis represents V / Vmax (detection voltage ratio).
  • a terahertz wave 40 having an elapsed time (s) of 0 second to 39 THz was irradiated.
  • the plots in FIG. 19 are the experimental results, and the broken lines in FIG. 19 are shown using the time constant ⁇ that is obtained by using the following equation (6) and fits to the experimental results.
  • V / Vmax (1 ⁇ exp ( ⁇ t / ⁇ )) (6)
  • FIG. 20A shows the relationship between the simulated film thickness t1 of the carbon nanotube film 21 and the temperature difference ⁇ T between the maximum temperature and the minimum temperature of the carbon nanotube film 21.
  • the horizontal axis represents the film thickness t1 ( ⁇ m) of the carbon nanotube film 21, and the vertical axis represents the temperature difference ⁇ T (K) between the maximum temperature and the minimum temperature of the carbon nanotube film 21.
  • FIG. 20B shows an experimental result in which the relationship between the film thickness t1 of the carbon nanotube film 21 and the terahertz wave response of the terahertz wave detection specimen 10T is normalized.
  • the horizontal axis represents the film thickness t1 ( ⁇ m) of the carbon nanotube film 21, and the vertical axis represents the normalized terahertz wave response of the terahertz wave detection specimen 10T.
  • the simulation result of the film thickness t1 of the carbon nanotube film 21 and the terahertz wave response agree well with the experimental result.
  • the terahertz wave response is better as the film thickness t1 of the carbon nanotube film 21 is smaller. This is presumably because the thermal resistance increases as the film thickness t1 of the carbon nanotube film 21 decreases, and the thermal localization effect increases.
  • FIG. 21A shows the relationship between the film thickness t1 of the simulated carbon nanotube film 21 and the temperature difference ⁇ T between the maximum temperature and the minimum temperature of the carbon nanotube film 21.
  • the horizontal axis represents the width w (mm) of the carbon nanotube film 21
  • the vertical axis represents the temperature difference ⁇ T (K) between the maximum temperature and the minimum temperature of the carbon nanotube film 21.
  • FIG. 21B shows the experimental results of the relationship between the width w of the carbon nanotube film 21 and the normalized terahertz wave response of the terahertz wave detection specimen 10T.
  • the horizontal axis represents the width w (mm) of the carbon nanotube film 21, and the vertical axis represents the normalized terahertz wave response of the terahertz wave detection specimen 10T.
  • the simulation result of the width w of the carbon nanotube film 21 and the response of the terahertz wave and the experimental result agreed well.
  • the terahertz wave response is better as the width w of the carbon nanotube film 21 is narrower. This is presumably because, as with the film thickness t1, the thermal resistance increases as the width w of the carbon nanotube film 21 decreases, and the thermal localization effect increases.
  • FIG. 22A shows the terahertz wave detection specimen 20T used for the evaluation
  • FIG. 22B shows the temperature by the terahertz wave 40 corresponding to the film thickness t1 of the carbon nanotube film 21 when irradiated with the 39 THz terahertz wave 40.
  • the terahertz wave detection specimen 20T used a first electrode 32 installed on one side of the carbon nanotube film 21 and a second electrode 33 installed on the other side.
  • the carbon nanotube film 21 having a width of 1 mm was used, and the film thickness t1 was changed to 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 100 ⁇ m, and 200 ⁇ m as shown in FIG.
  • the temperature rise of the carbon nanotube film 21 is larger.
  • FIG. 23A shows the terahertz wave detection specimen 20T used for the evaluation
  • FIG. 23B shows the temperature by the terahertz wave 40 corresponding to the width w of the carbon nanotube film 21 when the 39 THz terahertz wave 40 is irradiated.
  • the terahertz wave detection specimen 20T used a first electrode 32 installed on one side of the carbon nanotube film 21 and a second electrode 33 installed on the other side.
  • a carbon nanotube film 31 having a film thickness of 2 ⁇ m was used, and the width w1 was changed to 500 ⁇ m, 1 mm, 2 mm, 3 mm, 5 mm, and 10 mm for evaluation as shown in FIG. 23B.
  • the width w of the carbon nanotube film 21 is narrower, that is, as the width w is reduced from 10 mm to 500 ⁇ m, the temperature rise of the carbon nanotube film 21 is larger.
  • the carbon nanotube film 21 can be in two modes: a case where there is no support and a case where there is a support (support film).
  • the lower limit of the film thickness t1 of the carbon nanotube film 21 when there is no support is about 30 nm.
  • the lower limit of the film thickness t1 of the carbon nanotube film 21 when the support is present can be as thin as about 10 nm.
  • the lower limit of the film thickness t1 of the carbon nanotube film 21 is preferably 10 nm or more. This is because defects tend to occur when the film thickness t1 is less than 10 nm.
  • the lower limit value of the film thickness t1 of the carbon nanotube film 21 is more preferably 30 nm or more. This is because when the film thickness t1 is 30 nm or more, the absorption of terahertz waves is improved, and defects during manufacturing are less likely to occur.
  • the lower limit of the width w of the carbon nanotube film 21 is about 1 ⁇ 4 of the wavelength of the terahertz wave 40. That is, the width w of the carbon nanotube film 21 can be set to 1 ⁇ 4 or more of the wavelength of the terahertz wave 40 or more than 1 ⁇ 4 of the wavelength.
  • FIG. 24 shows a state in which the bow tie antenna 31a is installed on the carbon nanotube film 31 of the modification.
  • the source electrode 42 is installed on one side of the carbon nanotube film 31 in the X direction
  • the drain electrode 43 is installed on the other side in the X direction.
  • a bow antenna 31a is placed on the carbon nanotube film 31 near the source electrode. With this configuration, the bow tie antenna 31a can receive a terahertz wave, and the sensitivity of the carbon nanotube film 31 can be improved.
  • the lower limit value of the width w which is a dimension along the Y direction orthogonal to the X direction, can be 8 nm. That is, when there is an antenna, the width w of the carbon nanotube film 31 can be set to 8 nm or more.
  • the upper limit of the width w of the dimension along the Y direction of the carbon nanotube film 31 is not limited. However, the performance tends to saturate as the width w of the carbon nanotube film 31 increases.
  • terahertz wave detection device 10 may be configured without using the chip carrier substrate 17.
  • the property of absorbing the light of the carbon nanotube film 11 (carbon film) described in the above embodiment and generating heat and electromotive force can be applied to a power feeding element, and the knowledge obtained in the present invention is based on the knowledge obtained in the present invention. It is also applicable to.
  • an electromotive force is obtained by irradiating the carbon nanotube film 11 (carbon film) with sunlight.
  • a similar mechanism by applying heat is also possible.
  • the carbon nanotube film can absorb light in all frequency bands from ultraviolet light to terahertz light with high absorptance, it can be used as a highly efficient power supply element. By attaching a carbon nanotube film to the human body, bag, clothing, etc., it can function as an element that can always supply power by sunlight or heat.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明の炭素膜は、テラヘルツ波を利用した、受光素子ならびに給電素子に使用される炭素膜(11)であって、炭素膜(11)は、複数のカーボンナノチューブを含んで構成されたカーボンナノチューブ構造体であり、その厚みが、1μm以上100μm以下である。 カーボンナノチューブのバンドル径は、100nm以上500nm以下が望ましい。 炭素膜(11)の厚みは、10nm以上であることが望ましい。 本発明のテラヘルツ波検出装置は、炭素膜(11)と、その一方側の第1電極(12)と、他方側の第2電極(13)とを備えている。

Description

テラヘルツ波を利用した、受光素子ならびに給電素子に適した炭素膜およびテラヘルツ波検出装置
 本発明は、テラヘルツ波を利用した、受光素子ならびに給電素子に適した炭素膜およびテラヘルツ波検出装置に関する。
 電磁波において、周波数100GHzから30THz程度はテラヘルツ波と称される周波数領域である。テラヘルツ波は電波と光波の中間帯にある。
 テラヘルツ波は、良質の光源や信号源、検出器がなく、利用困難な電磁波の領域とされてきた。すなわち、テラヘルツ波はエレトロニクスによる電子制御の高周波極限であり、光制御の低エネルギ極限にある。
 ところで、テラヘルツ波は、電波としての透過性や、光波としての直進性、水に対する高い吸収率をもち、固体中電子や高分子の物性解析に有力という特性を有している。
 そこで、テラヘルツ波は、材料科学、生体分子分光学等の基礎学術分野から、セキュリティ、情報通信、環境、医療等の実用分野に至る幅広い応用が期待されている。
 特許文献1には、表面から一定の位置に2次元ガスが形成された半導体チップと、該半導体チップの表面に密着して設けられたカーボンナノチューブ、導電性のソース電極、ドレイン電極およびゲート電極とを備えるテラヘルツ波検出装置が記載されている。カーボンナノチューブは、半導体チップの表面に沿って延び、その両端部がソース電極とドレイン電極に接続され、ゲート電極は、カーボンナノチューブの側面から一定の間隔を隔てて位置する。
 また、テラヘルツ波の周波数を検出できる検出器として、例えば非特許文献1に記載がある。非特許文献1には、カーボンナノチューブアレイ、グラフェン、半導体ヘテロ界面2次元電子ガスという低次元電子系の機能を利用した新しいテラヘルツ波検出・分光・撮像技術が記載されている。
特開2010-60284号公報
河野行雄、"低次元電子系の機能に基づくテラヘルツ波検出・分光・撮像デバイス"、応用物理学会誌「応用物理」Vol.84,pp.643-647(2015).
 ところで、テラヘルツ波検出装置については、実験レベルで使用可能な室温動作テラヘルツ波検出が実現され始めている。しかし、パッシブイメージング等で微弱な電磁波を検出するためには、検出器の感度は十分なものとは言えず、感度の向上が強く求められている。
 このように産業応用については、感度が低い、検出可能な周波数帯域が限られている、検出器における最適条件が分らないという課題がある。
 本発明は上記実状に鑑み創案されたものであり、高感度、高性能な、テラヘルツ波を利用した、受光素子ならびに給電素子に適した炭素膜およびテラヘルツ波検出装置の提供を目的とする。
 前記課題を解決するため、第1の本発明の炭素膜は、テラヘルツ波を利用した、受光素子ならびに給電素子に使用される炭素膜であって、当該炭素膜は、複数のカーボンナノチューブを含んで構成されたカーボンナノチューブ構造体であり、その厚みが、1μm以上100μm以下である。
 第2の本発明の炭素膜は、テラヘルツ波を利用した、受光素子ならびに給電素子に使用される炭素膜であって、当該炭素膜は、複数のカーボンナノチューブを含んで構成されたカーボンナノチューブ構造体であり、その厚みが、10nm以上100μm以下である。
 第3の本発明の炭素膜は、テラヘルツ波を利用した、受光素子ならびに給電素子に使用される炭素膜であって、当該炭素膜は、支持膜上に形成された、複数のカーボンナノチューブを含んで構成されたカーボンナノチューブ構造体であり、 前記カーボンナノチューブ構造体の厚みが、10nm以上100μm以下である
 第4の本発明のテラヘルツ波検出装置は、第1から第3の何れかの本発明の炭素膜と、前記炭素膜の一方側に配置される第1電極と、前記炭素膜の他方側に配置される第2電極とを備えている。
 本発明によれば、高感度、高性能な、テラヘルツ波を利用した、受光素子ならびに給電素子に適した炭素膜およびテラヘルツ波検出装置を提供できる。
本発明の実施形態1に係るテラヘルツ波検出装置の構成を示す模式図。 テラヘルツ波の照射状態を示す拡大斜視図。 1.4THzのテラヘルツ波を照射した場合のテラヘルツ波検出装置のI-V特性を示す図。 電極の材料(Au、Al、Mo、Ni、Ti)の熱伝導率とテラヘルツ波の応答信号を示す図。 第1電極近くのカーボンナノチューブ膜上に、テラヘルツ波が照射された際のカーボンナノチューブ膜内部の熱分布を示す図。 29Hzのテラヘルツ波を図2に示すようにカーボンナノチューブ膜に照射した際のテラヘルツ応答を示す図。 膜厚、バンドル径の評価に用いた第1電極、カーボンナノチューブ膜、および第2電極の寸法を示す上面図。 図7AのI方向矢視図。 テラヘルツ波の照射時の実験状態を示す図。 29THz、22mWのテラヘルツ波を照射した場合のカーボンナノチューブ膜の膜厚と光熱起電力との関係を示す図。 光熱電効果を示す模式図。 39THzのテラヘルツ波を照射した場合のカーボンナノチューブ膜の過渡応答を示すカーボンナノチューブ膜の膜厚と時定数との関係を示す図。 カーボンナノチューブ膜の膜厚と抵抗の関係を示す図。 バンドル径約10nmのカーボンナノチューブ膜の拡大写真。 バンドル径約200nmのカーボンナノチューブ膜の拡大写真。 バンドル径約200nmと約10nmのカーボンナノチューブ膜とゼーベック係数との関係を示す図。 29THzのテラヘルツ波を照射した場合のカーボンナノチューブ膜の膜厚と雑音等価パワーの関係を示す図。 本発明の実施形態2に係るシミレーションと実験で使用したテラヘルツ波検出供試体の斜視図。 テラヘルツ波検出供試体のカーボンナノチューブ膜の温度分布の一例を示す図。 シミュレーションのカーボンナノチューブ膜の膜厚と時定数の関係を示す図。 カーボンナノチューブ膜の膜厚と時定数の関係の実験結果を示す図。 図18Bで用いた実験での時定数の求め方を示す図。 シミュレーションのカーボンナノチューブ膜の膜厚とカーボンナノチューブ膜の最高温度と最低温度の温度差の関係を示す図。 カーボンナノチューブ膜の膜厚とテラヘルツ波検出供試体のテラヘルツ波応答との関係を規格化した実験結果を示す図。 シミュレーションのカーボンナノチューブ膜の膜厚とカーボンナノチューブ膜の最高温度と最低温度の温度差の関係を示す図。 カーボンナノチューブ膜の幅とテラヘルツ波検出供試体のテラヘルツ波応答を規格化したものとの関係の実験結果を示す図。 評価に使用したテラヘルツ波検出供試体を示す図。 39THzのテラヘルツ波を照射された際のカーボンナノチューブ膜の膜厚に応じたテラヘルツ波による温度を示す図。 評価に使用したテラヘルツ波検出供試体を示す図。 39THzのテラヘルツ波を照射された際のカーボンナノチューブ膜の幅に応じたテラヘルツ波による温度を示す図。 変形例のカーボンナノチューブ膜にボウタイアンテナを設置した状態を示す図。
 以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
<<実施形態1>>
 図1は、本発明の実施形態1に係るテラヘルツ波検出装置10の構成を示す模式図である。
 本実施形態では、テラヘルツ波検出装置10の検出素子として使用されるカーボンナノチューブ(Carbon Nanotubes)の最適条件を明らかにする。
 テラヘルツ波検出装置10は、チップキャリア基板17上にカーボンナノチューブ膜(炭素膜)11と、カーボンナノチューブ膜11の一方の端部に接合される第1電極12および他方の端部に接合される第2電極13とを備えている。
 すなわち、テラヘルツ波検出装置10は、チップキャリア基板17上に形成されたカーボンナノチューブ膜11と、カーボンナノチューブ膜11の2次元平面上に対向して配置される第1電極12および第2電極13とを備えている。
 第1電極12と第2電極13は、同じ熱伝導率を有する金属や異なる熱伝導率を有する金属等である。実施形態では、第1電極12と第2電極13は、熱伝導率が高い金(図5参照)を用いている。なお、第1電極12と第2電極13に金合金を用いてもよい。
チップキャリア基板17は、非ノイズ性、低熱伝導率、絶縁性、耐候性、所定の強度等の支持基板としての必要な条件を満たせば、如何なる材質の基板でもよい。
 第1電極12と第2電極13間には、電流計14が接続される。図1では、後記するように、第1電極12の近くのカーボンナノチューブ膜11にテラヘルツ波40が照射され起電力が発生するので、第1電極12がソース電極であり、第2電極13がドレイン電極である。なお、IV特性を測るためにバッテリを接続してもよい。
 図2は、テラヘルツ波40の照射状態を示す拡大斜視図である。
 第1電極12と第2電極13間の第1電極12近くのカーボンナノチューブ膜11上に、テラヘルツ波40が照射される。なお、第1電極12と第2電極13間の第2電極13近くのカーボンナノチューブ膜11上に、テラヘルツ波40を照射する構成としてもよい。
 <カーボンナノチューブ膜11>
 カーボンナノチューブは、高い電気伝導性と高い機械的強度を兼ね備え、柔軟性をもつ。カーボンナノチューブは、DCに近い周波数から紫外光領域に至る、極めて広い周波数帯での電磁波を吸収する。特に、サブテラヘルツから紫外光までの極めて広い周波数帯域の光を吸収可能である。そこで、カーボンナノチューブがテラヘルツ波検出装置10の検出素子に適用される。
 検出素子として使用されるカーボンナノチューブ膜11は、下記の特徴をもつ。
 カーボンナノチューブ膜11は、一例としてp-typeである。また、カーボンナノチューブ膜11は、n-typeであってもよく、p-typeとn-typeとを組み合わせたものでもよい。
 カーボンナノチューブ膜11は、単層カーボンナノチューブ(SWCNTs : Single-Walled Carbon Nanotubes)、二層カーボンナノチューブ(DWCNTs : Dubble-Walled Carbon Nanotubes)、多層カーボンナノチューブ(MWCNTs : Multi-Walled Carbon Nanotubes)を、それぞれ単独で使用、および/又は、併用しても構わない。カーボンナノチューブ膜11は、単層カーボンナノチューブが50重量%以上を含むことが好ましく、80重量%以上含むことがより好ましい。さらに好ましくは、平均直径に対する標準偏差に3を乗じた値の比が(3×標準偏差/平均直径)が0.20より大きく、0.60未満を満たし、吸着等温線から得られるt-プロットが上に凸な形状を示す単層カーボンナノチューブを使用する事が好適である。
 カーボンナノチューブ膜11は、カーボンナノチューブ以外の繊維状炭素ナノ構造体との混合物であってもよい。
 カーボンナノチューブ膜11は、75重量%以上が繊維状炭素ナノ構造体で構成されていることが好ましい。
 カーボンナノチューブ膜11は、支持体が存在していなくとも膜としての形状を保つことができる自立膜であるとよい。具体的には、カーボンナノチューブ膜11は、膜厚10nm~3μm、面積が1mm~100cmのサイズにおいて支持体無しで膜としても形状を保つことがより好ましい。
 カーボンナノチューブ膜11は、一例として、PCT/JP2016/002552で開示される繊維状炭素ナノ構造体分散液を用いて製造される。繊維状炭素ナノ構造体分散液は、繊維状炭素ナノ構造体と溶媒とを含有する混合物である。溶媒は特に限定されることなく、例えば、水、メタノール、エタノール、n―プロパノール、イソプロパノール,n-ブタノール、イソブタノール、パラジクロロベンゼン等の芳香族炭化水素類等が挙げられる。これらは、溶媒として、1種単独で使用してもよいし、2種以上を併用してもよい。
 カーボンナノチューブ膜11の製造方法は、繊維状炭素ナノ構造体と溶媒とを含有する繊維状炭素ナノ構造体分散液から溶媒を除去して、炭素膜を成膜する工程を含む。カーボンナノチューブ膜11の成膜工程は下記の何れかの方法が用いられる。
(A)繊維状炭素ナノ構造体分散液を成膜基材上に塗布した後、塗布した繊維状炭素ナノ構造体分散液を乾燥させる。
(B)多孔質の成膜基材を用いて繊維状炭素ナノ構造体分散液をろ過し、得られたろ過物を乾燥させる。詳細は、PCT/JP2016/002552を参照のこと。
 なお、カーボンナノチューブ膜11は上述以外の方法を用いて作製してもよい。
 <第1電極および第2電極>
 第1電極12(ソース電極)および第2電極13(ドレイン電極)は、金属からなる。前記したように、電極(12、13)に用いた金属は、Auである。
 その他、電極材料としては、Al、Mo、Ni、Tiがある。ただし、貴金属ではAu以外のCu、Ag、Ptなど、アルミニウム族元素ではAl以外のGa、Inなど、クロム族元素ではMo以外のCr、Wなど、鉄族元素ではNi以外のFe、Coなど、スズ族元素ではTi以外のZr、Sn、Hf、Pb、Thなど、マグネシウム族元素のBe、Mg、Znなど、さらにこれらの金属の合金が使用できると考えられる。
 第1電極12と第2電極13とは、実施形態のように、同種金属を用いてもよいし、異種金属を用いてもよい。
 電極材料は、熱伝導率(熱伝導度)が高い金属が好ましい。熱伝導率は、熱の流れに垂直な単位面積を通って単位時間に流れる熱量を、単位長さ当たりの温度差(温度勾配)で割った値である。
<テラヘルツ波検出装置10のI-V特性>
 図3は、1.4THzのテラヘルツ波40を照射した場合のテラヘルツ波検出装置10のI-V特性(室温下)を示す図である。横軸にソース-ドレイン電圧[mV]をとり、縦軸にソース-ドレイン電流[μA])をとる。また、図3のI-V特性の細実線は、テラヘルツ波40の照射がない場合(Off)を示し、太実線は、テラヘルツ波40の照射がある場合(On)を示す。
 図3に示すように、1.4THzのテラヘルツ波40を照射した場合、テラヘルツ波40の照射に伴い電流ないし電圧の応答が発生しており、光熱起電力による室温でのテラヘルツ波の検出が確認できる。1.4THzのテラヘルツ波40を照射した場合、I-V特性は線形であり、I-V特性のシフトが観測された。
<電極(12、13)の材料の熱伝導率とテラヘルツ波40の応答信号>
 図4は、電極の材料(Au、Al、Mo、Ni、Ti)の熱伝導率(Thermal conductance [W/m/K])(左縦軸)とテラヘルツ波40の応答信号(Response[μA])(右縦軸)を示す図である。応答信号(Response[μA])は、テラヘルツ波40を照射した際の応答電流で示される。電極の材料の熱伝導率(左縦軸)は、図4の折れ線グラフで示し、応答信号(右縦軸)は、棒グラフで示す。なお、電極の厚さ20nmである。
 図4に示すように、熱伝導率(折れ線グラフ)は、Au>Al>Mo>Ni>Tiの順に大きい。
 各電極の材料の応答信号(Response[μA])(棒グラフ)は、Au>Al>Mo>Ni>Tiの順に感度が変化する。図7A、図7Bに示す電極の材料の中では、Auの応答電流が最も大きく、次いでAlとなる。そして、感度はAlから略半減してMo、Ni、Tiと続く。以上より、Au、Al、Mo、Ni、Tiにおける熱伝導率(折れ線グラフ)の大小関係と応答信号(棒グラフ)の大小関係とは同じ関係にある。
 すなわち、図4から分るように、熱伝導率が高いほど高感度である。そのため、電極(11、12)の熱伝導率を高めることで、検出感度を向上させ得る。
<テラヘルツ波40照射時のカーボンナノチューブ膜11の熱分布>
 図5は、第1電極12近くのカーボンナノチューブ膜11上に、テラヘルツ波40が照射された際のカーボンナノチューブ膜11内部の熱分布を示す図である。
 カーボンナノチューブ膜11の内部の熱分布をみると、第1電極12がある部分が高温に、第1電極12がない部分が低温になっている。
 この結果は、第1電極12の金属が一種の熱源のような役割を果たしていることを示唆している。カーボンナノチューブ膜11は照射された電磁波を吸収し発熱するが、第1電極12と接している部分では熱が急激に第1電極12の側に吸熱される。そのため、まず第1電極12の全域の温度が上がり、次に第1電極12が接触している部分のカーボンナノチューブ膜11の温度が上昇する。結果として、第1電極12との界面を形成するカーボンナノチューブ膜11内で大きな温度勾配が生じる。この温度勾配によってキャリアが第1電極12の側からカーボンナノチューブ膜11の第1電極12から遠い側に熱拡散し応答が発生するのである。
 図6は、29Hzのテラヘルツ波を図2に示すようにカーボンナノチューブ膜11に照射した際のテラヘルツ応答を示す図である。
 キャリアが正孔であるため電源側(第1電極12側)では正、GND側(第2電極13側)では負の電流応答を示す。
 すなわち、テラヘルツ波40の検出原理は光熱起電力効果(ゼーベック効果)である。第1電極12とカーボンナノチューブ膜11の境界にテラヘルツ波を照射すると、カーボンナノチューブ膜11がテラヘルツ波を吸収して発熱し、熱勾配ができる。この熱勾配によりキャリアが拡散し、テラヘルツ波応答の起電力が生じる。
 これらの実験結果等により、電極金属がテラヘルツ波の照射によって熱源として動作し、この熱勾配によって起電力が発生するというメカニズムであることが分かる。
<供試カーボンナノチューブ膜>
 図7A、図7Bは、膜厚、バンドル径の評価に用いた第1電極12、カーボンナノチューブ膜11、および第2電極13の寸法を示しており、図7Aは上面図、図7Bは図7AのI方向矢視図である。
る。
 第1電極12は、長手方向寸法3.5mm、短手方向寸法2mm、厚さ50nmである。同様に、第2電極13は、長手方向寸法3.5mm、短手方向寸法2mm、厚さ50nmである。
 カーボンナノチューブ膜11は、長手方向寸法10mm、短手方向寸法2mmであり、膜厚を変え評価した。
 図8は、テラヘルツ波40の照射時の実験状態を示す図である。
 カーボンナノチューブ膜11の最適条件を見出すテラヘルツ波40の検出実験に際して、カーボンナノチューブ膜11の第1電極12(ソース電極)は第1結線15にドータイト(登録商標)等の導電性高分子接着剤15aを介して接続されている。また、カーボンナノチューブ膜11の第2電極13(ドレイン電極)は第2結線16にドータイト等の導電性高分子接着剤16aを介して接続されている。
 検出実験に際しては、カーボンナノチューブ膜11は下地のチップキャリア基板17(図1参照)から離れている。これにより、カーボンナノチューブ膜11だけの特性を評価した。
<カーボンナノチューブ膜11の膜厚に依る図7A、図7Bの依存性と時定数の依存性>
 カーボンナノチューブ膜11の膜厚を変化させた場合の図7A、図7Bの依存性と時定数の依存性を評価した。
 図9は、29THz、22mWのテラヘルツ波40を照射した場合のカーボンナノチューブ膜11の膜厚と光熱起電力との関係を示す図である。横軸にカーボンナノチューブ膜11の膜厚(μm)をとり、縦軸にカーボンナノチューブ膜11に生じた光熱起電力(mV)をとっている。
 図9より、カーボンナノチューブ膜11の膜厚が薄いほど、光熱起電力が大きい、すなわち、カーボンナノチューブ膜11の膜厚が薄いほどテラヘルツ波40の応答性がよいことが分る。例えば、膜厚150μm程度で0.1mV程度の起電力が、膜厚10μm以下で約2mVの起電力が発生可能であり、例えば、膜厚4μmで1.98mVの光熱起電力が確認された。つまり、膜厚を薄くすることで、約20倍感度が向上する。
 図10は、光熱電効果を示す模式図である。
 発生する起電力ΔVとゼーベック係数Sと温度勾配(温度差)ΔTとの間には、下式(1)の関係がある。
Figure JPOXMLDOC01-appb-M000001
 また、熱の伝わり易さを示す熱伝導率kは、熱移動量をQ、伝熱面積をAとすると、下式(2)の関係がある。
 k =  Q ×A / ΔT         (2)
 Sをゼーベック係数、σを電気伝導度、ZTを無次元性能指数とすると、下式(3)の関係がある。
Figure JPOXMLDOC01-appb-M000002
 カーボンナノチューブ膜11の膜厚が薄いと伝熱面積Aが小さいので、式(2)より熱の伝達が遅く、カーボンナノチューブ膜11の長手方向の温度勾配ΔTが大きい。そのため、式(1)より起電力ΔVが上がり、感度が上がると考えられる。また、膜厚が薄いと伝熱面積Aが小さく式(2)より熱伝達率kが低下するので、式(3)より、無次元性能指数ZTが向上する。
 従って、カーボンナノチューブ膜11の膜厚が薄いほど、光熱起電力が大きいことが確認された。
 図11は、39THzのテラヘルツ波40を照射した場合のカーボンナノチューブ膜11の過渡応答を示しており、カーボンナノチューブ膜11の膜厚と時定数との関係を示す図である。横軸にカーボンナノチューブ膜11の膜厚(μm)をとり、縦軸に時定数(s)をとっている。
 図11より、カーボンナノチューブ膜11の膜厚が薄いほど、時定数が低下することが確認された。例えば、膜厚150μm程度で約0.8sの時定数が、膜厚2μmで40msの時定数となる。すなわち、膜厚を150μmから2μmにすることで、約20倍時定数が低下し、高速化が可能である。これは、カーボンナノチューブ膜11の膜厚が薄いほど、熱キャパシタンス成分が減るためである。
 図12は、カーボンナノチューブ膜11の膜厚と抵抗の関係を示す図である。横軸にカーボンナノチューブ膜11の膜厚(μm)をとり、縦軸に抵抗(Ω)をとっている。
 カーボンナノチューブ膜11の膜厚が厚いほど、抵抗が小さくなることが確認される。
 抵抗R、カーボンナノチューブ膜11の断面積A1、カーボンナノチューブ膜11の長手方向長さlとすると、抵抗Rは下式(4)で表される。
 R ∝  l / A1       (4)
 図11のカーボンナノチューブ膜11の膜厚を薄くするとA1は小さくなるので、抵抗Rが大となる。また、熱容量が低減し、テラヘルツ波吸収による温度上昇が生じやすくなる。
そのため、カーボンナノチューブ膜11の膜厚が薄いほど光熱起電力が大となる。
 従って、テラヘルツ波検出装置10の高感度化、高速化のためには、カーボンナノチューブ膜11の膜厚は薄いほどよい。
 しかし、カーボンナノチューブ膜11の膜厚が薄過ぎると破ける。また、膜厚が薄過ぎると照射テラヘルツ光に対する吸光度が減少するため熱の発生量が僅少になる。また、カーボンナノチューブ膜11が自立できない、すなわちカーボンナノチューブ膜11がフリースタンディングでないと支持基板に載せる必要がある。
 これらのことから、カーボンナノチューブ膜11の膜厚は、1μm以上であることが好ましい。
 ところで、カーボンナノチューブ膜11を検出器として用いる場合、膜厚50μm程度は望まれる。膜厚が厚過ぎるとテラヘルツ波検出装置10の高感度化、高速化が阻害されるので、膜厚は、100μm以下が好ましい。
 従って、テラヘルツ波検出装置10におけるカーボンナノチューブ膜11の膜厚は、1μm以上100μm以下が好適である。
<カーボンナノチューブ膜11の優位性>
 カーボンナノチューブを用いたカーボンナノチューブ膜11はテラヘルツ波40をほぼ100%吸収する。すなわち、テラヘルツ波40の波長よりも薄くしても、式(1)の温度勾配ΔTをとれる。これに対して、カーボンナノチューブ以外の材料のみを使用した場合では、膜厚を薄くするとテラヘルツ光が透過して温まらない。
 従って、バルクの材料を検出素子として、板厚を薄くして波長よりも薄くすると検出効率が低下するという問題をカーボンナノチューブの膜を検出素子とすることで解決できる。
<カーボンナノチューブ膜11のバンドル径とゼーベック係数>
 次に、カーボンナノチューブ膜11に含まれるカーボンナノチューブのバンドル径とゼーベック係数Sとの関係を評価した。
 なお、バンドル径とは、複数本のカーボンナノチューブが繊維状の形状を保って寄り集まったものの径である。
 評価に際して、カーボンナノチューブの束のバンドル径約10nm、約200nmの2種類のフィルム(膜)を用意した。
 バンドル径約10nmのカーボンナノチューブ膜は界面活性剤水溶液中で、カーボンナノチューブを公知の超音波分散機にて分散処理したカーボンナノチューブ分散液を使用してカーボンナノチューブ膜11を作製した。バンドル径約200nmのカーボンナノチューブはエタノール溶媒中で、カーボンナノチューブを公知の超音波分散機にて分散処理したカーボンナノチューブ分散液を使用してカーボンナノチューブ膜11を作製した。
 図13は、バンドル径約10nmのカーボンナノチューブ膜11の拡大写真である。図14は、バンドル径約200nmのカーボンナノチューブ膜11の拡大写真である。図13、図14において、繊維状に目視できるのがバンドルである。
 図15は、バンドル径、約200nmと約10nmのカーボンナノチューブ膜11とゼーベック係数との関係を示す棒グラフである。
 図15において、バンドル径、約200nmのカーボンナノチューブ膜11は膜厚2μm、30μm、57μmでゼーベック係数を測定し、バンドル径、約10nmのカーボンナノチューブ膜11は膜厚32μm、51μm、97μmでゼーベック係数を測定した。
 図15より、バンドル径、約200nmのカーボンナノチューブ膜11は、ゼーベック係数Sが平均約57μV/Kであり、バンドル径、約10nmのカーボンナノチューブ膜11は、ゼーベック係数Sが平均約48μV/Kであった。すなわち、バンドル径、約10nmを約200nmに変更することで感度が約1.2倍向上する。
 この結果より、バンドル径が大きい方がゼーベック係数Sが大きく熱電効果が向上し、高感度であることが分かる。
 図16は、29THzのテラヘルツ波40を照射した場合のカーボンナノチューブ膜11の膜厚と雑音等価パワー(NEP:Noise equivalent power )の関係を示す図である。横軸に膜厚(μm)をとり、縦軸にNEP(pW/√Hz)をとっている。図16において、黒丸がバンドル径約200nmであり、白丸がバンドル径約10nmである。
 図16より、カーボンナノチューブ膜11の膜厚に拘わらず、バンドル径約200nmがバンドル径約10nmよりNEPが低い。すなわち、バンドル径が大きいカーボンナノチューブ膜11は、バンドル径が小さいカーボンナノチューブ膜11より感度が良好である。
 これは、ゼーベック効果が大きい方が式(1)、式(3)より熱電効果が大きく、テラヘルツ波検出装置10のテラヘルツ波40の応答感度がよいことを示す。バンドル径がより大きいカーボンナノチューブ膜11はカーボンナノチューブの特性が残り易い。カーボンナノチューブはゼーベック係数が大きい。
 ここで、バンドル径約200nmのカーボンナノチューブ膜11は、バンドル径約10nmのカーボンナノチューブ膜11より、カーボンナノチューブの性質を保持し易い。そのため、バンドル径約200nmのカーボンナノチューブ膜11は、バンドル径約10nmのカーボンナノチューブ膜11よりゼーベック係数が大きいと考えられる。
 結果として、カーボンナノチューブの状態を崩さない方が好ましいことを示す。
 以上から、バンドル径が大きい方が、NEPが小さく感度がよい。しかし、バンドル径500nmを超えるとフィルム(膜)にすることが困難になる。
 一方、バンドル径が小さいとNEPが大きくなり感度が低下するので、実用上、バンドル径は100nm以上500nm以下のカーボンナノチューブ膜11が、感度が良好で、実用性が高く好適である。
 上記構成によれば、テラヘルツ波検出装置10において、膜厚を1~100μmのカーボンナノチューブ膜11にすることで、テラヘルツ波検出装置10の高感度化、高速化が行える。
 さらに、カーボンナノチューブ膜11のバンドル径を100nm以上500nm以下とすることで、感度をさらに向上できる。
 テラヘルツ波検出装置10の検出素子として、カーボンナノチューブ等のカーボンナノチューブを用いることで、テラヘルツ波40を効果的にセンシングできる。
 カーボンナノチューブ膜11における第1電極12の近くの箇所または第2電極13の近くの箇所にテラヘルツ波40が照射することで、電極(12、13)からカーボンナノチューブ膜11内に温度勾配(温度差)ΔTが発生し、ゼーベック効果を生起させることができる(式(1)、(3)参照)。
 第1電極12、第2電極13に、金を用いれば、熱伝導率が良いため、テラヘルツ波40の検出感度を向上できる(図4参照)。 
<<実施形態2>>
 実施形態2では、テラヘルツ波検出供試体10Tの特性のシミュレーションと実験結果を比較対照し、カーボンナノチューブ膜21のサイズを検討した。
 図17Aに、本発明の実施形態2に係るシミュレーションと実験で使用したテラヘルツ波検出供試体10Tを示す。
 テラヘルツ波検出供試体10Tは、幅wと膜厚t1をもつカーボンナノチューブ膜21の一方側に、金(Au)の電極22が設置されている。なお、他方の電極は図示を省略している。
 図17Aに示すように、テラヘルツ波検出供試体10Tに、39THzのテラヘルツ波40を照射した。
 図17Bに、テラヘルツ波検出供試体10Tのカーボンナノチューブ膜21の温度分布の一例を示す。
 テラヘルツ波40が照射された金の電極22近傍のカーボンナノチューブ膜21の温度が最も高いことが分る。カーボンナノチューブ膜21の最大温度は48℃であり、最低温度は22℃であった。
 <シミュレーション>
 カーボンナノチューブ膜21の熱伝導のシミュレーションは以下のように行った。
 熱伝導のデバイス形状依存度をシミュレーションするため、定常状態の熱解析と過渡的熱解析とを、ANSYSソフトウェアパッケージ(商品名)を使用して行った。
 シミュレーションは、300Kの安定的な温度下でカーボンナノチューブ膜21のX-Y平面の熱伝導率10W/mK、Z軸の熱伝導率0.1W/mK、電極金属(金)の熱伝導率315W/mK、空気の熱伝達率10W/mKの条件下で行われた。
 なお、X-Y平面とはカーボンナノチューブ膜21の幅方向を含む平面をいい、Z軸とは、カーボンナノチューブ膜21の膜厚方向をいう。
 テラヘルツ波の出力はカーボンナノチューブ膜21に吸収され、熱に変換されると仮定して、カーボンナノチューブ膜21の表面に熱を加える。
 カーボンナノチューブ膜21は基材無しで自立する形状であり、大気に晒される。外気温は22℃に設定した。
 カーボンナノチューブ膜21の温度分布は、温度をT、時間をtで表し、次式(5)の熱伝導方程式を解くことで計算した。
Figure JPOXMLDOC01-appb-M000003
 <カーボンナノチューブ膜21の膜厚t1と時定数>
 図18Aに、シミュレーションのカーボンナノチューブ膜21の膜厚t1と時定数の関係を示し、図18Bに、カーボンナノチューブ膜21の膜厚t1と時定数(s)の関係の実験結果を示す。図18A、図18Bの横軸にカーボンナノチューブ膜21の膜厚t1(μm)をとり、縦軸に時定数(s)をとっている。
 図19は、図18Bで用いた実験での時定数(s)の求め方を示している。図19に、テラヘルツ波検出供試体10Tの過渡応答を示す。図19は横軸に経過時間(s)をとり、縦軸にV/Vmax(検出電圧比)をとっている。
 図19中、経過時間(s)が0秒から39THzのテラヘルツ波40を照射した。
 図19中のプロットが実験結果であり、図19中の破線は下式(6)を使用して求めた、実験結果にフィッティングする時定数τを用いて示したものである。
  V/Vmax=(1-exp(-t/τ))          (6)
 式(6)を用いて、図19から、実験結果にフィッティングする時定数τを求めた。
 シミュレーションの図18A、実験結果の図18Bに示すように、シミュレーションと実験結果とが良く一致する結果が得られた。
 時定数τは、カーボンナノチューブ膜21の膜厚t1が薄いほど小さい。従って、カーボンナノチューブ膜21の膜厚t1が薄いほどセンサの感度がよいことが分る。
 <カーボンナノチューブ膜21の膜厚t1とテラヘルツ波応答>>
 図20Aに、シミュレーションのカーボンナノチューブ膜21の膜厚t1とカーボンナノチューブ膜21の最高温度と最低温度の温度差ΔTの関係を示す。図20Aの横軸にカーボンナノチューブ膜21の膜厚t1(μm)をとり、縦軸にカーボンナノチューブ膜21の最高温度と最低温度の温度差ΔT(K)をとっている。
 図20Bに、カーボンナノチューブ膜21の膜厚t1とテラヘルツ波検出供試体10Tのテラヘルツ波応答との関係を規格化した実験結果を示す。図20Aの横軸にカーボンナノチューブ膜21の膜厚t1(μm)をとり、縦軸にテラヘルツ波検出供試体10Tのテラヘルツ波応答を規格化したものを示す。
 シミュレーションの図20A、実験結果の図20Bに示すように、カーボンナノチューブ膜21の膜厚t1とテラヘルツ波応答のシミュレーションと実験結果とが良く一致する結果が得られた。
 テラヘルツ波応答は、カーボンナノチューブ膜21の膜厚t1が薄いほど良い。これは、カーボンナノチューブ膜21の膜厚t1が薄いほど熱抵抗が大きくなり、熱の局在効果が高まるためと考えられる。
 <カーボンナノチューブ膜21の幅wとテラヘルツ波応答>>
 図21Aに、シミュレーションのカーボンナノチューブ膜21の膜厚t1とカーボンナノチューブ膜21の最高温度と最低温度の温度差ΔTの関係を示す。図21Aの横軸にカーボンナノチューブ膜21の幅w(mm)をとり、縦軸にカーボンナノチューブ膜21の最高温度と最低温度の温度差ΔT(K)をとっている。
 図21Bに、カーボンナノチューブ膜21の幅wとテラヘルツ波検出供試体10Tのテラヘルツ波応答を規格化したものとの関係の実験結果を示す。図21Bの横軸にカーボンナノチューブ膜21の幅w(mm)をとり、縦軸にテラヘルツ波検出供試体10Tのテラヘルツ波応答を規格化したものを示す。
 シミュレーションの図21A、実験結果の図21Bに示すように、カーボンナノチューブ膜21の幅wとテラヘルツ波応答のシミュレーションと実験結果とは良く一致する結果が得られた。
 テラヘルツ波応答は、カーボンナノチューブ膜21の幅wが狭いほど良い。これは、膜厚t1と同様、カーボンナノチューブ膜21の幅wが狭いほど熱抵抗が大きくなり、熱の局在効果が高まるためと考えられる。
 <カーボンナノチューブ膜21の膜厚t1とテラヘルツ波40を受けた際の温度上昇の関係>
 次に、テラヘルツ波検出供試体20Tのカーボンナノチューブ膜21がテラヘルツ波40を受けた際の膜厚t1の違いによる温度上昇を評価した。カーボンナノチューブ膜31に39THzのテラヘルツ波40を照射した。
 図22Aに、評価に使用したテラヘルツ波検出供試体20Tを示し、図22Bに、39THzのテラヘルツ波40を照射された際のカーボンナノチューブ膜21の膜厚t1に応じたテラヘルツ波40による温度を示す。
 図22Aに示すように、テラヘルツ波検出供試体20Tは、カーボンナノチューブ膜21の一方側に第1電極32を設置し、他方側に第2電極33を設置したものを用いた。
 カーボンナノチューブ膜21は幅寸法1mmのものを用い、膜厚t1を図22Bに示すように、2μm、5μm、10μm、20μm、100μm、200μmmと変えて評価した。
 図22Bに示すように、カーボンナノチューブ膜21の膜厚t1が薄いほど、つまり、膜厚t1が200μmから2μmに薄くなるほど、カーボンナノチューブ膜21の温度上昇が大きい結果が得られた。
 <カーボンナノチューブ膜21の幅wとテラヘルツ波40を受けた際の温度上昇の関係>
 次に、テラヘルツ波検出供試体20Tのカーボンナノチューブ膜21がテラヘルツ波40を受けた際の幅wの差異による温度上昇を評価した。カーボンナノチューブ膜21に39THzのテラヘルツ波40を照射した。
 図23Aに、評価に使用したテラヘルツ波検出供試体20Tを示し、図23Bに、39THzのテラヘルツ波40を照射された際のカーボンナノチューブ膜21の幅wに応じたテラヘルツ波40による温度を示す。
 図22Aに示すように、テラヘルツ波検出供試体20Tは、カーボンナノチューブ膜21の一方側に第1電極32を設置し、他方側に第2電極33を設置したものを用いた。
 カーボンナノチューブ膜31は膜厚2μmのものを用い、図23Bに示すように、幅w1を500μm、1mm、2mm、3mm、5mm、10mmと変えて評価した。
 図23Bに示すように、カーボンナノチューブ膜21の幅wが狭いほど、つまり、幅wが10mmから500μmに薄くなるほど、カーボンナノチューブ膜21の温度上昇が大きい結果が得られた。
 図22B、図23Bより、カーボンナノチューブ膜21の膜厚t1が薄く、かつ、カーボンナノチューブ膜21の幅wが狭い方がテラヘルツ波検出装置10(図1参照)の感度が良くなることが確認された。
 <カーボンナノチューブ膜21の膜厚t1の下限値>
 カーボンナノチューブ膜21は、支持体がない場合と支持体(支持膜)がある場合の2つの態様が可能である。
 支持体がない場合のカーボンナノチューブ膜21の膜厚t1の下限値は30nm程度である。
 一方、支持体がある場合のカーボンナノチューブ膜21の膜厚t1の下限値は10nm程度と薄くできる。
 カーボンナノチューブ膜21の膜厚t1の下限値は10nm以上が好ましい。膜厚t1が10nm未満であると欠陥が生じ易くなるからである。
 カーボンナノチューブ膜21の膜厚t1の下限値は、より好ましくは30nm以上である。膜厚t1が30nm以上の場合、よりテラヘルツ波の吸収が良くなり、製造時の欠陥が生じにくくなるからである。
 <カーボンナノチューブ膜31の幅wの下限値と上限>
 カーボンナノチューブ膜21の幅wの下限値は、テラヘルツ波40の波長の1/4程度である。つまり、カーボンナノチューブ膜21の幅wは、テラヘルツ波40の波長の1/4以上または波長の1/4近傍以上に設定できる。
<<変形例>>
 図24に、変形例のカーボンナノチューブ膜31にボウタイアンテナ31aを設置した状態を示す。
 図24に示すように、カーボンナノチューブ膜31のX方向の一方側にソース電極42が設置され、X方向の他方側にドレイン電極43が設置されている。ソース電極42近くのカーボンナノチューブ膜31にボウタイアンンテナ31aを設置する。この構成により、ボウタイアンテナ31aでテラヘルツ波を受信でき、カーボンナノチューブ膜31での感度を向上できる。
 そのため、カーボンナノチューブ膜31にアンテナがある場合、X方向に直交するY方向に沿った寸法である幅wの下限値は8nmとできる。つまり、アンテナがある場合、カーボンナノチューブ膜31の幅wは8nm以上に設定できる。
 一方、カーボンナノチューブ膜31のY方向に沿った寸法の幅wの上限は制限されない。しかし、カーボンナノチューブ膜31の幅wが広くなると性能が飽和する傾向にある。
<<その他の実施形態>>
1.なお、テラヘルツ波検出装置10を、チップキャリア基板17を用いず構成してもよい。
2.前記実施形態で説明したカーボンナノチューブ膜11(炭素膜)の光をよく吸収し熱ならびに起電力が発生する性質は、給電素子への応用も可能であり、本発明で得られた知見が給電素子にも適用可能である。給電素子として使用する際は、太陽光をカーボンナノチューブ膜11(炭素膜)に照射することで起電力を得る。あるいは熱の印加による同様の機構も可能である。カーボンナノチューブ膜は紫外光からテラヘルツ光に至るすべての周波数帯の光を高い吸収率で吸収できるため、高効率な給電素子として利用できる。人体、かばん、衣類などにカーボンナノチューブ膜を貼り付けることで、太陽光や熱によって常に電力を供給可能な素子として機能させられる。
3.なお、前記実施形態1、前記実施形態2、前記変形例等を説明したが、これらの構成を適宜組み合わせて構成してもよい。
4.なお、前記実施形態は、本発明の一例を示したものであり、特許請求の範囲内で様々な具体的形態、変形形態が可能である。
 10  テラヘルツ波検出装置
 11、21、31 カーボンナノチューブ膜(炭素膜、カーボンナノチューブ構造体)
 12  第1電極
 13  第2電極
 t1  膜厚(厚み)
 w   幅

Claims (10)

  1.  テラヘルツ波を利用した、受光素子ならびに給電素子に使用される炭素膜であって、
     当該炭素膜は、複数のカーボンナノチューブを含んで構成されたカーボンナノチューブ構造体であり、
     その厚みが、1μm以上100μm以下である
     ことを特徴とする炭素膜。
  2.  テラヘルツ波を利用した、受光素子ならびに給電素子に使用される炭素膜であって、
     当該炭素膜は、複数のカーボンナノチューブを含んで構成されたカーボンナノチューブ構造体であり、
     その厚みが、10nm以上100μm以下である
     ことを特徴とする炭素膜。
  3.  テラヘルツ波を利用した、受光素子ならびに給電素子に使用される炭素膜であって、
     当該炭素膜は、支持膜上に形成された、複数のカーボンナノチューブを含んで構成されたカーボンナノチューブ構造体であり、
     前記カーボンナノチューブ構造体の厚みが、10nm以上100μm以下である
     ことを特徴とする炭素膜。
  4.  前記カーボンナノチューブ構造体は、前記カーボンナノチューブがバンドル状に形成されたカーボンナノチューブバンドル構造部を含み、
     前記カーボンナノチューブバンドル構造部のバンドル径は、100nm以上500nm以下である
     ことを特徴とする請求項1から請求項3の何れか一項に記載の炭素膜。
  5.  前記カーボンナノチューブは、
     単層、二層、及び多層のカーボンナノチューブのうちの少なくとも何れかである
     ことを特徴とする請求項1から請求項3の何れか一項に記載の炭素膜。
  6.  前記カーボンナノチューブ構造体を構成する複数のカーボンナノチューブは、
    その50重量%以上が、単層カーボンナノチューブである
     ことを特徴とする請求項1から請求項3の何れか一項に記載の炭素膜。
  7.  請求項1から請求項3の何れか一項に記載の炭素膜と、
     前記炭素膜の一方側に配置される第1電極と、
     前記炭素膜の他方側に配置される第2電極とを備える
     ことを特徴とするテラヘルツ波検出装置。
  8.  請求項1から請求項3の何れか一項に記載の炭素膜と、
     前記炭素膜上の、X方向の一方側に配置される第1電極と、
     前記炭素膜上の、前記X方向の他方側に配置される第2電極と、を備えるテラヘルツ波検出装置であって、
     前記炭素膜は、前記X方向に直交するY方向に沿った寸法である幅寸法(W)が8nm以上である
     ことを特徴とするテラヘルツ波検出装置。
  9.  前記炭素膜における前記第1電極の近くの箇所または前記第2電極の近くの箇所にテラヘルツ波が照射される
     ことを特徴とする請求項7に記載のテラヘルツ波検出装置。
  10.  前記第1電極または前記第2電極の少なくとも何れかは、金または金の合金である
     ことを特徴とする請求項7に記載のテラヘルツ波検出装置。
PCT/JP2018/007347 2017-02-28 2018-02-27 テラヘルツ波を利用した、受光素子ならびに給電素子に適した炭素膜およびテラヘルツ波検出装置 WO2018159638A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019503034A JP7264349B2 (ja) 2017-02-28 2018-02-27 テラヘルツ波を利用した、受光素子ならびに給電素子に適した炭素膜およびテラヘルツ波検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-036214 2017-02-28
JP2017036214 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159638A1 true WO2018159638A1 (ja) 2018-09-07

Family

ID=63371051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007347 WO2018159638A1 (ja) 2017-02-28 2018-02-27 テラヘルツ波を利用した、受光素子ならびに給電素子に適した炭素膜およびテラヘルツ波検出装置

Country Status (2)

Country Link
JP (1) JP7264349B2 (ja)
WO (1) WO2018159638A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153218A1 (ja) * 2020-01-31 2021-08-05 日本ゼオン株式会社 光電変換素子及びその製造方法
CN113820292A (zh) * 2021-08-24 2021-12-21 西安理工大学 一种基于碳纳米管薄膜的柔性太赫兹超材料传感器
WO2022114237A1 (ja) * 2020-11-30 2022-06-02 日本ゼオン株式会社 炭素膜
WO2022114235A1 (ja) * 2020-11-30 2022-06-02 日本ゼオン株式会社 炭素膜
WO2022114236A1 (ja) * 2020-11-30 2022-06-02 日本ゼオン株式会社 炭素膜
WO2022181317A1 (ja) * 2021-02-24 2022-09-01 日本ゼオン株式会社 光電変換素子及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538854A (ja) * 2005-04-25 2008-11-06 スモルテック エービー ナノ構造体の基板上への制御下の成長およびそれに基づく電子放出デバイス
JP2012190822A (ja) * 2011-03-08 2012-10-04 Univ Of Tsukuba カーボンナノ構造体、キャパシタ、カーボンナノ構造体の加工方法ならびに製造方法
US20150316511A1 (en) * 2014-05-02 2015-11-05 The Regents Of The University Of Michigan Real-time detection and imaging of terahertz pulse radiation by using photoacoustic conversion
JP2016502751A (ja) * 2012-10-19 2016-01-28 ジョージア テック リサーチ コーポレイション カーボンナノチューブの配向アレイ上に形成された多層被膜
WO2017188438A1 (ja) * 2016-04-28 2017-11-02 国立大学法人東京工業大学 テラヘルツ波検出装置およびアレイセンサ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135825B2 (ja) 2007-02-21 2013-02-06 富士通株式会社 グラフェントランジスタ及びその製造方法
CN101587839B (zh) 2008-05-23 2011-12-21 清华大学 薄膜晶体管的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538854A (ja) * 2005-04-25 2008-11-06 スモルテック エービー ナノ構造体の基板上への制御下の成長およびそれに基づく電子放出デバイス
JP2012190822A (ja) * 2011-03-08 2012-10-04 Univ Of Tsukuba カーボンナノ構造体、キャパシタ、カーボンナノ構造体の加工方法ならびに製造方法
JP2016502751A (ja) * 2012-10-19 2016-01-28 ジョージア テック リサーチ コーポレイション カーボンナノチューブの配向アレイ上に形成された多層被膜
US20150316511A1 (en) * 2014-05-02 2015-11-05 The Regents Of The University Of Michigan Real-time detection and imaging of terahertz pulse radiation by using photoacoustic conversion
WO2017188438A1 (ja) * 2016-04-28 2017-11-02 国立大学法人東京工業大学 テラヘルツ波検出装置およびアレイセンサ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERIKSON KRISTOPHER J. ET AL.: "Figure of Merit for Carbon Nanotube Photothermoelectric Detectors", ACS NANO, vol. 9, no. 12, 29 October 2015 (2015-10-29), pages 11618 - 11627, XP055605686, DOI: 10.1021/acsnano.5b06160 *
HE XIAOWEI ET AL.: "Carbon-Based Terahertz Devices", PROCEEDINGS OF SPIE, vol. 9476, 28 May 2015 (2015-05-28), pages 947612 - 1 - 947612-9, XP060054374 *
SUZUKI D. ET AL.: "Mechanism of Carbon Nanotubes Terahertz Detectors Based on Photothermoelectric Effect, Infrared, Millimeter, and Terahertz waves", 2016 41ST INTERNATIONAL CONFERENCE ON, 1 December 2016 (2016-12-01), pages 1 - 2, XP033010646 *
WANG YINGXIN ET AL.: "Terahertz photodetector based on double-walled carbon nanotube macrobundle-metal contacts", OPTICS EXPRESS, vol. 23, no. 10, 12 May 2015 (2015-05-12), pages 13348 - 13357, XP055605692, DOI: 10.1364/OE.23.013348 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153218A1 (ja) * 2020-01-31 2021-08-05 日本ゼオン株式会社 光電変換素子及びその製造方法
WO2022114237A1 (ja) * 2020-11-30 2022-06-02 日本ゼオン株式会社 炭素膜
WO2022114235A1 (ja) * 2020-11-30 2022-06-02 日本ゼオン株式会社 炭素膜
WO2022114236A1 (ja) * 2020-11-30 2022-06-02 日本ゼオン株式会社 炭素膜
WO2022181317A1 (ja) * 2021-02-24 2022-09-01 日本ゼオン株式会社 光電変換素子及びその製造方法
CN113820292A (zh) * 2021-08-24 2021-12-21 西安理工大学 一种基于碳纳米管薄膜的柔性太赫兹超材料传感器
CN113820292B (zh) * 2021-08-24 2024-02-27 西安理工大学 一种基于碳纳米管薄膜的柔性太赫兹超材料传感器

Also Published As

Publication number Publication date
JPWO2018159638A1 (ja) 2019-12-26
JP7264349B2 (ja) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2018159638A1 (ja) テラヘルツ波を利用した、受光素子ならびに給電素子に適した炭素膜およびテラヘルツ波検出装置
Ayesh et al. Selective H2S sensor based on CuO nanoparticles embedded in organic membranes
Sharma et al. Recent advances on H2 sensor technologies based on MOX and FET devices: A review
Steinhauer et al. Local CuO nanowire growth on microhotplates: In situ electrical measurements and gas sensing application
Tran et al. Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature
Yadav et al. Facile synthesis of molybdenum disulfide (MoS2) quantum dots and its application in humidity sensing
Sreeprasad et al. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties
Liu et al. Fabrication of platinum-decorated single-walled carbon nanotube based hydrogen sensors by aerosol jet printing
Hu et al. Carbon nanotube thin films: fabrication, properties, and applications
Kiasari et al. Room temperature ultra-sensitive resistive humidity sensor based on single zinc oxide nanowire
Lee et al. Magnetically aligned iron oxide/gold nanoparticle-decorated carbon nanotube hybrid structure as a humidity sensor
Feng et al. Free-standing dried foam films of graphene oxide for humidity sensing
Weathers et al. Thermal transport measurement techniques for nanowires and nanotubes
Ahmad et al. Self-standing MWCNTs based gas sensor for detection of environmental limit of CO2
St-Antoine et al. Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments
Peng et al. Mn-doped zinc oxide nanopowders for humidity sensors
Mohammadpour et al. A novel field ionization gas sensor based on self-organized CuO nanowire arrays
Sehrawat et al. Development of highly sensitive optical sensor from carbon nanotube-alumina nanocomposite free-standing films: CNTs loading dependence sensor performance Analysis
Yilmaz et al. High-rate assembly of nanomaterials on insulating surfaces using electro-fluidic directed assembly
JP7041421B2 (ja) 熱デバイス
Liu et al. High-performance ultrabroadband photodetector based on photothermoelectric effect
Nandi et al. Spray coating of two-dimensional suspended film of vanadium oxide-coated carbon nanotubes for fabrication of a large volume infrared bolometer
Landi et al. Application of a bio-nanocomposite tissue as an NIR optical receiver and a temperature sensor
Erts et al. EIS characterization of aging and humidity-related behavior of Bi2Se3 films of different morphologies
JP7149536B2 (ja) カーボンナノチューブ膜、テラヘルツ波検出装置およびカーボンナノチューブ膜のpn接合形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761350

Country of ref document: EP

Kind code of ref document: A1