CN108931209A - 一种高适应性的彩色物体三维重建方法 - Google Patents

一种高适应性的彩色物体三维重建方法 Download PDF

Info

Publication number
CN108931209A
CN108931209A CN201810417977.1A CN201810417977A CN108931209A CN 108931209 A CN108931209 A CN 108931209A CN 201810417977 A CN201810417977 A CN 201810417977A CN 108931209 A CN108931209 A CN 108931209A
Authority
CN
China
Prior art keywords
marry
dif1
cam
matrix
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810417977.1A
Other languages
English (en)
Other versions
CN108931209B (zh
Inventor
韩成
杨帆
张超
胡汉平
李华
丁莹
权巍
薛耀红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN201810417977.1A priority Critical patent/CN108931209B/zh
Publication of CN108931209A publication Critical patent/CN108931209A/zh
Application granted granted Critical
Publication of CN108931209B publication Critical patent/CN108931209B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2509Color coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种高适应性的彩色物体三维重建方法,其特征在于:相机和投影仪固定在三脚支架上,并通过电缆将相机与计算机进行连接,通过电缆将投影仪3与计算机1进行连接;利用计算机生成一幅彩色编码结构光图案,并进行多源时序化分层处理,接着对多源时序化分层图案进行解码处理,组合得到调制的单幅彩色编码结构光图案,接着利用条纹匹配方法实现对编码特征点的匹配,最后利用三角测量方法实现编码特征点的三维深度信息值解算。实现类似单幅彩色编码结构光实现过程,而且在一定程度上减少了投影仪投射的编码图案数量。

Description

一种高适应性的彩色物体三维重建方法
技术领域
本发明涉及一种高适应性的彩色物体三维重建方法,属于计算机视觉技术领域。
背景技术
结构光三维重建方法是一种利用投影仪和相机实现的主动式三维测量技术,其通过投影仪投射事先设计的编码图案到待测物体表面上,由于待测物体表面几何拓扑结构对投影仪投射的图案产生调制变形,此时利用相机对调制图案进行采集,再结合相应的解码方法以及系统参数,即可确定待测物体表面上的点在空间中的深度信息值。通过结构光三维重建技术能够对物体进行高精度重建、无接触测量,其已经成为目前的三维自由曲面测量的重要方法之一。目前随着虚拟现实技术的快速发展,结构光三维重建技术为3D打印、体感交互设备、三维影视模型构造等许多行业都提供了技术支持。
随着三维重建技术的快速发展,国内外研究学者针对结构三维重建技术进行了一系列研究,其中Inokuchi等人考虑到格雷码凭借着发射特性使得相邻码字在解码过程中出错率低,为此提出了通过将二值编码方法结合格雷码方法进行编码图案设计;随后,Caspi等人对其方法进行了相应改进,提出了多值格雷码方法,虽然其在一定程度上减少了投射编码图案的数量,但是编码图案相对而言还是较多;为此Boyer等人提出了一种利用黑色条纹对三原色条纹(红色条纹、绿色条纹、蓝色条纹)的组合编码图案进行隔离,从而实现具有单幅编码图案,虽然该方法能够快速重建待测物体,但是却存在着解码过程复杂、同时伴随着待测物体复杂性而导致解码错误率高的问题。为此在单幅编码结构光图案研究中,Salvi等提出了水平方向和竖直方向进行交叉条纹编码设计单幅栅格图案,其通过利用三原色对水平方向进行组合编码,而在竖直方向则利用青黄深红色进行编码设计。与此同时,Antonio等人提出了一种利用七种颜色进行无序彩色编码方法设计,其通过将编码特征点替换轴线进行编码设计,实现对动态待测物体进行快速测量。虽然单幅彩色编码结构光能够快速的对待测物体进行三维重建,但是这类方法面临着一类问题,就是当待测物体的表面纹理对彩色编码颜色码产生严重干扰时,会使得单幅彩色编码结构光三维重建方法失效,而此时如果利用多幅格雷码等方法进行三维重建时,会存在着投影仪投射编码图案较多的问题。
发明内容
为了避免待测的彩色物体表面纹理色彩信息对彩色编码结构光的颜色码信息产生干扰的问题,以及减少投影仪投射编码图案数量,本发明的目的在于提供一种高适应性的彩色物体三维重建方法,其首先利用计算机生成一幅彩色编码结构光图案,并进行多源时序化分层处理,接着对多源时序化分层图案进行解码处理,组合得到调制的单幅彩色编码结构光图案,接着利用条纹匹配方法实现对编码特征点的匹配,最后利用三角测量方法实现编码特征点的三维深度信息值解算。
本发明的技术方案是这样实现的:一种高适应性的彩色物体三维重建方法,其特征在于:相机和投影仪固定在三脚支架上,并通过电缆将相机与计算机进行连接,通过电缆将投影仪与计算机进行连接;
具体的重建步骤如下:
步骤1、多源时序分层投影编码图案的设计
步骤1.1、通过计算机对颜色码进行编码设计,选择的颜色分别为:红色(255,0,0)对应的编码序号为1,绿色(0,255,0)对应的编码序号为2,蓝色(0,0,255)对应的编码序号为3,青色(0,255,255)对应的编码序号为4,品红色(255,0,255)对应的编码序号为5,黄色(255,255,0)对应的编码序号为6,白色(255,255,255)对应的编码序号为7;利用DeBurijng的伪随机特性和颜色码序号进行生成一幅7元3级的彩色结构光条纹编码图像stru_col,其中图像stru_col的背景色为黑色信息值,彩色条纹的宽度值设定为6个像素,相邻条纹之间的间隔为3个像素,图像stru_col的分辨率为1024pixel×768pixel;
步骤1.2、利用openCV 2.4.10的split函数对图像stru_col进行分层处理得到三幅图像分别为stru_R,stru_G,stru_B;接着利用openCV 2.4.10中的函数cvtColor对图像stru_col进行灰度化处理得到图像stru_graysca,同时利用openCV 2.4.10中的函数threshold对图像stru_graysca进行阈值和二值化的处理,得到图像stru_W,该图像只含有纯白色条纹背景为纯黑色的图像信息;
步骤2、通过计算机将上述的多源时序分层编码图像stru_W、stru_R,stru_G,stru_B传递给投影仪进行依次投射到待测彩色物体的表面上,并通过相机对待测彩色物体表面上的调制图案信息进行采集依次得到调制图像cam_W、cam_R,cam_G,cam_B;接着关闭投影仪,利用相机采集待测彩色物体的纹理色彩信息,得到背景图像back_obj;
步骤3、利用openCV 2.4.10的subtract函数依次将调制图像cam_W、cam_R,cam_G,cam_B分别与图像back_obj进行差值运算,得到背景差值图像cam_diffW、cam_diffR,cam_diffG,cam_diffB;
步骤4、将背景差值图像cam_diffW、cam_diffR,cam_diffG,cam_diffB中的像素点按照从上到下,从左到右的顺序分别存储在矩阵cam_marryW,cam_marryR,cam_marryG,cam_marryB中,这些矩阵大小都为N行,M列;
步骤5、在矩阵cam_marryW中的第i行,第j列矩阵值cam_marryW(i,j),其中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mwr(i,j)、mwg(i,j)、mwb(i,j),即cam_marryW(i,j)=(mwr(i,j),mwg(i,j),mwb(i,j));
利用公式
dif1_WR(i,j)=mwr(i+1,j)-mwr(i-1,j)+mwr(i+2,j)-mwr(i-2,j);
dif1_WG(i,j)=mwg(i+1,j)-mwg(i-1,j)+mwg(i+2,j)-mwg(i-2,j);,
dif1_WB(i,j)=mwb(i+1,j)-mwb(i-1,j)+mwb(i+2,j)-mwb(i-2,j);
对背景差值图像cam_diffW进行一阶差分处理,得到在R,G,B三个通道下的一阶滤波差分dif1_WR(i,j),dif1_WG(i,j)和dif1_WB(i,j)。
接着利用公式,
g_marry(i,j)=dif1_WR(i,j)^2+dif1_WG(i,j)^2+dif1_WB(i,j)^2
对R,G,B三个通道下的一阶滤波差分dif1_WR(i,j),dif1_WG(i,j)、dif1_WB(i,j)进行平方和处理,得到三通道的一阶滤波差分平滑和矩阵g_marry(i,j)。
利用公式
dif1_gm(i,j)=g_marry(i,j)(i+1,j)-g_marry(i,j)(i-1,j)
+g_marry(i,j)(i+2,j)-g_marry(i,j)(i-2,j);
dif2_gm(i,j)=dif1_gm(i,j)(i+1,j)-dif1_gm(i,j)(i-1,j)
+dif1_gm(i,j)(i+2,j)-dif1_gm(i,j)(i-2,j);
求解矩阵g_marry的一阶差分矩阵dif1_g(imj)和二阶差分矩阵dif2_g(imj),为了能够对调制条纹的中心线进行提取,对矩阵dif1_gm(i,j)和dif2_gm(i,j)中的值进行判断,定义矩阵CI_marry;
当满足
(dif1_gm(i-1,j)>0&&dif1_gm(i+1,j)<0)
||(dif1_gm(i-1,j)<0&&dif1_gm(i+1,j)>0)
&&(dif2_gm(i,j)<0)
时,矩阵CI_marry(i,j)=(255,255,255),否则矩阵CI_marry(i,j)=(0,0,0);
步骤6、矩阵cam_marryR中的第i行,第j列矩阵值cam_marryR(i,j),中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mrr(i,j)、mrg(i,j)、mrb(i,j),即cam_marryR(i,j)=(mrr(i,j),mrg(i,j),mrb(i,j));矩阵cam_marryG中的第i行,第j列矩阵值cam_marryG(i,j),其中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mgr(i,j)、mgg(i,j)、mgb(I,j),即cam_marryG(i,j)=(mgr(i,j),mgg(i,j),mgb(i,j));矩阵cam_marryB中的第i行,第j列矩阵值cam_marryB(i,j),其中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mbr(i,j)、mbg(i,j)、mbb(I,j),即cam_marryB(i,j)=(mbr(i,j),mbg(i,j),mbb(i,j));
利用公式
YR_marry(i,j)=0.299*mrr(i,j)+0.587*mrg(i,j)+0.114*mrb(i,j);
YG_marry(i,j)=0.299*mgr(i,j)+0.587*mgg(i,j)+0.114*mgb(i,j);
YB_marry(i,j)=0.299*mbr(i,j)+0.587*mbg(i,j)+0.114*mbb(i,j);
得到在R通道、G通道、B通道中的亮度信息值矩阵YR_marry、YG_marry、YB_marry,定义矩阵Red_marry、Green_marry、Blue_marry,接着利用公式
dif1_yr(i,j)=YR_marry(i,j)(i+1,j)-YR_marry(i,j)(i-1,j)
+YR_marry(i,j)(i+2,j)-YR_marry(i,j)(i-2,j);
得到R通道下的亮度信息值矩阵YR_marry对应的一阶滤波差分矩阵dif1_yr,
dif2_yr(i,j)=dif1_yr(i,j)(i+1,j)-dif1_yr(i,j)(i-1,j)
+dif1_yr(i,j)(i+2,j)-dif1_yr(i,j)(i-2,j);
得到R通道下的亮度信息值矩阵YR_marry对应的二阶滤波差分矩阵dif2_yr,如果dif2_yr(i,j)>0,则Red_marry(i,j)=0;否则,Red_marry(i,j)=255;同理,利用公式
dif1_yg(i,j)=YG_marry(i,j)(i+1,j)-YG_marry(i,j)(i-1,j)
+YG_marry(i,j)(i+2,j)-YG_marry(i,j)(i-2,j);
得到G通道下的亮度信息值矩阵YG_marry对应的一阶滤波差分矩阵dif1_yg,dif2_yg(i,j)=dif1_yg(i,j)(i+1,j)-dif1_yg(i,j)(i-1,j)
+dif1_yg(i,j)(i+2,j)-dif1_yg(i,j)(i-2,j);
得到G通道下的亮度信息值矩阵YG_marry对应的二阶滤波差分矩阵dif2_yg,如果dif2_yg(i,j)>0,则Green_marry(i,j)=0;否则,Green_marry(i,j)=255;
同理,利用公式
dif1_yb(i,j)=YB_marry(i,j)(i+1,j)-YB_marry(i,j)(i-1,j)
+YB_marry(i,j)(i+2,j)-YB_marry(i,j)(i-2,j);
得到B通道下的亮度信息值矩阵YB_marry对应的一阶滤波差分矩阵dif1_yb,
dif2_yb(i,j)=dif1_yb(i,j)(i+1,j)-dif1_yb(i,j)(i-1,j)
+dif1_yb(i,j)(i+2,j)-dif1_yb(i,j)(i-2,j);
得到B通道下的亮度信息值矩阵YB_marry对应的二阶滤波差分矩阵dif2_yb,如果dif2_yb(i,j)>0,则Blue_marry(i,j)=0;否则,Blue_marry(i,j)=255;
步骤7、当CI_marry(i,j)=255时,对矩阵Red_marry、Green_marry、Blue_marry中的值对矩阵CI_marry进行重新赋值,即CI_marry(i,j)=(Red_marry(i,j),Green_marry(i,j),Blue_marry(i,j));
步骤8、通过步骤2到步骤7即可得到编码彩色结构光条纹图案在理论上对应的调制条纹图像对应矩阵CI_marry;
步骤9、利用基于彩色结构光的匹配方法对矩阵CI_marry和图像stru_col对应的矩阵stru_marry进行匹配确认点的唯一性,接着利用结构光的三角测量原理对匹配完的点进行三维信息值解算,从而实现对彩色物体的三维重建。
利用以上步骤可以实现对彩色物体的三维重建,本发明通过对原始编码彩色结构光进行多源时序分层处理得到自含有黑白颜色码信息值,从而避免了彩色物体纹理对颜色产生干扰的问题,通过接对多源时序化分层图案进行解码处理,组合得到调制的单幅彩色编码结构光图案,接着利用条纹匹配方法实现对编码特征点的匹配,最后利用三角测量方法实现编码特征点的三维深度信息值解算。
本发明的积极效果是避免了彩色物体对彩色编码结构光图案产生颜色码干扰,以及减少投影仪投射的编码图案,通过对单幅彩色编码结构光图案进行时序分层处理,得到4幅只具有黑白颜色码图案信息,然后在解码过程中,将上述调制的时序分层图案进行解码组合构建成调制的彩色编码图案,从而实现类似单幅彩色编码结构光实现过程,而且在一定程度上减少了投影仪投射的编码图案数量。
附图说明
图1为发明的结构示意图,其中计算机1、三脚支架2、相机3、投影仪4、彩色待测物体5。
具体实施方式
下面结合附图对本发明做进一步的描述:如图1所示,为一种高适应性的彩色物体三维重建方法,其中计算机1、三脚支架2、相机3、投影仪4、彩色待测物体5;其中相机3和投影仪4固定在三脚支架2上,并通过电缆将相机3与计算机1进行连接,通过电缆将投影仪3与计算机1进行连接。
具体的步骤如下:
步骤1、多源时序分层投影编码图案的设计
步骤1.1、通过计算机1对颜色码进行编码设计,本发明选择颜色分别为:红色(255,0,0)对应的编码序号为1,绿色(0,255,0)对应的编码序号为2,蓝色(0,0,255)对应的编码序号为3,青色(0,255,255)对应的编码序号为4,品红色(255,0,255)对应的编码序号为5,黄色(255,255,0)对应的编码序号为6,白色(255,255,255)对应的编码序号为7。利用De Burijng的伪随机特性和颜色码序号进行生成一幅7元3级的彩色结构光条纹编码图像stru_col,其中图像stru_col的背景色为黑色信息值,彩色条纹的宽度值设定为6个像素,相邻条纹之间的间隔为3个像素,图像stru_col的分辨率为1024pixel×768pixel。
步骤1.2、利用openCV 2.4.10的split函数对图像stru_col进行分层处理得到三幅图像分别为stru_R,stru_G,stru_B;接着利用openCV 2.4.10中的函数cvtColor对图像stru_col进行灰度化处理得到图像stru_graysca,同时利用openCV 2.4.10中的函数threshold对图像stru_graysca进行阈值和二值化的处理,得到图像stru_W,该图像只含有纯白色条纹背景为纯黑色的图像信息。
步骤2、通过计算机1将上述的多源时序分层编码图像stru_W、stru_R,stru_G,stru_B传递给投影仪4进行依次投射到待测彩色物体5的表面上,并通过相机3对待测彩色物体5表面上的调制图案信息进行采集依次得到调制图像cam_W、cam_R,cam_G,cam_B。接着关闭投影仪4,利用相机3采集待测彩色物体5的纹理色彩信息,得到背景图像back_obj。
步骤3、利用openCV 2.4.10的subtract函数依次将调制图像cam_W、cam_R,cam_G,cam_B分别与图像back_obj进行差值运算,得到背景差值图像cam_diffW、cam_diffR,cam_diffG,cam_diffB;
步骤4、将背景差值图像cam_diffW、cam_diffR,cam_diffG,cam_diffB中的像素点按照从上到下,从左到右的顺序分别存储在矩阵cam_marryW,cam_marryR,cam_marryG,cam_marryB中,这些矩阵大小都为N行,M列;
步骤5、在矩阵cam_marryW中的第i行,第j列矩阵值cam_marryW(i,j),其中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mwr(i,j)、mwg(i,j)、mwb(i,j),即cam_marryW(i,j)=(mwr(i,j),mwg(i,j),mwb(i,j));
利用公式
dif1_WR(i,j)=mwr(i+1,j)-mwr(i-1,j)+mwr(i+2,j)-mwr(i-2,j);
dif1_WG(i,j)=mwg(i+1,j)-mwg(i-1,j)+mwg(i+2,j)-mwg(i-2,j);,
dif1_WB(i,j)=mwb(i+1,j)-mwb(i-1,j)+mwb(i+2,j)-mwb(i-2,j);
对背景差值图像cam_diffW进行一阶差分处理,得到在R,G,B三个通道下的一阶滤波差分dif1_WR(i,j),dif1_WG(i,j)和dif1_WB(i,j)。
接着利用公式,
g_marry(i,j)=dif1_WR(i,j)^2+dif1_WG(i,j)^2+dif1_WB(i,j)^2
对R,G,B三个通道下的一阶滤波差分dif1_WR(i,j),dif1_WG(i,j)、dif1_WB(i,j)进行平方和处理,得到三通道的一阶滤波差分平滑和矩阵g_marry(i,j)。
利用公式
dif1_gm(i,j)=g_marry(i,j)(i+1,j)-g_marry(i,j)(i-1,j)
+g_marry(i,j)(i+2,j)-g_marry(i,j)(i-2,j);
dif2_gm(i,j)=dif1_gm(i,j)(i+1,j)-dif1_gm(i,j)(i-1,j)
+dif1_gm(i,j)(i+2,j)-dif1_gm(i,j)(i-2,j);
求解矩阵g_marry的一阶差分矩阵dif1_gm(i,j)和二阶差分矩阵dif2_gm(i,j),为了能够对调制条纹的中心线进行提取,对矩阵dif1_gm(i,j)和dif2_gm(i,j)中的值进行判断,定义矩阵CI_marry;
当满足
(dif1_gm(i-1,j)>0&&dif1_gm(i+1,j)<0)
||(dif1_gm(i-1,j)<0&&dif1_gm(i+1,j)>0)
&&(dif2_gm(i,j)<0)
时,矩阵CI_marry(i,j)=(255,255,255),否则矩阵CI_marry(i,j)=(0,0,0);
步骤6、矩阵cam_marryR中的第i行,第j列矩阵值cam_marryR(i,j),中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mrr(i,j)、mrg(i,j)、mrb(i,j),即cam_marryR(i,j)=(mrr(i,j),mrg(i,j),mrb(i,j));矩阵cam_marryG中的第i行,第j列矩阵值cam_marryG(i,j),其中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mgr(i,j)、mgg(i,j)、mgb(I,j),即cam_marryG(i,j)=(mgr(i,j),mgg(i,j),mgb(i,j));矩阵cam_marryB中的第i行,第j列矩阵值cam_marryB(i,j),其中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mbr(i,j)、mbg(i,j)、mbb(I,j),即cam_marryB(i,j)=(mbr(i,j),mbg(i,j),mbb(i,j));
利用公式
YR_marry(i,j)=0.299*mrr(i,j)+0.587*mrg(i,j)+0.114*mrb(i,j);
YG_marry(i,j)=0.299*mgr(i,j)+0.587*mgg(i,j)+0.114*mgb(i,j);
YB_marry(i,j)=0.299*mbr(i,j)+0.587*mbg(i,j)+0.114*mbb(i,j);
得到在R通道、G通道、B通道中的亮度信息值矩阵YR_marry、YG_marry、YB_marry,定义矩阵Red_marry、Green_marry、Blue_marry,接着利用公式
dif1_yr(i,j)=YR_marry(i,j)(i+1,j)-YR_marry(i,j)(i-1,j)
+YR_marry(i,j)(i+2,j)-YR_marry(i,j)(i-2,j);
得到R通道下的亮度信息值矩阵YR_marry对应的一阶滤波差分矩阵dif1_yr,
dif2_yr(i,j)=dif1_yr(i,j)(i+1,j)-dif1_yr(i,j)(i-1,j)
+dif1_yr(i,j)(i+2,j)-dif1_yr(i,j)(i-2,j);
得到R通道下的亮度信息值矩阵YR_marry对应的二阶滤波差分矩阵dif2_yr,如果dif2_yr(i,j)>0,则Red_marry(i,j)=0;否则,Red_marry(i,j)=255;同理,利用公式
dif1_yg(i,j)=YG_marry(i,j)(i+1,j)-YG_marry(i,j)(i-1,j)
+YG_marry(i,j)(i+2,j)-YG_marry(i,j)(i-2,j);
得到G通道下的亮度信息值矩阵YG_marry对应的一阶滤波差分矩阵dif1_yg,
dif2_yg(i,j)=dif1_yg(i,j)(i+1,j)-dif1_yg(i,j)(i-1,j)
+dif1_yg(i,j)(i+2,j)-dif1_yg(i,j)(i-2,j);
得到G通道下的亮度信息值矩阵YG_marry对应的二阶滤波差分矩阵dif2_yg,如果dif2_yg(i,j)>0,则Green_marry(i,j)=0;否则,Green_marry(i,j)=255;
同理,利用公式
dif1_yb(i,j)=YB_marry(i,j)(i+1,j)-YB_marry(i,j)(i-1,j)
+YB_marry(i,j)(i+2,j)-YB_marry(i,j)(i-2,j);
得到B通道下的亮度信息值矩阵YB_marry对应的一阶滤波差分矩阵dif1_yb,
dif2_yb(i,j)=dif1_yb(i,j)(i+1,j)-dif1_yb(i,j)(i-1,j)
+dif1_yb(i,j)(i+2,j)-dif1_yb(i,j)(i-2,j);
得到B通道下的亮度信息值矩阵YB_marry对应的二阶滤波差分矩阵dif2_yb,如果dif2_yb(i,j)>0,则Blue_marry(i,j)=0;否则,Blue_marry(i,j)=255;
步骤7、当CI_marry(i,j)=255时,对矩阵Red_marry、Green_marry、Blue_marry中的值对矩阵CI_marry进行重新赋值,即CI_marry(i,j)=(Red_marry(i,j),Green_marry(i,j),Blue_marry(i,j))。
步骤8、通过步骤2到步骤7即可得到编码彩色结构光条纹图案在理论上对应的调制条纹图像对应矩阵CI_marry。
步骤9、利用基于彩色结构光的匹配方法对矩阵CI_marry和图像stru_col对应的矩阵stru_marry进行匹配确认点的唯一性,接着利用结构光的三角测量原理对匹配完的点进行三维信息值解算,从而实现对彩色物体的三维重建。
利用以上步骤可以实现对彩色物体的三维重建,本发明通过对原始编码彩色结构光进行多源时序分层处理得到自含有黑白颜色码信息值,从而避免了彩色物体纹理对颜色产生干扰的问题,通过接对多源时序化分层图案进行解码处理,组合得到调制的单幅彩色编码结构光图案,接着利用条纹匹配方法实现对编码特征点的匹配,最后利用三角测量方法实现编码特征点的三维深度信息值解算。

Claims (1)

1.一种高适应性的彩色物体三维重建方法,其特征在于:相机和投影仪固定在三脚支架上,并通过电缆将相机与计算机进行连接,通过电缆将投影仪与计算机进行连接;
具体的重建步骤如下:
步骤1、多源时序分层投影编码图案的设计
步骤1.1、通过计算机对颜色码进行编码设计,选择的颜色分别为:红色(255,0,0)对应的编码序号为1,绿色(0,255,0)对应的编码序号为2,蓝色(0,0,255)对应的编码序号为3,青色(0,255,255)对应的编码序号为4,品红色(255,0,255)对应的编码序号为5,黄色(255,255,0)对应的编码序号为6,白色(255,255,255)对应的编码序号为7;利用De Burijng的伪随机特性和颜色码序号进行生成一幅7元3级的彩色结构光条纹编码图像stru_col,其中图像stru_col的背景色为黑色信息值,彩色条纹的宽度值设定为6个像素,相邻条纹之间的间隔为3个像素,图像stru_col的分辨率为1024pixel×768pixel;
步骤1.2、利用openCV 2.4.10的split函数对图像stru_col进行分层处理得到三幅图像分别为stru_R,stru_G,stru_B;接着利用openCV 2.4.10中的函数cvtColor对图像stru_col进行灰度化处理得到图像stru_graysca,同时利用openCV 2.4.10中的函数threshold对图像stru_graysca进行阈值和二值化的处理,得到图像stru_W,该图像只含有纯白色条纹背景为纯黑色的图像信息;
步骤2、通过计算机将上述的多源时序分层编码图像stru_W、stru_R,stru_G,stru_B传递给投影仪进行依次投射到待测彩色物体的表面上,并通过相机对待测彩色物体表面上的调制图案信息进行采集依次得到调制图像cam_W、cam_R,cam_G,cam_B;接着关闭投影仪,利用相机采集待测彩色物体的纹理色彩信息,得到背景图像back_obj;
步骤3、利用openCV 2.4.10的subtract函数依次将调制图像cam_W、cam_R,cam_G,cam_B分别与图像back_obj进行差值运算,得到背景差值图像cam_diffW、cam_diffR,cam_diffG,cam_diffB;
步骤4、将背景差值图像cam_diffW、cam_diffR,cam_diffG,cam_diffB中的像素点按照从上到下,从左到右的顺序分别存储在矩阵cam_marryW,cam_marryR,cam_marryG,cam_marryB中,这些矩阵大小都为N行,M列;
步骤5、在矩阵cam_marryW中的第i行,第j列矩阵值cam_marryW(i,j),其中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mwr(i,j)、mwg(i,j)、mwb(i,j),即cam_marryW(i,j)=(mwr(i,j),mwg(i,j),mwb(i,j));
利用公式
dif1_WR(i,j)=mwr(i+1,j)-mwr(i-1,j)+mwr(i+2,j)-mwr(i-2,j);
dif1_WG(i,j)=mwg(i+1,j)-mwg(i-1,j)+mwg(i+2,j)-mwg(i-2,j);,
dif1_WB(i,j)=mwb(i+1,j)-mwb(i-1,j)+mwb(i+2,j)-mwb(i-2,j);
对背景差值图像cam_diffW进行一阶差分处理,得到在R,G,B三个通道下的一阶滤波差分dif1_WR(i,j),dif1_WG(i,j)和dif1_WB(i,j);
接着利用公式,
g_marry(i,j)=dif1_WR(i,j)^2+dif1_WG(i,j)^2+dif1_WB(i,j)^2
对R,G,B三个通道下的一阶滤波差分dif1_WR(i,j),dif1_WG(i,j)、dif1_WB(i,j)进行平方和处理,得到三通道的一阶滤波差分平滑和矩阵g_marry(i,j);
利用公式
dif1_gm(i,j)=g_marry(i,j)(i+1,j)-g_marry(i,j)(i-1,j)
+g_marry(i,j)(i+2,j)-g_marry(i,j)(i-2,j);
dif2_gm(i,j)=dif1_gm(i,j)(i+1,j)-dif1_gm(i,j)(i-1,j)
+dif1_gm(i,j)(i+2,j)-dif1_gm(i,j)(i-2,j);
求解矩阵g_marry的一阶差分矩阵dif1_g(imj)和二阶差分矩阵dif2_g(imj),为了能够对调制条纹的中心线进行提取,对矩阵dif1_gm(i,j)和dif2_gm(i,j)中的值进行判断,定义矩阵CI_marry;
当满足
(dif1_gm(i-1,j)>0&&dif1_gm(i+1,j)<0)
||(dif1_gm(i-1,j)<0&&dif1_gm(i+1,j)>0)
&&(dif2_gm(i,j)<0)
时,矩阵CI_marry(i,j)=(255,255,255),否则矩阵CI_marry(i,j)=
(0,0,0);
步骤6、矩阵cam_marryR中的第i行,第j列矩阵值cam_marryR(i,j),中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mrr(i,j)、mrg(i,j)、mrb(i,j),即cam_marryR(i,j)=(mrr(i,j),mrg(i,j),mrb(i,j));矩阵cam_marryG中的第i行,第j列矩阵值cam_marryG(i,j),其中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mgr(i,j)、mgg(i,j)、mgb(I,j),即cam_marryG(i,j)=(mgr(i,j),mgg(i,j),mgb(i,j));矩阵cam_marryB中的第i行,第j列矩阵值cam_marryB(i,j),其中i=1,2,…N,j=1,2…M;其存储的R通道、G通道、B通道信息值分别为mbr(i,j)、mbg(i,j)、mbb(I,j),即cam_marryB(i,j)=(mbr(i,j),mbg(i,j),mbb(i,j));
利用公式
YR_marry(i,j)=0.299*mrr(i,j)+0.587*mrg(i,j)+0.114*mrb(i,j);
YG_marry(i,j)=0.299*mgr(i,j)+0.587*mgg(i,j)+0.114*mgb(i,j);
YB_marry(i,j)=0.299*mbr(i,j)+0.587*mbg(i,j)+0.114*mbb(i,j);
得到在R通道、G通道、B通道中的亮度信息值矩阵YR_marry、YG_marry、YB_marry,定义矩阵Red_marry、Green_marry、Blue_marry,接着利用公式
dif1_yr(i,j)=YR_marry(i,j)(i+1,j)-YR_marry(i,j)(i-1,j)
+YR_marry(i,j)(i+2,j)-YR_marry(i,j)(i-2,j);
得到R通道下的亮度信息值矩阵YR_marry对应的一阶滤波差分矩阵dif1_yr,
dif2_yr(i,j)=dif1_yr(i,j)(i+1,j)-dif1_yr(i,j)(i-1,j)
+dif1_yr(i,j)(i+2,j)-dif1_yr(i,j)(i-2,j);
得到R通道下的亮度信息值矩阵YR_marry对应的二阶滤波差分矩阵dif2_yr,
如果dif2_yr(ij)>0,则Red_marry(i,j)=0;否则,Red_marry(i,j)=255;
同理,利用公式
dif1_yg(i,j)=YG_marry(i,j)(i+1,j)-YG_marry(i,j)(i-1,j)
+YG_marry(i,j)(i+2,j)-YG_marry(i,j)(i-2,j);
得到G通道下的亮度信息值矩阵YG_marry对应的一阶滤波差分矩阵dif1_yg,
dif2_yg(i,j)=dif1_yg(i,j)(i+1,j)-dif1_yg(i,j)(i-1,j)
+dif1_yg(i,j)(i+2,j)-dif1_yg(i,j)(i-2,j);
得到G通道下的亮度信息值矩阵YG_marry对应的二阶滤波差分矩阵dif2_yg,
如果dif2_yg(i,j)>0,则Green_marry(i,j)=0;否则,Green_marry(i,j)=255;
同理,利用公式
dif1_yb(i,j)=YB_marry(i,j)(i+1,j)-YB_marry(i,j)(i-1,j)
+YB_marry(i,j)(i+2,j)-YB_marry(i,j)(i-2,j);
得到B通道下的亮度信息值矩阵YB_marry对应的一阶滤波差分矩阵dif1_yb,dif2_yb(i,j)=dif1_yb(i,j)(i+1,j)-dif1_yb(i,j)(i-1,j)
+dif1_yb(i,j)(i+2,j)-dif1_yb(i,j)(i-2,j);
得到B通道下的亮度信息值矩阵YB_marry对应的二阶滤波差分矩阵dif2_yb,如果dif2_yb(i,j)>0,则Blue_marry(i,j)=0;否则,Blue_marry(i,j)=255;
步骤7、当CI_marry(i,j)=255时,对矩阵Red_marry、Green_marry、Blue_marry中的值对矩阵CI_marry进行重新赋值,即CI_marry(i,j)=(Red_marry(i,j),Green_marry(i,j),Blue_marry(i,j));
步骤8、通过步骤2到步骤7即可得到编码彩色结构光条纹图案在理论上对应的调制条纹图像对应矩阵CI_marry;
步骤9、利用基于彩色结构光的匹配方法对矩阵CI_marry和图像stru_col对应的矩阵stru_marry进行匹配确认点的唯一性,接着利用结构光的三角测量原理对匹配完的点进行三维信息值解算,从而实现对彩色物体的三维重建;
利用以上步骤可以实现对彩色物体的三维重建,本发明通过对原始编码彩色结构光进行多源时序分层处理得到自含有黑白颜色码信息值,从而避免了彩色物体纹理对颜色产生干扰的问题,通过接对多源时序化分层图案进行解码处理,组合得到调制的单幅彩色编码结构光图案,接着利用条纹匹配方法实现对编码特征点的匹配,最后利用三角测量方法实现编码特征点的三维深度信息值解算。
CN201810417977.1A 2018-05-04 2018-05-04 一种高适应性的彩色物体三维重建方法 Expired - Fee Related CN108931209B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810417977.1A CN108931209B (zh) 2018-05-04 2018-05-04 一种高适应性的彩色物体三维重建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810417977.1A CN108931209B (zh) 2018-05-04 2018-05-04 一种高适应性的彩色物体三维重建方法

Publications (2)

Publication Number Publication Date
CN108931209A true CN108931209A (zh) 2018-12-04
CN108931209B CN108931209B (zh) 2019-12-31

Family

ID=64448542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810417977.1A Expired - Fee Related CN108931209B (zh) 2018-05-04 2018-05-04 一种高适应性的彩色物体三维重建方法

Country Status (1)

Country Link
CN (1) CN108931209B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855605A (zh) * 2018-12-14 2019-06-07 易思维(杭州)科技有限公司 一种光栅条纹图像投影序列的快速系统及方法
CN111023999A (zh) * 2019-12-26 2020-04-17 北京交通大学 一种基于空间编码结构光的稠密点云生成方法
CN112767537A (zh) * 2021-01-07 2021-05-07 华侨大学 一种基于rgb编码结构光的三维重建方法
CN112991516A (zh) * 2021-03-08 2021-06-18 武汉大学 一种用于三维重建的纹理编码影像生成方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218021A (ja) * 1996-02-14 1997-08-19 Topy Ind Ltd カラー識別ターゲット
JP2001307096A (ja) * 2000-04-25 2001-11-02 Fujitsu Ltd 画像認識装置及び方法
JP2005274567A (ja) * 2004-03-15 2005-10-06 Northrop Grumman Corp フォトグラメトリーを使用する自動形状計測用にカラーコード化された光
CN101089547A (zh) * 2007-07-11 2007-12-19 华中科技大学 一种基于彩色结构光的二维三频解相测量方法
CN201218726Y (zh) * 2008-04-23 2009-04-08 哈尔滨理工大学 基于彩色结构光的文物三维重建装置
CN101667303A (zh) * 2009-09-29 2010-03-10 浙江工业大学 一种基于编码结构光的三维重建方法
CN101673412A (zh) * 2009-09-29 2010-03-17 浙江工业大学 结构光三维视觉系统的光模板匹配方法
CN101697233A (zh) * 2009-10-16 2010-04-21 长春理工大学 一种基于结构光的三维物体表面重建方法
CN101840575A (zh) * 2010-04-30 2010-09-22 长春理工大学 一种将De Bruijn彩色结构光图像转化为赋权有向图模型和赋权有向图模型简化方法
CN101853385A (zh) * 2010-05-14 2010-10-06 长春理工大学 一种提取De Bruijn彩色结构光图像的中心彩色条纹的方法
CN102156877A (zh) * 2011-04-01 2011-08-17 长春理工大学 一种基于聚类分析的颜色分类方法
CN102519394A (zh) * 2011-11-18 2012-06-27 东南大学 一种高适应性彩色结构光三维测量方法
EP1485678B1 (en) * 2002-02-20 2016-01-06 Thomas D. Ditto Chromatic diffraction range finder
CN107421468A (zh) * 2017-08-01 2017-12-01 深圳市易尚展示股份有限公司 彩色三维扫描系统及方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218021A (ja) * 1996-02-14 1997-08-19 Topy Ind Ltd カラー識別ターゲット
JP2001307096A (ja) * 2000-04-25 2001-11-02 Fujitsu Ltd 画像認識装置及び方法
EP1485678B1 (en) * 2002-02-20 2016-01-06 Thomas D. Ditto Chromatic diffraction range finder
JP2005274567A (ja) * 2004-03-15 2005-10-06 Northrop Grumman Corp フォトグラメトリーを使用する自動形状計測用にカラーコード化された光
CN101089547A (zh) * 2007-07-11 2007-12-19 华中科技大学 一种基于彩色结构光的二维三频解相测量方法
CN201218726Y (zh) * 2008-04-23 2009-04-08 哈尔滨理工大学 基于彩色结构光的文物三维重建装置
CN101673412A (zh) * 2009-09-29 2010-03-17 浙江工业大学 结构光三维视觉系统的光模板匹配方法
CN101667303A (zh) * 2009-09-29 2010-03-10 浙江工业大学 一种基于编码结构光的三维重建方法
CN101697233A (zh) * 2009-10-16 2010-04-21 长春理工大学 一种基于结构光的三维物体表面重建方法
CN101840575A (zh) * 2010-04-30 2010-09-22 长春理工大学 一种将De Bruijn彩色结构光图像转化为赋权有向图模型和赋权有向图模型简化方法
CN101853385A (zh) * 2010-05-14 2010-10-06 长春理工大学 一种提取De Bruijn彩色结构光图像的中心彩色条纹的方法
CN102156877A (zh) * 2011-04-01 2011-08-17 长春理工大学 一种基于聚类分析的颜色分类方法
CN102519394A (zh) * 2011-11-18 2012-06-27 东南大学 一种高适应性彩色结构光三维测量方法
CN107421468A (zh) * 2017-08-01 2017-12-01 深圳市易尚展示股份有限公司 彩色三维扫描系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FAN YANG ET AL: "Projected image correction technology research on autonomous-perception anisotropic surfaces", 《APPLIED OPTICS》 *
FAN YANG ET AL: "The research on multi-projection correction based on color coding grid array", 《AOPC 2017: OPTICAL STORAGE AND DISPLAY TECHNOLOGY》 *
范静涛等: "一种新的 De Bruijn 彩色结构光解码技术研究", 《电子学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855605A (zh) * 2018-12-14 2019-06-07 易思维(杭州)科技有限公司 一种光栅条纹图像投影序列的快速系统及方法
CN109855605B (zh) * 2018-12-14 2020-12-08 易思维(杭州)科技有限公司 一种光栅条纹图像投影序列的快速系统及方法
CN111023999A (zh) * 2019-12-26 2020-04-17 北京交通大学 一种基于空间编码结构光的稠密点云生成方法
CN111023999B (zh) * 2019-12-26 2020-12-01 北京交通大学 一种基于空间编码结构光的稠密点云生成方法
CN112767537A (zh) * 2021-01-07 2021-05-07 华侨大学 一种基于rgb编码结构光的三维重建方法
CN112991516A (zh) * 2021-03-08 2021-06-18 武汉大学 一种用于三维重建的纹理编码影像生成方法

Also Published As

Publication number Publication date
CN108931209B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN108931209A (zh) 一种高适应性的彩色物体三维重建方法
CN110686599B (zh) 基于彩色格雷码结构光的三维测量方法、系统、装置
CN101871773B (zh) 同步色相相移转换方法以及其三维形貌量测系统
CN104390607B (zh) 基于相位编码的彩色结构光快速三维测量方法
CN108332670B (zh) 一种融合rgb通道正反格雷码及条纹块平移的结构光系统编码方法
CN106997581A (zh) 一种利用深度学习重建高光谱图像的方法
CN108242064A (zh) 基于面阵结构光系统的三维重建方法及系统
CN201218726Y (zh) 基于彩色结构光的文物三维重建装置
CN108592823A (zh) 一种基于双目视觉彩色条纹编码的解码方法
CN108109201A (zh) 复杂颜色表面物体的三维重建方法和系统
CN102334006A (zh) 用于三维计量系统的强度和彩色显示
CN109297435A (zh) 一种反向抵消非线性误差的彩色数字光栅编码方法
CN107036556A (zh) 基于分段量化相位编码的结构光三维测量方法
CN109540023B (zh) 基于二值网格编码模板结构光的物体表面深度值测量方法
CN101504277A (zh) 一种光学三维传感获取物体三维图像的方法
CN105096286A (zh) 遥感图像的融合方法及装置
CN101063605A (zh) 基于二维彩色光编码的实时三维视觉系统
CN104729427B (zh) 一种自适应多频时空彩色编码的光学三维轮廓测量方法
CN107657646B (zh) 一种半伪随机编码图案及其生成方法和系统
CN105662632A (zh) 一种用于牙颌模型的颜色信息扫描装置及方法
CN103297703A (zh) 多光谱图像获取方法
CN102184555A (zh) 一种De Bruijn彩色结构光编码图像的中心彩色条纹的颜色聚类化方法
CN102156877A (zh) 一种基于聚类分析的颜色分类方法
CN108683918B (zh) 基于彩色结构光的多源时序分层编码方法
CN104217446A (zh) 一种基于边缘检测的彩色结构光解码方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191231

CF01 Termination of patent right due to non-payment of annual fee