CN108929109A - 一种具有npo特性的高压陶瓷电容器材料及其制备方法 - Google Patents

一种具有npo特性的高压陶瓷电容器材料及其制备方法 Download PDF

Info

Publication number
CN108929109A
CN108929109A CN201810683137.XA CN201810683137A CN108929109A CN 108929109 A CN108929109 A CN 108929109A CN 201810683137 A CN201810683137 A CN 201810683137A CN 108929109 A CN108929109 A CN 108929109A
Authority
CN
China
Prior art keywords
temperature coefficient
molar ratio
ceramic
uniformly mixed
npo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810683137.XA
Other languages
English (en)
Other versions
CN108929109B (zh
Inventor
齐开丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhiluopan Intelligent Electric Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810683137.XA priority Critical patent/CN108929109B/zh
Publication of CN108929109A publication Critical patent/CN108929109A/zh
Application granted granted Critical
Publication of CN108929109B publication Critical patent/CN108929109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种具有NPO特性的高压陶瓷电容器材料及其制备方法,属于高压陶瓷材料技术领域,该陶瓷材料的化学成分为:BaNd2Ti5O14、PbNb2O6、Bi2O3、PbO、BaO、SiO2,各组分的摩尔比例为:32~43:38~52:1~2:3~6:4~6:6~10。本方法将具有负温度系数的BaNd2Ti5O14陶瓷相和具有正温度系数的钨青铜结构PbNb2O6陶瓷相(室温附近)复合实现小的温度系数,同时通过低熔点玻璃的添加,降低烧结温度,减少两陶瓷相之间的反应,保证高的介电常数。本发明陶瓷材料具有95‑121的介电常数、小于0.002的介电损耗以及<±30ppm/℃的温度系数,适合应用于电子式电压互感器用电容器。

Description

一种具有NPO特性的高压陶瓷电容器材料及其制备方法
技术领域
本发明属于高压陶瓷材料技术领域,特别涉及一种具有NPO(Negative-Positive-Zero)特性高压陶瓷电容器介质及其制备方法。
背景技术
电压互感器是电力系统中用于电能计量和继电保护的重要设备之一,其测量准确度及可靠性对电力系统的安全、稳定和经济运行有着重要的影响。随着配电网智能化的大力发展,传统的电磁式电压互感器因其绝缘复杂、体积大、测量线性范围窄以及易发生铁磁谐振等问题,严重制约了配电网的数字化建设。电子式电压互感器近些年在智能配电网建设中得到了比较好的发展和应用。其中,基于陶瓷电容分压原理的电子式电压互感器由于体积小、绝缘强度高、寿命长以及精度高等优势成为新一代中压配电网用电压互感器的发展主流。
NPO高压陶瓷电容器由于具有温度系数小、损耗低等特点成为电子式电压互感器首选电容。目前,用于制备NPO陶瓷电容器的陶瓷介电常数较小,一般不超过100。其中,具有钨青铜结构的BaO-Ln2O3-TiO2体系(简称BLT体系)陶瓷因具有相对较大的介电常数而得到广泛研究,其中,Ln2O3以La2O3、Sm2O3、Nd2O3为主,报道的介电常数可以达到80-90,温度系数<±30ppm/℃。而BLT体系陶瓷的烧结温度普遍较高,致密化烧结难度大,不利于大批量生产,降低其烧结温度是重要的研究方向。目前,普遍采用的方法是选择低熔点玻璃或氧化物作为烧结助剂,来实现陶瓷的低温致密烧结。而添加低熔点助烧剂在降低烧结温度的同时,制得的陶瓷的介电性能也有不同程度的下降,其主要原因是:陶瓷的主晶相与玻璃相之间有化学反应产生,主晶相含量减少,或有杂质相产生;另外,玻璃相本身的介电常数较低,玻璃相的引入降低了陶瓷整体的介电常数。
发明内容
针对现有技术的不足,本发明的目的在于提供一种NPO特性的高压陶瓷电容器材料及其制备方法。本发明选择具有负温度系数的BaNd2Ti5O14陶瓷相和具有正温度系数的钨青铜结构的PbNb2O6陶瓷相复合实现小的温度系数,同时通过低熔点玻璃的添加,在保证降低烧结温度的前提下,减少了两陶瓷相之间的反应,保证了高的介电常数。
为实现上述目的,本发明采用以下技术手段:
本发明提出的一种具有NPO特性的高压陶瓷电容器材料,用于电子式电压互感器,其特征在于,该陶瓷材料各组分的摩尔比例如下:
本发明还提出上述具有NPO特性的高压陶瓷电容器材料的制备方法,其特征在于,该方法包括以下步骤:
(1)将BaO或BaCO3、Nd2O3、TiO2按照摩尔比例1:1:5混合均匀,在1050~1100℃的高温下煅烧1小时,形成具有负温度系数的陶瓷相粉体BaNd2Ti5O14
(2)将PbO、Nb2O5按照摩尔比例混合均匀,在900~950℃的高温下煅烧1小时,形成具有正温度系数的陶瓷相粉体PbNb2O6
(3)将Bi2O3、PbO、BaO或BaCO3、SiO2按照摩尔比例1~2:3~6:4~6:6~10混合均匀,在1200~1300℃的高温下熔融3小时,倒入去离子水中制得玻璃渣,球磨后获得玻璃粉体;
(4)将上述制备的三种粉体按照摩尔比例32~43:38~52:14~24混合均匀,干压成生坯,在1100~1150℃烧结3小时,制得具有NPO特性的高压电容器陶瓷材料。
本发明的特点及有益效果是:
本发明的NPO特性电容器陶瓷材料具有高介电常数(介电常数为95-121)、低介电损耗(<0.002)以及很小的电容温度系数(<±30ppm/℃),适合用作电子式电压互感器电容介质。本发明选择具有负温度系数的BaNd2Ti5O14陶瓷相和具有正温度系数钨青铜结构的PbNb2O6陶瓷相复合实现小的温度系数,同时通过低熔点玻璃的添加,降低烧结温度,减少两陶瓷相之间的反应,保证高的介电常数。
具体实施方式
本发明提出的一种具有NPO特性的高压电容器陶瓷材料,用于电子式电压互感器,该陶瓷材料各组分的摩尔比例如下:
本发明还提出上述陶瓷材料的制备方法,包括以下步骤:
(1)将BaO或BaCO3、Nd2O3、TiO2按照摩尔比例1:1:5混合均匀,在1050~1100℃的高温下煅烧1小时,形成具有负温度系数(-150~-300ppm/℃)的陶瓷相粉体BaNd2Ti5O14
(2)将PbO、Nb2O5按照摩尔比例1:1混合均匀,在900~950℃的高温下煅烧1小时,形成具有正温度系数(100-150ppm/℃)的陶瓷相粉体PbNb2O6
(3)将Bi2O3、PbO、BaO或BaCO3、SiO2按照摩尔比例1~2:3~6:4~6:6~10混合均匀,在1200~1300℃的高温下熔融3小时,倒入去离子水中制得玻璃渣,球磨8小时后获得玻璃粉体;
(4)将上述制备的三种粉体按照摩尔比例32~43:38~52:14~24混合均匀,干压成生坯,在1100~1150℃烧结3小时,制得具有NPO特性的高压电容器陶瓷材料。
该陶瓷材料的介电常数为95-121,介电损耗小于0.002,在-40℃~70℃的测试温度下介电常数温度系数为-28ppm/℃~+22ppm/℃。
以下通过具体实施例对本发明做进一步说明。
实施例1-3
(1)选择分析纯的BaCO3、Nd2O3、TiO2为原料,按照摩尔比例1:1:5进行分别配料,利用无水乙醇作为分散介质,氧化锆球作为研磨介质,在尼龙罐中采用三辊混料机混合12小时,将混合均匀的浆料在80℃烘箱中烘干,随后将混合均匀的粉体在烧结炉中1100℃烧结1小时,得到负温度系数的陶瓷相粉体BaNd2Ti5O14
(2)选择分析纯的PbO、Nb2O5为原料,按照摩尔比例1:1进行分别配料,利用无水乙醇作为分散介质,氧化锆球作为研磨介质,在尼龙罐中采用三辊混料机混合12小时,将混合均匀的浆料在80℃烘箱中烘干,随后将混合均匀的粉体在烧结炉中900℃煅烧1小时,得到正温度系数的陶瓷相粉体PbNb2O6
(3)选择分析纯的Bi2O3、PbO、BaCO3、SiO2为原料,按照表1中摩尔比例z:w:v:t进行分别配料,利用去离子水作为分散介质,氧化锆球作为研磨介质,在尼龙罐中采用三辊混料机混合3小时,将混合均匀的浆料在100℃烘箱中烘干,随后将混合均匀的粉体放入铂金坩埚中,在高温熔炼炉中1200℃熔融3小时,随后快速倒入去离子水中,得到玻璃渣,将玻璃渣利用行星球磨机破碎8小时,得到玻璃粉体。
(4)将制得的上述三种粉体按照表1中的摩尔比例x:y:(z+w+v+t)进行配料,利用去离子水作为分散介质,氧化锆球作为研磨介质,在尼龙罐中采用三辊混料机混合3小时,将混合均匀的浆料在100℃烘箱中烘干,随后将混合均匀的粉体进行造粒,干压成型圆片生坯,尺寸为Ф60×12mm,在马弗炉中1100℃烧结3小时,制得致密的瓷片。
实施例4-6
(1)选择分析纯的BaCO3、Nd2O3、TiO2为原料,按照摩尔比例1:1:5进行分别配料,利用无水乙醇作为分散介质,氧化锆球作为研磨介质,在尼龙罐中采用三辊混料机混合12小时,将混合均匀的浆料在80℃烘箱中烘干,随后将混合均匀的粉体在烧结炉中1050℃烧结1小时,得到负温度系数的陶瓷相粉体BaNd2Ti5O14
(2)选择分析纯的PbO、Nb2O5为原料,按照摩尔比例1:1进行分别配料,利用无水乙醇作为分散介质,氧化锆球作为研磨介质,在尼龙罐中采用三辊混料机混合12小时,将混合均匀的浆料在80℃烘箱中烘干,随后将混合均匀的粉体在烧结炉中950℃煅烧1小时,得到正温度系数的陶瓷相粉体PbNb2O6
(3)选择分析纯的Bi2O3、PbO、BaCO3、SiO2为原料,按照表1中摩尔比例z:w:v:t进行分别配料,利用去离子水作为分散介质,氧化锆球作为研磨介质,在尼龙罐中采用三辊混料机混合3小时,将混合均匀的浆料在100℃烘箱中烘干,随后将混合均匀的粉体放入铂金坩埚中,在高温熔炼炉中1300℃熔融3小时,随后快速倒入去离子水中,得到玻璃渣,将玻璃渣利用行星球磨机破碎8小时,得到玻璃粉体。
(4)将制得的上述三种粉体按照表1中的摩尔比例x:y:(z+w+v+t)进行配料,利用去离子水作为分散介质,氧化锆球作为研磨介质,在尼龙罐中采用三辊混料机混合3小时,将混合均匀的浆料在100℃烘箱中烘干,随后将混合均匀的粉体进行造粒,干压成型圆片生坯,尺寸为Ф60×12mm,在马弗炉中1150℃烧结3小时,制得致密的瓷片。
表1
x y z w v t
实施例1 32 47 1 6 4 10
实施例2 32 52 2 3 4 7
实施例3 35 48 2 4 5 6
实施例4 37 45 1 5 4 8
实施例5 40 42 2 3 6 7
实施例6 43 38 1 5 5 8
实施例有效性验证:
将实施例1-6中制备的陶瓷瓷片经过研磨、抛光,制得表面光滑的测试圆片。随后采用丝网印刷机,在瓷片两面印刷银浆料,烘干。在820℃烧结20分钟,完成银电极制备。最后,对瓷片进行性能测试。
首先利用精密阻抗分析仪测试各样品在室温和1kHz测试频率条件下的电容值、介电损耗值,并通过平行板电容器介电常数计算公式获得介电常数值。结合高低温烘箱,测试样品的电容随温度的变化曲线,测试温度范围为:-40℃~70℃。
表2为本发明各实施例制得的陶瓷材料的介电性能参数,可以看出,调整BaNd2Ti5O14和PbNb2O6陶瓷相的比例可以有效地调整本发明复合陶瓷材料的温度系数,随着BaNd2Ti5O14陶瓷相含量的增加,本发明复合陶瓷的温度系数逐渐从+22ppm/℃的温度系数变化到-28ppm/℃的负温度系数。低熔点玻璃相的引入有效降低了本发明复合材料的致密化温度,而且未引起两相过度反应,仅是玻璃成分中的部分阳离子进入了陶瓷相中,改善了陶瓷相性能,包括改善温度系数、降低陶瓷相的介电损耗。
表2

Claims (3)

1.一种具有NPO特性的高压陶瓷电容器材料,用于电子式电压互感器,其特征在于,该陶瓷材料各组分的摩尔比例如下:
2.根据权利要求1所述的具有NPO特性的高压陶瓷电容器材料,其特征在于,该陶瓷材料的介电常数为95-121,介电损耗小于0.002,介电常数温度系数为-28ppm/℃~+22ppm/℃。
3.一种根据权利要求1或2所述的具有NPO特性的高压陶瓷电容器材料的制备方法,其特征在于,该方法包括以下步骤:
(1)将BaO或BaCO3、Nd2O3、TiO2按照摩尔比例1:1:5混合均匀,在1050~1100℃的高温下煅烧1小时,形成具有负温度系数的陶瓷相粉体BaNd2Ti5O14
(2)将PbO、Nb2O5按照摩尔比例混合均匀,在900~950℃的高温下煅烧1小时,形成具有正温度系数的陶瓷相粉体PbNb2O6
(3)将Bi2O3、PbO、BaO或BaCO3、SiO2按照摩尔比例1~2:3~6:4~6:6~10混合均匀,在1200~1300℃的高温下熔融3小时,倒入去离子水中制得玻璃渣,球磨后获得玻璃粉体;
(4)将上述制备的三种粉体按照摩尔比例32~43:38~52:14~24混合均匀,干压成生坯,在1100~1150℃烧结3小时,制得具有NPO特性的高压电容器陶瓷材料。
CN201810683137.XA 2018-06-28 2018-06-28 一种具有npo特性的高压陶瓷电容器材料及其制备方法 Active CN108929109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810683137.XA CN108929109B (zh) 2018-06-28 2018-06-28 一种具有npo特性的高压陶瓷电容器材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810683137.XA CN108929109B (zh) 2018-06-28 2018-06-28 一种具有npo特性的高压陶瓷电容器材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108929109A true CN108929109A (zh) 2018-12-04
CN108929109B CN108929109B (zh) 2021-01-05

Family

ID=64446281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810683137.XA Active CN108929109B (zh) 2018-06-28 2018-06-28 一种具有npo特性的高压陶瓷电容器材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108929109B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018009686A1 (de) * 2018-11-30 2020-06-04 KlEFEL GmbH Hochfrequenz-Planartransformator mit einem ultrapermittiven Dielektrikum
CN111908918A (zh) * 2020-06-23 2020-11-10 太原理工大学 一种负温度系数陶瓷介质材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365121A (zh) * 2001-01-10 2002-08-21 株式会社村田制作所 非还原介电陶瓷和使用它的陶瓷电子元件
CN1574258A (zh) * 2003-06-03 2005-02-02 松下电器产业株式会社 电子元件安装设备及电子元件安装方法
WO2011083348A1 (pt) * 2009-12-11 2011-07-14 Universidade De Aveiro Dieléctrico compósito sintonizável e processo de fabrico

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365121A (zh) * 2001-01-10 2002-08-21 株式会社村田制作所 非还原介电陶瓷和使用它的陶瓷电子元件
CN1574258A (zh) * 2003-06-03 2005-02-02 松下电器产业株式会社 电子元件安装设备及电子元件安装方法
WO2011083348A1 (pt) * 2009-12-11 2011-07-14 Universidade De Aveiro Dieléctrico compósito sintonizável e processo de fabrico

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018009686A1 (de) * 2018-11-30 2020-06-04 KlEFEL GmbH Hochfrequenz-Planartransformator mit einem ultrapermittiven Dielektrikum
CN111908918A (zh) * 2020-06-23 2020-11-10 太原理工大学 一种负温度系数陶瓷介质材料及其制备方法

Also Published As

Publication number Publication date
CN108929109B (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN105198416B (zh) 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
CN104529430B (zh) 二氧化钛基复合陶瓷介电材料及其制备方法与应用
CN103265271B (zh) 频率温度系数可调低温烧结氧化铝陶瓷材料及制备方法
CN102531570A (zh) 一种高q值低温烧结微波介质陶瓷材料及制备方法
CN103408301B (zh) 一种超高压陶瓷电容器介质及其制备方法
CN102101774B (zh) 一种抗还原镍电极陶瓷介质材料
CN105174972A (zh) 一种玻璃/陶瓷纳米复合材料的制备方法
CN108929109A (zh) 一种具有npo特性的高压陶瓷电容器材料及其制备方法
CN107188557A (zh) 一种微波介质陶瓷材料及其制备方法
CN107382313B (zh) 一种超高品质因数、中低介电常数及近零温度系数的微波介质陶瓷及其制备方法
JP3737773B2 (ja) 誘電体セラミック組成物
CN111925187A (zh) 一种无铅高压中温烧结的锶铋钛基介质材料及制备方法
CN101570433A (zh) 具有较低烧结温度的微波介质陶瓷及其制备方法
CN103420674B (zh) 一种改善微波介电特性的钽离子取代铌酸钕陶瓷
CN107188563A (zh) 一种具有高品质因数的镁锆铌钽系微波介质陶瓷
CN105399405B (zh) 一种低介微波铁电陶瓷及其制备方法
Lian et al. Improved dielectric temperature stability and energy storage properties of BNT-BKT-based lead-free ceramics
KR100466072B1 (ko) 적층 세라믹 콘덴서용 유전체 조성물 및 이를 이용한 적층세라믹 콘덴서
CN110808163B (zh) 一种晶界层电容器的制备方法
CN105198409A (zh) 一种高储能密度钛酸锶钡基玻璃复相陶瓷的制备方法
Chen et al. Effect of Y2O3 and Dy2O3 on dielectric properties of Ba0. 7 Sr0. 3 TiO3 series capacitor ceramics
CN107500756A (zh) 一种高介电常数低损耗SrTiO3基介质材料及其制备方法
CN111925199A (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN107382314A (zh) 一种钡基复合钙钛矿结构的微波介质陶瓷
CN103102079A (zh) 一种具有高击穿场强的玻璃陶瓷电介质及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201216

Address after: 101500 room 501-2097, Development Zone office building, No.8, Xingsheng South Road, economic development zone, Miyun District, Beijing

Applicant after: BEIJING ZHILUOPAN INTELLIGENT ELECTRIC Co.,Ltd.

Address before: 102200 s98b, Longcheng garden, Changping District, Beijing

Applicant before: Qi Kaili

GR01 Patent grant
GR01 Patent grant