CN108921278B - 一种水表检定装置的台位差计算方法 - Google Patents

一种水表检定装置的台位差计算方法 Download PDF

Info

Publication number
CN108921278B
CN108921278B CN201810619480.8A CN201810619480A CN108921278B CN 108921278 B CN108921278 B CN 108921278B CN 201810619480 A CN201810619480 A CN 201810619480A CN 108921278 B CN108921278 B CN 108921278B
Authority
CN
China
Prior art keywords
neural network
water meter
wavelet neural
station
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810619480.8A
Other languages
English (en)
Other versions
CN108921278A (zh
Inventor
雷阳
刘鸿滨
陈祥
金晶
苏黎丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Metrology Institute
Original Assignee
Fujian Metrology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Metrology Institute filed Critical Fujian Metrology Institute
Priority to CN201810619480.8A priority Critical patent/CN108921278B/zh
Publication of CN108921278A publication Critical patent/CN108921278A/zh
Application granted granted Critical
Publication of CN108921278B publication Critical patent/CN108921278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks

Abstract

本发明提供了一种水表检定装置的台位差计算方法,所述方法包括如下步骤:步骤S1、建立水表检定装置台位差的小波神经网络模型;步骤S2、建立水表检定装置台位差的小波神经网络函数模型;步骤S3、建立混合遗传‑量子粒子群算法优化小波神经网络函数模型的参数。本发明的优点在于:通过小波神经网络克服台位差进行数学建模困难的问题,通过混合遗传‑量子粒子群算法将台位差的模型计算问题转化为小波神经网络的权值优化问题,简化了计算过程,当样本足够大时,可使台位差逼近于0。

Description

一种水表检定装置的台位差计算方法
技术领域
本发明涉及水表检定领域,特别指一种水表检定装置的台位差计算方法。
背景技术
台位差定义为两个不同的水表检定装置检定误差的差值。参考图1现有水表检定装置检定示意图,包括一工作量器1、一转子流量计2、一阀门3、一工作台4、一稳压水源5以及一被检水表6,待检定的水表的示值和工作量器的示值之间会有个差值,即为水表检定装置检定的误差,相同的水表在不同的水表检定装置上进行检定产生的误差不同,两个不同的水表检定装置检定误差的差值即为台位差。
目前,水表生产企业经常遇到这样的情况,出厂检验合格的水表批量送检时,部分水表经计量技术机构检定却又不合格,由此产生返厂维修调试增加了水表生产企业的成本,造成这种情况的原因就是不同的水表检定装置存在台位差。
产生台位差的原因有水表的结构、实验室的环境条件、检定装置的变化、检定人员的操作误差等等。产生台位差的原因多且关系复杂,导致很难建立具体的数学模型,并对其进行优化。
发明内容
本发明要解决的技术问题,在于提供一种水表检定装置的台位差计算方法,用来降低水表检定的台位差。
本发明是这样实现的:一种水表检定装置的台位差计算方法,所述方法包括如下步骤:
步骤S1、建立水表检定装置台位差的小波神经网络模型;
步骤S2、建立水表检定装置台位差的小波神经网络函数模型;
步骤S3、建立混合遗传-量子粒子群算法优化小波神经网络函数模型的参数。
进一步地,所述步骤S1具体为:建立水表检定装置台位差的小波神经网络模型,所述小波神经网络模型包括一输入层、一隐含层以及一输出层;
所述输入层包含m个输入层神经元ui,所述隐含层包含h个隐含层神经元
Figure BDA0001691615740000027
所述输出层包括1个输出层神经元τ;
其中m、h、i、j为大于0的正整数,且1≤i≤m、1≤j≤h、h≥m;输入层神经元ui为影响各水表检定装置检定误差的因素;隐含层神经元
Figure BDA0001691615740000028
表示用于拟合的参数;输出层神经元τ表示台位差;aj表示隐含层伸缩系数;bj表示隐含层平移系数。
进一步地,所述步骤S2具体为:建立水表检定装置台位差的小波神经网络函数模型:
Figure BDA0001691615740000021
Figure BDA0001691615740000022
Figure BDA0001691615740000023
σ(x)为Sigmoid函数,其中
Figure BDA0001691615740000024
Figure BDA0001691615740000025
Figure BDA0001691615740000026
为Marlet小波母函数,其中y=netj(u);
将水表检定装置示值误差的小波神经网络函数模型简化为τ(u)=f(uθij,bi,wj,bout,j,aj,bj);其中θij表示输入层权重,bi表示输入层阈值,wj表示隐含层权重,bout,j表示隐含层阈值。
进一步地,所述步骤S3具体为:建立混合遗传-量子粒子群算法优化θij,bi,wj,bout,j,aj,bj参数,使得小波神经网络函数模型输出的台位差逼近实际的台位差,即使J=|τ-τ’|取值逼近于0;其中τ’表示实际的台位差,J表示小波神经网络函数模型输出的台位差与实际的台位差之间的差值。
本发明的优点在于:
通过小波神经网络克服台位差进行数学建模困难的问题,通过混合遗传-量子粒子群算法将台位差的模型计算问题转化为小波神经网络的权值优化问题,简化了计算过程,当样本足够大时,可使台位差逼近于0。
附图说明
下面参照附图结合实施例对本发明作进一步的说明。
图1是现有水表检定装置检定示意图。
图2是本发明小波神经网络模型的网络结构图。
附图说明:
1-工作量器,2-转子流量计,3-阀门,4-工作台,5-稳压水源,6-被检水表。
具体实施方式
请参照图2所示,本发明一种水表检定装置的台位差计算方法的较佳实施例,包括如下步骤:
步骤S1、建立水表检定装置台位差的小波神经网络模型;
步骤S2、建立水表检定装置台位差的小波神经网络函数模型;
步骤S3、建立混合遗传-量子粒子群算法优化小波神经网络函数模型的参数。
所述步骤S1具体为:建立水表检定装置台位差的小波神经网络模型,小波神经网络具有强大的非线性逼近能力;所述小波神经网络模型包括一输入层、一隐含层以及一输出层;
所述输入层包含m个输入层神经元ui,所述隐含层包含h个隐含层神经元
Figure BDA0001691615740000031
所述输出层包括1个输出层神经元τ;
其中m、h、i、j为大于0的正整数,且1≤i≤m、1≤j≤h、h≥m;h的值越大,小波神经网络的计算精度越高,但训练的时间也越长,运算量也越大;输入层神经元ui为影响各水表检定装置检定误差的因素,如温度、压力、流量等;隐含层神经元
Figure BDA0001691615740000032
表示用于拟合的参数,该参数无实际意义,仅用于拟合;输出层神经元τ表示台位差;aj表示隐含层伸缩系数;bj表示隐含层平移系数。
所述步骤S2具体为:建立水表检定装置台位差的小波神经网络函数模型:
Figure BDA0001691615740000041
Figure BDA0001691615740000042
Figure BDA0001691615740000043
σ(x)为Sigmoid函数,其中
Figure BDA0001691615740000044
Figure BDA0001691615740000045
Figure BDA0001691615740000046
为Marlet小波母函数,其中y=netj(u);
将水表检定装置示值误差的小波神经网络函数模型简化为τ(u)=f(uθij,bi,wj,bout,j,aj,bj);其中θij表示输入层权重,bi表示输入层阈值,wj表示隐含层权重,bout,j表示隐含层阈值。
所述小波神经网络模型中,有(h+1)m个θij,bi参数连接输入层和隐含层,有2h个wj,bout,j参数连接隐含层和输出层,隐含层还包括2h个aj,bj参数;整个小波神经网络需要确定((4+m)h+m)个参数。
所述步骤S3具体为:建立混合遗传-量子粒子群算法优化θij,bi,wj,bout,j,aj,bj参数,使得小波神经网络函数模型输出的台位差逼近实际的台位差,即使J=|τ-τ’|取值逼近于0;其中τ’表示实际的台位差,J表示小波神经网络函数模型输出的台位差与实际的台位差之间的差值。
遗传(GA)算法是按照概率选择部分个体进行变异,变异是随机的、不具有方向性的;量子粒子群(QPSO)算法是充分利用个体的历史信息和群体的共享信息,对所有的个体进行确定方向的变异。
运用遗传(GA)算法,设置杂交概率PC、变异概率Pm和参数(θij,bi,wj,bout,j,aj,bj)的个数的初始化数值,随机计算出每个参数的初始值以及τ的初始值,并将初始值分别记为各自的历史最优解。
运用量子粒子群(QPSO)算法不断对θij,bi,wj,bout,j,aj,bj参数进行确定方向的变异(J的取值逼近于0的方向),并将每次变异的结果记录进历史数据,并更新θij,bi,wj,bout,j,aj,bj参数的历史最优解,以及τ的历史最优解,当变异次数达到预设值且J的精度达到要求,则结束变异。
综上所述,本发明的优点在于:
通过小波神经网络克服台位差进行数学建模困难的问题,通过混合遗传-量子粒子群算法将台位差的模型计算问题转化为小波神经网络的权值优化问题,简化了计算过程,当样本足够大时,可使台位差逼近于0。
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。

Claims (1)

1.一种水表检定装置的台位差计算方法,其特征在于:所述方法包括如下步骤:
步骤S1、建立水表检定装置台位差的小波神经网络模型,所述小波神经网络模型包括一输入层、一隐含层以及一输出层;
所述输入层包含m个输入层神经元ui,所述隐含层包含h个隐含层神经元
Figure FDA0003531412880000011
所述输出层包括1个输出层神经元τ;
其中m、h、i、j为大于0的正整数,且1≤i≤m、1≤j≤h、h≥m;输入层神经元ui为影响各水表检定装置检定误差的因素,所述因素至少包括温度、压力、流量;隐含层神经元
Figure FDA0003531412880000012
表示用于拟合的参数;输出层神经元τ表示台位差;aj表示隐含层伸缩系数;bj表示隐含层平移系数;
步骤S2、建立水表检定装置台位差的小波神经网络函数模型:
Figure FDA0003531412880000013
Figure FDA0003531412880000014
Figure FDA0003531412880000015
σ(x)为Sigmoid函数,其中
Figure FDA0003531412880000016
Figure FDA0003531412880000017
Figure FDA0003531412880000018
为Marlet小波母函数,其中y=netj(u);
将水表检定装置示值误差的小波神经网络函数模型简化为τ(u)=f(u|θij,bi,wj,bout,j,aj,bj);其中θij表示输入层权重,bi表示输入层阈值,wj表示隐含层权重,bout,j表示隐含层阈值;
步骤S3、建立混合遗传-量子粒子群算法优化小波神经网络函数模型的参数;
所述步骤S3具体为:建立混合遗传-量子粒子群算法优化θij,bi,wj,bout,j,aj,bj参数,使得小波神经网络函数模型输出的台位差逼近实际的台位差,即使J=|τ-τ’|取值逼近于0;其中τ’表示实际的台位差,J表示小波神经网络函数模型输出的台位差与实际的台位差之间的差值;
所述混合遗传-量子粒子群算法的优化过程如下:
运用遗传算法,设置杂交概率PC、变异概率Pm和参数(θij,bi,wj,bout,j,aj,bj)的个数的初始化数值,随机计算出每个参数的初始值以及τ的初始值,并将初始值分别记为各自的历史最优解;
运用量子粒子群算法不断对θij,bi,wj,bout,j,aj,bj参数进行确定方向的变异,并将每次变异的结果记录进历史数据,并更新θij,bi,wj,bout,j,aj,bj参数的历史最优解,以及τ的历史最优解,当变异次数达到预设值且J的精度达到要求,则结束变异。
CN201810619480.8A 2018-06-11 2018-06-11 一种水表检定装置的台位差计算方法 Active CN108921278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810619480.8A CN108921278B (zh) 2018-06-11 2018-06-11 一种水表检定装置的台位差计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810619480.8A CN108921278B (zh) 2018-06-11 2018-06-11 一种水表检定装置的台位差计算方法

Publications (2)

Publication Number Publication Date
CN108921278A CN108921278A (zh) 2018-11-30
CN108921278B true CN108921278B (zh) 2022-05-03

Family

ID=64420451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810619480.8A Active CN108921278B (zh) 2018-06-11 2018-06-11 一种水表检定装置的台位差计算方法

Country Status (1)

Country Link
CN (1) CN108921278B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117455860B (zh) * 2023-10-26 2024-04-09 宁波市宇星水表有限公司 水表出厂数据监控管理系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105139274A (zh) * 2015-08-16 2015-12-09 东北石油大学 基于量子粒子群与小波神经网络的输电线路覆冰预测方法
CN105444923A (zh) * 2015-11-18 2016-03-30 浙江工业大学 基于遗传算法优化最小二乘支持向量机的机械式温度仪表误差预测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105139274A (zh) * 2015-08-16 2015-12-09 东北石油大学 基于量子粒子群与小波神经网络的输电线路覆冰预测方法
CN105444923A (zh) * 2015-11-18 2016-03-30 浙江工业大学 基于遗传算法优化最小二乘支持向量机的机械式温度仪表误差预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
粒子群算法与遗传算法的结合研究;巩永光;《济宁学院学报》;20081231;第29卷(第6期);第20-22页 *

Also Published As

Publication number Publication date
CN108921278A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN106874581B (zh) 一种基于bp神经网络模型的建筑空调能耗预测方法
CN109145516B (zh) 一种基于改进型极限学习机的模拟电路故障识别方法
CN104361414B (zh) 一种基于相关向量机的输电线路覆冰预测方法
TW200949596A (en) Server and system and method for automatic virtual metrology
CN111539132B (zh) 一种基于卷积神经网络的动载荷时域识别方法
CN107168063B (zh) 基于集成变量选择型偏最小二乘回归的软测量方法
CN112926265A (zh) 基于遗传算法优化神经网络的大气多孔探针测量校准方法
CN105784556A (zh) 一种基于自组织模糊神经网络的空气细颗粒物pm2.5软测量方法
CN107832789B (zh) 基于平均影响值数据变换的特征加权k近邻故障诊断方法
CN110008914A (zh) 一种基于神经网络的模式识别系统及识别方法
WO2021114320A1 (zh) 一种oica和rnn融合模型的污水处理过程故障监测方法
CN112229624B (zh) 一种基于低偏差随机配置网络的气动调节阀故障诊断方法
CN111680398B (zh) 一种基于Holt-Winters模型的单机性能退化预测方法
CN110334478A (zh) 机器设备异常检测模型构建方法、检测方法及模型
CN108921278B (zh) 一种水表检定装置的台位差计算方法
CN113406503A (zh) 基于深度神经网络的锂电池soh在线估算方法
CN115438726A (zh) 一种基于数字孪生技术的设备寿命与故障类型预测方法及系统
Guo et al. Identification for Wiener‐Hammerstein systems under quantized inputs and quantized output observations
CN109540089B (zh) 一种基于贝叶斯-克里金模型的桥面高程拟合方法
CN114239796A (zh) 一种基于扩展卡尔曼滤波的电力系统状态估计方法
CN111814403B (zh) 一种配电主设备分布式状态传感器可靠性评估方法
CN117076887A (zh) 一种泵站机组运行状态预测和健康评估方法及系统
CN108446506B (zh) 一种基于区间反馈神经网络的不确定系统建模方法
CN111210409B (zh) 一种基于条件生成对抗网络的结构损伤识别方法
CN115359197A (zh) 一种基于空间自相关神经网络的地质曲面重构方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant