CN107168063B - 基于集成变量选择型偏最小二乘回归的软测量方法 - Google Patents
基于集成变量选择型偏最小二乘回归的软测量方法 Download PDFInfo
- Publication number
- CN107168063B CN107168063B CN201710427228.2A CN201710427228A CN107168063B CN 107168063 B CN107168063 B CN 107168063B CN 201710427228 A CN201710427228 A CN 201710427228A CN 107168063 B CN107168063 B CN 107168063B
- Authority
- CN
- China
- Prior art keywords
- vector
- plsr
- matrix
- data
- regression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000691 measurement method Methods 0.000 title claims abstract description 13
- 239000013598 vector Substances 0.000 claims abstract description 86
- 238000000034 method Methods 0.000 claims abstract description 52
- 238000010238 partial least squares regression Methods 0.000 claims abstract description 46
- 238000005259 measurement Methods 0.000 claims abstract description 28
- 239000011159 matrix material Substances 0.000 claims description 56
- 238000012549 training Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 238000009776 industrial production Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 230000014759 maintenance of location Effects 0.000 claims description 2
- 230000017105 transposition Effects 0.000 claims 1
- 238000010187 selection method Methods 0.000 abstract description 5
- 230000000875 corresponding effect Effects 0.000 description 16
- 239000000047 product Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Complex Calculations (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710427228.2A CN107168063B (zh) | 2017-05-26 | 2017-05-26 | 基于集成变量选择型偏最小二乘回归的软测量方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710427228.2A CN107168063B (zh) | 2017-05-26 | 2017-05-26 | 基于集成变量选择型偏最小二乘回归的软测量方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107168063A CN107168063A (zh) | 2017-09-15 |
CN107168063B true CN107168063B (zh) | 2020-06-16 |
Family
ID=59825605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710427228.2A Active CN107168063B (zh) | 2017-05-26 | 2017-05-26 | 基于集成变量选择型偏最小二乘回归的软测量方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107168063B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108492026B (zh) * | 2018-03-06 | 2021-05-11 | 宁波大学 | 一种基于集成正交成分最优化回归分析的软测量方法 |
CN109033747B (zh) * | 2018-07-20 | 2022-03-22 | 福建师范大学福清分校 | 基于pls多扰动集成基因选择的肿瘤特异基因识别方法 |
CN109376337B (zh) * | 2018-10-09 | 2021-10-01 | 宁波大学 | 一种基于Girvan-Newman算法的集散软测量方法 |
CN110033175B (zh) * | 2019-03-12 | 2023-05-19 | 宁波大学 | 一种基于集成多核偏最小二乘回归模型的软测量方法 |
CN111912875B (zh) * | 2020-06-23 | 2024-02-13 | 江苏淮河化工有限公司 | 一种基于栈式Elman神经网络的分馏塔苯含量软测量方法 |
CN112067051A (zh) * | 2020-08-24 | 2020-12-11 | 宁波大学 | 一种基于决策树分类器的变压器故障诊断方法 |
CN113030156B (zh) * | 2021-03-13 | 2023-02-24 | 宁波大学科学技术学院 | 一种基于非线性慢特征模型的聚丙烯熔融指数软测量方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103455635A (zh) * | 2013-09-24 | 2013-12-18 | 华北电力大学 | 基于最小二乘支持向量机集成的热工过程软测量建模方法 |
CN104504288A (zh) * | 2015-01-12 | 2015-04-08 | 江南大学 | 基于多向支持向量聚类的非线性多阶段间歇过程软测量方法 |
CN106649202B (zh) * | 2016-12-07 | 2019-04-09 | 宁波大学 | 基于多样性变量加权plsr模型的工业过程软测量方法 |
-
2017
- 2017-05-26 CN CN201710427228.2A patent/CN107168063B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN107168063A (zh) | 2017-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107168063B (zh) | 基于集成变量选择型偏最小二乘回归的软测量方法 | |
CN107506941A (zh) | 一种基于大数据技术的建筑施工企业信用评价方法和系统 | |
CN104899135B (zh) | 软件缺陷预测方法和系统 | |
CN109389314B (zh) | 一种基于最优近邻成分分析的质量软测量与监测方法 | |
CN103927412A (zh) | 基于高斯混合模型的即时学习脱丁烷塔软测量建模方法 | |
CN112926265A (zh) | 基于遗传算法优化神经网络的大气多孔探针测量校准方法 | |
CN109625033A (zh) | Ato控车时精确停车阶段停车精度预测方法及装置 | |
CN108520111A (zh) | 一种基于正交成分最优选择与最优回归的软测量方法 | |
CN115438726A (zh) | 一种基于数字孪生技术的设备寿命与故障类型预测方法及系统 | |
CN109212631B (zh) | 一种考虑通道相关的卫星观测资料三维变分同化方法 | |
WO2021114320A1 (zh) | 一种oica和rnn融合模型的污水处理过程故障监测方法 | |
CN114266289A (zh) | 一种复杂装备健康状态评估方法 | |
CN110209145B (zh) | 一种基于核矩阵近似的二氧化碳吸收塔故障诊断方法 | |
CN110414086B (zh) | 一种基于灵敏度的综合应力加速因子计算方法 | |
CN110310199B (zh) | 借贷风险预测模型的构建方法、系统及借贷风险预测方法 | |
CN116578870A (zh) | 一种基于波动互相关分析的配网电压异常数据填补方法 | |
CN108492026A (zh) | 一种基于集成正交成分最优化回归分析的软测量方法 | |
CN106649202B (zh) | 基于多样性变量加权plsr模型的工业过程软测量方法 | |
CN108204997A (zh) | 常一线油闪点在线软测量方法 | |
CN103279030A (zh) | 基于贝叶斯框架的动态软测量建模方法及装置 | |
CN106599391B (zh) | 基于三角形角度值动态加权的关联向量机软测量建模方法 | |
CN106599494B (zh) | 基于多重动态plsr模型的产品质量软测量方法 | |
Chen et al. | Application of principal component regression analysis in economic analysis | |
CN111210409A (zh) | 一种基于条件生成对抗网络的结构损伤识别方法 | |
Zhang et al. | Multivariate discrete grey model base on dummy drivers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230628 Address after: Room 2202, 22 / F, Wantong building, No. 3002, Sungang East Road, Sungang street, Luohu District, Shenzhen City, Guangdong Province Patentee after: Shenzhen dragon totem technology achievement transformation Co.,Ltd. Address before: Room 521, Information Institute, 818 Fenghua Road, Jiangbei District, Ningbo City, Zhejiang Province Patentee before: Ningbo University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231107 Address after: 201100 2nd floor, building 11, 988 Zhongchun Road, Minhang District, Shanghai Patentee after: Shanghai Junzhe Information Technology Co.,Ltd. Address before: Room 2202, 22 / F, Wantong building, No. 3002, Sungang East Road, Sungang street, Luohu District, Shenzhen City, Guangdong Province Patentee before: Shenzhen dragon totem technology achievement transformation Co.,Ltd. |