CN111912875B - 一种基于栈式Elman神经网络的分馏塔苯含量软测量方法 - Google Patents
一种基于栈式Elman神经网络的分馏塔苯含量软测量方法 Download PDFInfo
- Publication number
- CN111912875B CN111912875B CN202010630152.5A CN202010630152A CN111912875B CN 111912875 B CN111912875 B CN 111912875B CN 202010630152 A CN202010630152 A CN 202010630152A CN 111912875 B CN111912875 B CN 111912875B
- Authority
- CN
- China
- Prior art keywords
- neural network
- elman neural
- level
- layer
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 title claims abstract description 117
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 85
- 238000000691 measurement method Methods 0.000 title claims abstract description 10
- 238000005194 fractionation Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 claims abstract description 45
- 238000005259 measurement Methods 0.000 claims abstract description 32
- 230000008569 process Effects 0.000 claims abstract description 17
- 238000003062 neural network model Methods 0.000 claims abstract description 16
- 239000013598 vector Substances 0.000 claims description 54
- 238000005070 sampling Methods 0.000 claims description 31
- 210000002569 neuron Anatomy 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000012549 training Methods 0.000 claims description 10
- 238000004523 catalytic cracking Methods 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 6
- 239000003502 gasoline Substances 0.000 claims description 5
- 241000135164 Timea Species 0.000 claims description 4
- 239000003350 kerosene Substances 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 3
- 238000010992 reflux Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000000605 extraction Methods 0.000 abstract description 6
- 239000000284 extract Substances 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 9
- 239000007791 liquid phase Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 239000001273 butane Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/14—Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010630152.5A CN111912875B (zh) | 2020-06-23 | 2020-06-23 | 一种基于栈式Elman神经网络的分馏塔苯含量软测量方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010630152.5A CN111912875B (zh) | 2020-06-23 | 2020-06-23 | 一种基于栈式Elman神经网络的分馏塔苯含量软测量方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111912875A CN111912875A (zh) | 2020-11-10 |
CN111912875B true CN111912875B (zh) | 2024-02-13 |
Family
ID=73227320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010630152.5A Active CN111912875B (zh) | 2020-06-23 | 2020-06-23 | 一种基于栈式Elman神经网络的分馏塔苯含量软测量方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111912875B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112200383B (zh) * | 2020-10-28 | 2024-05-17 | 宁波立新科技股份有限公司 | 一种基于改进型Elman神经网络的电力负荷预测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103267826A (zh) * | 2013-04-17 | 2013-08-28 | 沈阳大学 | 一种在线检测明胶浓度的软测量方法 |
CN107168063A (zh) * | 2017-05-26 | 2017-09-15 | 宁波大学 | 基于集成变量选择型偏最小二乘回归的软测量方法 |
CN107505837A (zh) * | 2017-07-07 | 2017-12-22 | 浙江大学 | 一种半监督神经网络模型及基于该模型的软测量建模方法 |
CN108845546A (zh) * | 2018-06-11 | 2018-11-20 | 宁波大学 | 一种基于bp神经网络自回归模型的动态过程监测方法 |
CN109446669A (zh) * | 2018-11-01 | 2019-03-08 | 东北大学 | 一种矿浆浓度的软测量方法 |
CN110322933A (zh) * | 2019-06-20 | 2019-10-11 | 浙江工业大学 | 一种基于动态误差补偿机制的聚丙烯熔融指数混合建模方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109133351A (zh) * | 2018-08-29 | 2019-01-04 | 北京工业大学 | 膜生物反应器-mbr膜污染智能预警方法 |
-
2020
- 2020-06-23 CN CN202010630152.5A patent/CN111912875B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103267826A (zh) * | 2013-04-17 | 2013-08-28 | 沈阳大学 | 一种在线检测明胶浓度的软测量方法 |
CN107168063A (zh) * | 2017-05-26 | 2017-09-15 | 宁波大学 | 基于集成变量选择型偏最小二乘回归的软测量方法 |
CN107505837A (zh) * | 2017-07-07 | 2017-12-22 | 浙江大学 | 一种半监督神经网络模型及基于该模型的软测量建模方法 |
CN108845546A (zh) * | 2018-06-11 | 2018-11-20 | 宁波大学 | 一种基于bp神经网络自回归模型的动态过程监测方法 |
CN109446669A (zh) * | 2018-11-01 | 2019-03-08 | 东北大学 | 一种矿浆浓度的软测量方法 |
CN110322933A (zh) * | 2019-06-20 | 2019-10-11 | 浙江工业大学 | 一种基于动态误差补偿机制的聚丙烯熔融指数混合建模方法 |
Non-Patent Citations (2)
Title |
---|
Thermal stress deformation prediction for rotary air-preheater rotor using deep learning approach;Jing Xin;《International Journal of Modelling Identification and Control》;20190131;全文 * |
基于改进Elman网络的精馏塔建模及仿真;杨凌等;《微计算机信息》;20080805(第22期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111912875A (zh) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yuan et al. | Supervised deep belief network for quality prediction in industrial processes | |
Wu et al. | A just-in-time fine-tuning framework for deep learning of SAE in adaptive data-driven modeling of time-varying industrial processes | |
CN106845796B (zh) | 一种加氢裂化流程产品质量在线预测方法 | |
Wang et al. | A two‐layer ensemble learning framework for data‐driven soft sensor of the diesel attributes in an industrial hydrocracking process | |
Napoli et al. | Soft Sensor design for a Topping process in the case of small datasets | |
CN107505837A (zh) | 一种半监督神经网络模型及基于该模型的软测量建模方法 | |
CN112989635B (zh) | 基于自编码器多样性生成机制的集成学习软测量建模方法 | |
WO2020147461A1 (zh) | 一种基于数据驱动的溶剂脱沥青装置建模及优化方法 | |
CN111912875B (zh) | 一种基于栈式Elman神经网络的分馏塔苯含量软测量方法 | |
US20190205360A1 (en) | Method for prioritizing candidate objects | |
CN108416439A (zh) | 基于变量加权深度学习的炼油过程产品预测方法和系统 | |
Alhajree et al. | Modeling and optimization of an industrial hydrocracker plant | |
CN114004346A (zh) | 基于门控堆叠同构自编码器的软测量建模方法及存储介质 | |
CN111914476B (zh) | 一种脱丁烷塔底部产品丁烷含量的在线软测量方法 | |
CN111914477B (zh) | 一种基于sae的脱丁烷塔底部产品丁烷浓度实时监测方法 | |
CN116644655A (zh) | 一种基于加权目标特征回归神经网络工业过程软测量方法 | |
CN109493921B (zh) | 一种基于多代理模型的常压精馏过程建模方法 | |
Ganji-Azad et al. | Reservoir fluid PVT properties modeling using adaptive neuro-fuzzy inference systems | |
NASSER et al. | Online composition prediction of a debutanizer column using artificial neural network | |
Graziani et al. | Deep structures for a reformer unit soft sensor | |
Nabavi et al. | Modeling of thermal cracking of LPG: application of artificial neural network in prediction of the main product yields | |
CN102609601B (zh) | 一种基于类内质网体膜计算的渣油加氢反应动力学模型参数估计方法 | |
Boger | Experience in industrial plant model development using large-scale artificial neural networks | |
CN116662925A (zh) | 一种基于加权稀疏神经网络工业过程软测量方法 | |
CN113919213A (zh) | 一种基于sfa-grnn串联模型的脱丁烷塔丁烷浓度软测量方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240105 Address after: 211742 Sanhe farm, Xuyi county, Huai'an City, Jiangsu Province Applicant after: JIANGSU HUAIHE CHEMICALS Co.,Ltd. Address before: Room 1003, Building G1, Phase II, Donghong County, Liaoyuan Road, Feidong Economic Development Zone, Feidong County, Hefei City, Anhui Province, 231600 Applicant before: Hefei lougao Information Technology Co.,Ltd. Effective date of registration: 20240105 Address after: Room 1003, Building G1, Phase II, Donghong County, Liaoyuan Road, Feidong Economic Development Zone, Feidong County, Hefei City, Anhui Province, 231600 Applicant after: Hefei lougao Information Technology Co.,Ltd. Address before: 315211 Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang Applicant before: Ningbo University |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |