CN110033175B - 一种基于集成多核偏最小二乘回归模型的软测量方法 - Google Patents
一种基于集成多核偏最小二乘回归模型的软测量方法 Download PDFInfo
- Publication number
- CN110033175B CN110033175B CN201910229735.4A CN201910229735A CN110033175B CN 110033175 B CN110033175 B CN 110033175B CN 201910229735 A CN201910229735 A CN 201910229735A CN 110033175 B CN110033175 B CN 110033175B
- Authority
- CN
- China
- Prior art keywords
- kernel
- matrix
- vector
- formula
- soft measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000691 measurement method Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 59
- 238000005259 measurement Methods 0.000 claims abstract description 35
- 239000011159 matrix material Substances 0.000 claims description 89
- 239000013598 vector Substances 0.000 claims description 63
- 230000008569 process Effects 0.000 claims description 35
- 230000009466 transformation Effects 0.000 claims description 17
- 238000010606 normalization Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 2
- 230000017105 transposition Effects 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000498 cooling water Substances 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000010238 partial least squares regression Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 102000008297 Nuclear Matrix-Associated Proteins Human genes 0.000 description 1
- 108010035916 Nuclear Matrix-Associated Proteins Proteins 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000299 nuclear matrix Anatomy 0.000 description 1
- 238000013442 quality metrics Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06395—Quality analysis or management
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Educational Administration (AREA)
- Operations Research (AREA)
- Marketing (AREA)
- Game Theory and Decision Science (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Complex Calculations (AREA)
Abstract
Description
序号 | 变量描述 | 序号 | 变量描述 | 序号 | 变量描述 |
1 | 物料A流量 | 12 | 分离器液位 | 23 | D进料阀门位置 |
2 | 物料D流量 | 13 | 分离器压力 | 24 | E进料阀门位置 |
3 | 物料E流量 | 14 | 分离器塔底流量 | 25 | A进料阀门位置 |
4 | 总进料流量 | 15 | 汽提塔等级 | 26 | A和C进料阀门位置 |
5 | 循环流量 | 16 | 汽提塔压力 | 27 | 压缩机循环阀门位置 |
6 | 反应器进料 | 17 | 汽提塔底部流量 | 28 | 排空阀门位置 |
7 | 反应器压力 | 18 | 汽提塔温度 | 29 | 分离器液相阀门位置 |
8 | 反应器等级 | 19 | 汽提塔上部蒸汽 | 30 | 汽提塔液相阀门位置 |
9 | 反应器温度 | 20 | 压缩机功率 | 31 | 汽提塔蒸汽阀门位置 |
10 | 排空速率 | 21 | 反应器冷却水出口温度 | 32 | 反应器冷凝水流量 |
11 | 分离器温度 | 22 | 分离器冷却水出口温度 | 33 | 冷凝器冷却水流量 |
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910229735.4A CN110033175B (zh) | 2019-03-12 | 2019-03-12 | 一种基于集成多核偏最小二乘回归模型的软测量方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910229735.4A CN110033175B (zh) | 2019-03-12 | 2019-03-12 | 一种基于集成多核偏最小二乘回归模型的软测量方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110033175A CN110033175A (zh) | 2019-07-19 |
CN110033175B true CN110033175B (zh) | 2023-05-19 |
Family
ID=67236538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910229735.4A Active CN110033175B (zh) | 2019-03-12 | 2019-03-12 | 一种基于集成多核偏最小二乘回归模型的软测量方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110033175B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111914214B (zh) * | 2020-06-13 | 2023-10-17 | 宁波大学 | 一种基于缩减kpls模型的pta生产过程软测量方法 |
CN113177364B (zh) * | 2021-05-21 | 2023-07-14 | 东北大学 | 一种高炉风口回旋区温度软测量建模方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003085493A2 (en) * | 2002-03-29 | 2003-10-16 | Agilent Technologies, Inc. | Method and system for predicting multi-variable outcomes |
CN106874935A (zh) * | 2017-01-16 | 2017-06-20 | 衢州学院 | 基于多核函数自适应融合的支持向量机参数选择方法 |
CN107168063A (zh) * | 2017-05-26 | 2017-09-15 | 宁波大学 | 基于集成变量选择型偏最小二乘回归的软测量方法 |
CN108492026A (zh) * | 2018-03-06 | 2018-09-04 | 宁波大学 | 一种基于集成正交成分最优化回归分析的软测量方法 |
CN108520111A (zh) * | 2018-03-06 | 2018-09-11 | 宁波大学 | 一种基于正交成分最优选择与最优回归的软测量方法 |
-
2019
- 2019-03-12 CN CN201910229735.4A patent/CN110033175B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003085493A2 (en) * | 2002-03-29 | 2003-10-16 | Agilent Technologies, Inc. | Method and system for predicting multi-variable outcomes |
CN106874935A (zh) * | 2017-01-16 | 2017-06-20 | 衢州学院 | 基于多核函数自适应融合的支持向量机参数选择方法 |
CN107168063A (zh) * | 2017-05-26 | 2017-09-15 | 宁波大学 | 基于集成变量选择型偏最小二乘回归的软测量方法 |
CN108492026A (zh) * | 2018-03-06 | 2018-09-04 | 宁波大学 | 一种基于集成正交成分最优化回归分析的软测量方法 |
CN108520111A (zh) * | 2018-03-06 | 2018-09-11 | 宁波大学 | 一种基于正交成分最优选择与最优回归的软测量方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110033175A (zh) | 2019-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108803520B (zh) | 一种基于变量非线性自相关性剔除的动态过程监测方法 | |
CN103927412B (zh) | 基于高斯混合模型的即时学习脱丁烷塔软测量建模方法 | |
CN110009020B (zh) | 一种基于多核主元分析模型的非线性过程监测方法 | |
CN108520111B (zh) | 一种基于正交成分最优选择与最优回归的软测量方法 | |
CN104914723B (zh) | 基于协同训练偏最小二乘模型的工业过程软测量建模方法 | |
CN108469805B (zh) | 一种基于动态性最优选择的分散式动态过程监测方法 | |
CN109389314B (zh) | 一种基于最优近邻成分分析的质量软测量与监测方法 | |
CN108508865B (zh) | 一种基于分散式osc-pls回归模型的故障检测方法 | |
CN101458522A (zh) | 基于主元分析和支持向量数据描述的多工况过程监控方法 | |
CN107403196B (zh) | 基于谱聚类分析的即时学习建模对脱丁烷塔底丁烷浓度进行预测的方法 | |
CN112904810B (zh) | 基于有效特征选择的流程工业非线性过程监测方法 | |
CN110033175B (zh) | 一种基于集成多核偏最小二乘回归模型的软测量方法 | |
CN108492026B (zh) | 一种基于集成正交成分最优化回归分析的软测量方法 | |
CN108445867B (zh) | 一种基于分散式icr模型的非高斯过程监测方法 | |
CN111340110A (zh) | 一种基于工业过程运行状态趋势分析的故障预警方法 | |
CN105868164A (zh) | 一种基于有监督的线性动态系统模型的软测量建模方法 | |
CN111914889A (zh) | 一种基于简略核主元分析的精馏塔异常状态识别方法 | |
CN114757269A (zh) | 一种基于局部子空间-邻域保持嵌入的复杂过程精细化故障检测方法 | |
CN108491878B (zh) | 一种基于多个误差生成模型的故障分类诊断方法 | |
CN109493921B (zh) | 一种基于多代理模型的常压精馏过程建模方法 | |
CN108572639B (zh) | 一种基于主成分自相关性剔除的动态过程监测方法 | |
CN110879873B (zh) | 一种基于哈密顿蒙特卡洛采样的vine copula相关性描述的软测量方法及系统 | |
CN108427398A (zh) | 一种基于分散式ar-pls模型的动态过程监测方法 | |
CN112381145A (zh) | 基于最近相关谱聚类的高斯过程回归多模型融合建模方法 | |
CN115985411A (zh) | 基于高斯过程回归模型的高分子熔融指数软测量方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240315 Address after: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee after: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd. Country or region after: China Address before: 315211 Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang Patentee before: Ningbo University Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240328 Address after: No.1 Shunhua Road, High tech Zone, Jinan City, Shandong Province, 250000 (Block D, Entrepreneurship Plaza, Qilu Software Park) Patentee after: Shandong Volkswagen Information Industry Co.,Ltd. Country or region after: China Address before: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee before: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |