CN108918733B - 基于电喷雾质子化裂解定量中药三萜皂苷含量所需碰撞能的预测方法 - Google Patents
基于电喷雾质子化裂解定量中药三萜皂苷含量所需碰撞能的预测方法 Download PDFInfo
- Publication number
- CN108918733B CN108918733B CN201810850022.5A CN201810850022A CN108918733B CN 108918733 B CN108918733 B CN 108918733B CN 201810850022 A CN201810850022 A CN 201810850022A CN 108918733 B CN108918733 B CN 108918733B
- Authority
- CN
- China
- Prior art keywords
- protonation
- saponin
- cracking
- type
- electrospray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Steroid Compounds (AREA)
Abstract
本发明公开了一种基于电喷雾质子化裂解定量中药三萜皂苷含量所需碰撞能的预测方法,所述预测方法包括:(1)选取以三萜皂苷为主要活性成分的药用植物为代表植物;(2)从中选取具有代表性的三萜皂苷模型化合物;(3)基于电喷雾质子化裂解定量药用植物中三萜皂苷含量;采用以下方程式预测所需碰撞能:CE=0.0337*Q1+0.5686,Q1=[M+H/NH4]+,Q1线性范围为600‑1600Da,R2=0.91;CE=0.0337Mw+0.9361,Mw线性范围为600‑1600Da,R2=0.9096。本发明预测方法所得到CE值与单因素考察法所得CE值无显著差异,说明本发明预测方法能应用于三重四级质谱的检测。
Description
技术领域
本发明涉及一种分析定量中药三萜皂苷含量所需碰撞能的预测方法,尤其涉及一种基于电喷雾质子化裂解-多反应监测质谱定量中药三萜皂苷所需理想碰撞能的快速预测方法,属于中药三萜皂苷含量的定量检测领域。
背景技术
三萜皂苷在含有甲酸或甲酸氨的流动相中形成稳定的[M+H]+和/或[M+NH4]+分子离子峰,运用液相色谱-串联四级杆质谱联用仪,采用电喷雾阳离子串联质谱检测模式(ESI+-MRM),确定了可预测的MRM靶向离子对,其Q1和Q3计算公式分别为:Q1=[M+H/NH4]+,Q3=[苷元+H-nH2O]+。
其中,去簇电压(DP)和碰撞能(CE)是产生高强度Q1/Q3离子对的关键重要参数,且CE较DP对质子化裂解Q1/Q3离子对响应值产生更大的影响。本发明人课题组前期,通过传统的注射泵法、单因素实验法和响应面法优化CE,但当涉及到多个三萜皂苷同时分析时,采用这些方法获取最优化碰撞能比较费时费力,因此亟待需要提供一种简捷、准确的基于电喷雾质子化裂解定量中药三萜皂苷含量所需碰撞能的预测方法。
发明内容
基于以前公开的一种利用电喷雾质子化裂解-质谱多反应检测模式对中药中三萜皂苷进行定性和定量的方法,确定了可预测的MRM靶向离子对,其Q1和Q3计算公式分别为:Q1=[M+H/NH4]+,Q3=[苷元+H-nH2O]+。去簇电压(DP)和碰撞能(CE)是产生高强度的质子化裂解Q1/Q3离子对的关键重要参数。在对来自于20种不同中药或草药来源的85个三萜皂苷研究的基础上,发现DP值设置具有普遍性,而CE值难于预测和优化,且CE较DP对质子化裂解Q1/Q3离子对响应值产生更大的影响;基于此,本发明的主要目的在于建立一种基于电喷雾质子化裂解定量中药三萜皂苷所需理想碰撞能的预测方法。
为了达到上述目的,本发明采用了以下技术手段:
一种基于电喷雾质子化裂解定量中药三萜皂苷含量所需碰撞能的预测方法,包括:
(1)选取以三萜皂苷作为主要活性成分的药用植物为代表植物;(2)从这些代表植物中所含有的三萜皂苷化合物中选取具有代表性的三萜皂苷模型化合物;(3)基于电喷雾质子化裂解定量药用植物中三萜皂苷含量;其中,采用以下任何一种方程式预测所需的碰撞能:CE=0.0337*Q1+0.5686,Q1=[M+H/NH4]+,Q1线性范围为600-1600Da,R2=0.91;CE=0.0337Mw+0.9361,Mw线性范围为600-1600Da,R2=0.9096。
优选的,步骤(1)中选取辽东楤木、类叶牡丹、人参、柴胡、黄芪、升麻、刺五加、地榆、桔梗、忍冬、商陆、积雪草、竹节参、西洋参、三七、甘草、常春藤、白头翁、大豆以及罗汉果为代表植物。
优选的,步骤(2)中所选取的三萜皂苷模型化合物的分子量范围在600-1600Da之间,同时存在单糖链和双糖链皂苷,所含糖基个数从1个到7个、所含糖基种类多样、所含糖基连接方式多样、所涉及的苷元类型多样化,涵盖了常见的主要四环三萜和五环三萜皂苷。
更进一步优选的,步骤(2)中所含糖基种类包括葡萄糖、呋糖、半乳糖、甘露糖、阿拉伯糖、果糖、木糖、鼠李糖、葡萄糖醛酸或芹糖。
更进一步优选的,步骤(2)中所含糖基连接方式包括→2、→3、→4、→6、→2(3)、→3(2)、→2(6)、→4(2)或→4(6);
更进一步优选的,步骤(2)中所涉及的苷元类型包括原人参二醇型、原人参三醇型、奥克梯隆型、齐墩果酸型、常春藤型、刺囊酸型、威严仙型、柴胡皂苷元F、黄芪醇、坡模醇酸、积雪草酸、商陆酸、甘草次酸、升麻酮醇、乙酰升麻醇或桔梗皂苷元。
本发明在对来自于20种不同中药或草药来源的85个三萜皂苷研究的基础上,发现DP值设置具有普遍性,而CE值难于预测和优化,且CE较DP对质子化裂解Q1/Q3离子对响应值产生更大的影响。基于此,本发明公开了一种基于电喷雾质子化裂解-质谱多反应检测离子对(Q1=[M+H/NH4]+/Q3=[苷元+H-nH2O]+)定量中药三萜皂苷所需理想CE快速预测方法。
在本发明所述的方法中,优选的方法按照以下步骤进行:
(1)常用皂苷类中药的选取。
本发明选取的20种药用植物,多为常用中药的代表,均是以三萜皂苷作为主要活性成分,且具有极其重要的生物活性。这些药用植物分别为:辽东楤木、类叶牡丹、人参、柴胡、黄芪、升麻、刺五加、地榆、桔梗、忍冬、商陆、积雪草、竹节参、西洋参、三七、甘草、常春藤、白头翁、大豆、罗汉果。
(2)三萜皂苷模型化合物的选取
本发明选取的85个三萜皂苷模型化合物,极其具有中药三萜皂苷的代表性。具体来讲,其分子量范围在600-1600之间、同时存在单糖链和双糖链皂苷、所含糖基个数从1个到7个、所含糖基种类多样(葡萄糖、半乳糖、阿拉伯糖、木糖、鼠李糖、葡萄糖醛酸和芹糖等)、所含糖基连接方式多样(→2、→3、→4、→6、→2(3)、→3(2)、→2(6)、→4(2)和→4(6)等)、所涉及的苷元类型多样化。苷元涵盖了常见的主要四环三萜和五环三萜皂苷,其具体类型可见:原人参二醇型、原人参三醇型、奥克梯隆型、齐墩果酸型、常春藤型、刺囊酸型、威严仙型、柴胡皂苷元F、黄芪醇、坡模醇酸、积雪草酸、商陆酸、甘草次酸、升麻酮醇、乙酰升麻醇、桔梗皂苷元等。
(3)DP普遍性和CE重要性的确定
本发明进一步通过响应面中心组成实验设计(CCD),进一步确定DP和CE值对质子化裂解Q1/Q3离子对响应值的影响。图2A-2C分别为通过CCD实验,研究对照品51、50和8的DP、CE交互作用对质子化裂解Q1/Q3离子对响应值的影响。以对照品51为例,CE值在30-37eV的范围内随着CE值的增加,皂苷的质子化裂解Q1/Q3离子对响应值不断增加;CE值在37eV左右时,曲线开始趋于平稳,并有下降趋势,这表明CE在37eV左右时能获得最大的质子化裂解Q1/Q3离子对响应值。综合图2可知,不同CE值条件下的皂苷质子化裂解Q1/Q3离子对响应值波动较大,不同DP值条件下的三萜皂苷51、50和8质子化裂解Q1/Q3离子对响应值波动较小,这表明CE值对三萜皂苷质子化裂解Q1/Q3离子对响应值有显著影响,而DP对其影响较弱。
(4)传统单因素法理想CE值的确定
对照品1-85,首先将DP值固定,将CE值在20-60V范围内,以10V为梯度分5针(每针3分钟,90%乙腈等度洗脱),通过UPLC泵进AB-Qtrap4000质谱,记录离子流图中各单标在不同碰撞能时产生质子化裂解Q1/Q3离子对响应值,最大响应值对应的CE值即为初步优化的CE值。
本发明再将初步优化的CE值以2V为梯度分别-8;-6;-4;-2,0;+2;+4;+6;+8分9针,使用UPLC(90%乙腈,3min/针)泵进质谱中,记录各离子流图中单标质子化裂解Q1/Q3离子对响应值的峰面积,最大的响应值对应的CE值即为最终优化的CE值。
(5)基于偏小二乘法回归分析的CE值的预测研究
为了进一步探索三萜皂苷CE值的影响因素,根据三萜皂苷类化合物的结构特征,考虑分子量(Mw)、Q1、Q3、C3/C6糖链分子量、C28/C20糖链分子量、苷元分子量、糖基个类、糖链个数、去簇电压(DP)、苷元中羟基的个数、苷元类型十一种不同的影响因素对CE的影响,通过偏小二乘法回归分析,通过VIP-plot确定其影响因素的大小为:Q1>Mw>C28/C20糖链分子量>糖基个数>Q3>糖链个数>苷元类型>苷元中羟基的个数>DP>苷元分子量,可见Q1对CE贡献率最大,其次为Mw,二者贡献率无显著差异。偏小二乘法回归分析预测模型为:y=1*x+1.531*10-6,R2=0.9131,RMSEE=2.432。
(6)Q1或Mw与CE之间线性拟合的考察
实验发现Q1与CE之间的存在线性关系,其关系式为:CE=0.0337*Q1+0.5686,Q1线性范围为600-1600Da,其R2=0.91。同样,发现Mw与CE之间的存在线性关系,其关系式为:CE=0.0337Mw+0.9361,Mw线性范围为600-1600Da,其R2=0.9096。
(7)CE预测值与单因素考察法所得值,无显著差异,且可应用在任何一种商业化的三重四级质谱。
本发明首先根据三萜皂苷类化合物的结构特征,考虑11种不同的影响因素对理想CE的影响,通过偏小二乘法回归分析,发现Q1对CE贡献率最大,其次为Mw,二者贡献率无显著差异,本发明进而确定了Q1与CE之间的存在线性关系,其关系式为:CE=0.0337*Q1+0.5686,Q1线性范围为600-1600Da,其R2=0.91。同样,发现Mw与CE之间的存在线性关系,其关系式为:CE=0.0337Mw+0.9361,Mw线性范围为600-1600Da,其R2=0.9096。在此基础上,本发明提出了一种基于电喷雾质子化裂解定量中药三萜皂苷所需理想碰撞能的快速预测方法,采用本发明的预测方法所得到的CE预测值与单因素考察法所得值无显著差异,说明本发明提供的预测方法可应用于任何一种商业化的三重四级质谱。
附图说明
图1为85种三萜皂苷对照品的化学结构式;
图2为对照品51、50、8的DP、CE的交互作用对质子化裂解Q1/Q3离子对作用的响应面图;
图3为85个对照品预测CE值和实验CE值相关性的PLS回归结果(A);
11种与三萜皂苷结构有关的因素对其CE值影响的VIP图(B);85个对照品的加成离子Q1与实验优化CE值的线性拟合(C);85个对照品的Mw与实验优化CE值的线性拟合(D)。
具体实施方式
以下结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实验例1基于质子化裂解离子对的85种三萜皂苷定量理想碰撞能预测实验
1实验仪器
Qtrap-4000三重四级杆线性离子阱质谱仪(AB SCIEX公司,美国);H-class超高效液相色谱仪(在线脱气机,自动进样器,四元泵,美国Waters公司);ACQUITY UPLC HSS T3色谱柱(2.1×150mm,1.8μm),连接一个Waters HSS T3保护柱(2.1×5mm,1.8μm)。Milli-Q纯水器(密理博中国有限公司),ML104/02型电子分析天平(梅特勒托利多仪器上海有限公司)Vortex 3000型涡旋震荡仪(Wiggens公司,德国);Mikro 200R型离心机(Hettich公司,德国),KQ-500DB型数控超声清洗器(昆山市超声仪器有限公司)。
2标准品的配制
精密称取三萜皂苷对照品1-85(结构如图1所示)1.0mg,加入甲醇后分别配制成1mg/ml对照品溶液,分别取10μL,1mg/mL对照品溶液,加入990μL甲醇后混匀,制成10μg/ml对照品溶液,储存于4℃冰箱中。
3实验方法与结果
3.1色谱条件
Waters超高效液相;色谱柱:HSS T3(2.1×150mm,1.8μm);保护柱:HSS T3(2.1×5mm,1.8μm);色谱条件:柱温35℃;样品室10℃;流速0.3mL/min;进样量2.0μL;流动相A为0.1%v/v甲酸水溶液,流动相B为含0.1%v/v甲酸的乙腈溶液,洗脱梯度为:0-3min 90%-90%B。
3.2质谱条件
Qtrap-4000三重四级杆线性离子阱质谱仪配有一个电子喷雾离子源(ESI)。正离子模式下工作,扫描方式为多反映检测模式(MRM)。喷射电压(Ion spray voltage)+5500V;离子源温度(Source temperature)400℃;雾化器(Gas1)50psi;加热器(Gas2)50psi;氮气用于碰撞器和辅助气体;打开接口加热器。数据采集和处理使用Analysis Software 1.6。85个模型化合物的质子化裂解Q1/Q3离子对的详细信息见表1。
3.3 DP普遍性和CE重要性的确定
通过响应面中心组成实验设计(CCD),进一步确定DP和CE值对质子化裂解Q1/Q3离子对响应值的影响。图2A-2C分别为通过CCD实验,研究对照品51、50和8的DP、CE交互作用对质子化裂解Q1/Q3离子对响应值的影响。以对照品51为例,CE值在30-37V的范围内随着CE值的增加,皂苷的质子化裂解Q1/Q3离子对响应值不断增加;CE值在37V左右时,曲线开始趋于平稳,并有下降趋势,这表明CE在37V左右时能获得最大的质子化裂解Q1/Q3离子对响应值。综合图2可知,不同CE值条件下的皂苷质子化裂解Q1/Q3离子对响应值波动较大,不同DP值条件下的三萜皂苷51、50和8质子化裂解Q1/Q3离子对响应值波动较小,这表明CE值对三萜皂苷质子化裂解Q1/Q3离子对响应值有显著影响,而DP对其影响较弱。
3.4单因素法最优碰撞能的获取
对照品1-85,首先将DP值固定,将CE值在20-60V范围内,以10V为梯度分5针(每针3分钟,90%乙腈等度洗脱),通过UPLC泵进AB-Qtrap4000质谱,记录离子流图中各单标在不同碰撞能时产生碎片离子峰的峰面积,最大的峰面积即为优化的CE值。再将优化的CE值以2V为梯度分别-8;-6;-4;-2,0;+2;+4;+6;+8分9针,使用UPLC(90%乙腈,3min/针)泵进质谱中,记录各离子流图中单标碎片离子峰的峰面积,最大的峰面积对应的CE值即为最终优化的结果。85个模型化合物的质子化裂解Q1/Q3离子对的单因素优化碰撞能结果见Table 1。
3.5偏小二乘法回归分析的CE值的预测研究
如图3A和B所示,根据三萜皂苷类化合物的结构特征,考虑分子量(Mw)、Q1、Q3、C3/C6糖链分子量、C28/C20糖链分子量、苷元分子量、糖基个类、糖链个数、去簇电压(DP)、苷元中羟基的个数、苷元类型十一种不同的影响因素对CE的影响,经由偏小二乘法回归分析,VIP-plot确定其影响因素的大小为:Q1>Mw>C28/C20糖链分子量>糖基个数>Q3>糖链个数>苷元类型>苷元中羟基的个数>DP>苷元分子量,可见Q1对CE贡献率最大。偏小二乘法回归分析预测模型为:y=1*x+1.531*10-6,R2=0.9131,RMSEE=2.432。
3.6 Q1、Mw与CE之间线性关系的考察
如图3C所示,Q1与CE之间的存在线性关系,其关系式为:CE=0.0337*Q1+0.5686(方程①),Q1线性范围为600-1600Da,其R2=0.91。同样,如图3D所示,发现Mw与CE之间的存在线性关系,其关系式为:CE=0.0337Mw+0.9361(方程②),Mw线性范围为600-1600Da,其R2=0.9096。
3.7预测值与实测值的差异性分析
如表2所示,用SPSS 21.0软件包对实验优化后的CE值、方程①预测出的CE值和方程②预测的CE值,任意两组之间进行t检验。结果显示,实验优化的CE值分别与方程①和方程②计算出的CE比较,P分别为0.942和0.978;方程①与方程②预测出的CE相互比较,P值为0.964,此三者P值均>0.05,表明此三者之间任意两者无显著差别,说明两个预测方程(CE=0.0337*Q1+0.5686(方程①),Q1线性范围为600-1600Da,其R2=0.91;CE=0.0337Mw+0.9361(方程②),Mw线性范围为600-1600Da,其R2=0.9096)均能有效预测CE值。
表2质子化裂解Q1/Q3离子对响应的实验优化CE值、方程①预测的CE、和方程②预测的CE值,任意两组之间的t检验结果
Claims (3)
1.基于电喷雾质子化裂解定量中药三萜皂苷含量所需碰撞能的预测方法,包括:
(1)选取以三萜皂苷作为主要活性成分的药用植物为代表植物;(2)从这些代表植物中所含有的三萜皂苷化合物中选取具有代表性的三萜皂苷模型化合物;(3)基于电喷雾质子化裂解定量药用植物中的三萜皂苷含量;其中,采用以下(a)或(b)任何一种方程式预测所需的碰撞能:(a)CE=0.0337*Q1+0.5686,Q1=[M+H/NH4]+,Q1线性范围为600-1600Da,R2=0.91;(b)CE=0.0337Mw+0.9361,Mw线性范围为600-1600Da,R2=0.9096。
2.按照权利要求1所述的预测方法,其特征在于,步骤(1)中选取辽东楤木、类叶牡丹、人参、柴胡、黄芪、升麻、刺五加、地榆、桔梗、忍冬、商陆、积雪草、竹节参、西洋参、三七、甘草、常春藤、白头翁、大豆以及罗汉果为代表植物。
3.按照权利要求1所述的预测方法,其特征在于,步骤(2)中所选取的三萜皂苷模型化合物的分子量范围在600-1600Da之间,同时存在单糖链和双糖链皂苷;所含糖基个数从1个到7个;所含糖基种类包括葡萄糖、呋糖、半乳糖、甘露糖、阿拉伯糖、果糖、木糖、鼠李糖、葡萄糖醛酸或芹糖;所涉及的苷元类型包括原人参二醇型、原人参三醇型、奥克梯隆型、齐墩果酸型、常春藤型、刺囊酸型、威严仙型、柴胡皂苷元F、黄芪醇、坡模醇酸、积雪草酸、商陆酸、甘草次酸、升麻酮醇、乙酰升麻醇或桔梗皂苷元,涵盖了常见的主要四环三萜和五环三萜皂苷。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810850022.5A CN108918733B (zh) | 2018-07-28 | 2018-07-28 | 基于电喷雾质子化裂解定量中药三萜皂苷含量所需碰撞能的预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810850022.5A CN108918733B (zh) | 2018-07-28 | 2018-07-28 | 基于电喷雾质子化裂解定量中药三萜皂苷含量所需碰撞能的预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108918733A CN108918733A (zh) | 2018-11-30 |
CN108918733B true CN108918733B (zh) | 2021-05-11 |
Family
ID=64416182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810850022.5A Active CN108918733B (zh) | 2018-07-28 | 2018-07-28 | 基于电喷雾质子化裂解定量中药三萜皂苷含量所需碰撞能的预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108918733B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111103379B (zh) * | 2019-12-11 | 2021-05-14 | 山西大学 | 一种不同品种柴胡的鉴别方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002010740A2 (en) * | 2000-07-28 | 2002-02-07 | Statens Serum Institut | Quantitative analysis of hexose-monophosphates from biological samples |
WO2006064583A1 (en) * | 2004-12-17 | 2006-06-22 | Use-Techno Corporation | Terpene, method for determining its blood concentration, and method for analyzing its pharmacokinetics |
WO2006116872A1 (en) * | 2005-05-05 | 2006-11-09 | National Research Council Of Canada | Methods for hormone profiling |
CN1885032A (zh) * | 2005-06-20 | 2006-12-27 | 中国医学科学院药用植物研究所 | 一种达玛烷型四环三萜皂苷的检测方法 |
WO2013012749A2 (en) * | 2011-07-15 | 2013-01-24 | The Curators Of The University Of Missouri | Human zona pellucida glycoproteins, their oligosaccharides, and uses thereof |
TW201416673A (zh) * | 2012-10-22 | 2014-05-01 | Brion Res Inst Of Taiwan | 牛樟芝三萜類成分之定量方法 |
CN107727772A (zh) * | 2017-11-21 | 2018-02-23 | 匡海学 | 利用电喷雾质子化裂解‑质谱多反应检测模式对中药中三萜皂苷进行定性和定量的方法 |
-
2018
- 2018-07-28 CN CN201810850022.5A patent/CN108918733B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002010740A2 (en) * | 2000-07-28 | 2002-02-07 | Statens Serum Institut | Quantitative analysis of hexose-monophosphates from biological samples |
WO2006064583A1 (en) * | 2004-12-17 | 2006-06-22 | Use-Techno Corporation | Terpene, method for determining its blood concentration, and method for analyzing its pharmacokinetics |
WO2006116872A1 (en) * | 2005-05-05 | 2006-11-09 | National Research Council Of Canada | Methods for hormone profiling |
CN1885032A (zh) * | 2005-06-20 | 2006-12-27 | 中国医学科学院药用植物研究所 | 一种达玛烷型四环三萜皂苷的检测方法 |
WO2013012749A2 (en) * | 2011-07-15 | 2013-01-24 | The Curators Of The University Of Missouri | Human zona pellucida glycoproteins, their oligosaccharides, and uses thereof |
TW201416673A (zh) * | 2012-10-22 | 2014-05-01 | Brion Res Inst Of Taiwan | 牛樟芝三萜類成分之定量方法 |
CN107727772A (zh) * | 2017-11-21 | 2018-02-23 | 匡海学 | 利用电喷雾质子化裂解‑质谱多反应检测模式对中药中三萜皂苷进行定性和定量的方法 |
Non-Patent Citations (5)
Title |
---|
Liquid chromatographic method for analysis of saponins in Maesa balansae extract active against leishmaniasis;Stefanie Leonard等;《Journal of Chromatography A》;20030912;第1012卷(第1期);39-46 * |
Multi-parameter investigation of tandem mass spectrometry in a linear ion trap using response surface modelling;My Moberg等;《Journal of Mass Spectrometry》;20050301;第40卷(第3期);317-324 * |
知母、麦冬和薯蓣中螺甾体皂苷的质谱裂解规律研究;夏永刚 等;《中医药学报》;20171031;第45卷(第5期);10-13 * |
知母呋甾烷醇型皂苷的质谱裂解行为研究;郭信东 等;《中医药学报》;20161031;第44卷(第5期);11-14 * |
超高效液相色谱-高分辨质谱法同时测定类叶牡丹中9种三萜皂苷类成分;梁军 等;《中草药》;20171031;第48卷(第20期);4323-4327 * |
Also Published As
Publication number | Publication date |
---|---|
CN108918733A (zh) | 2018-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shi et al. | An in-source multiple collision-neutral loss filtering based nontargeted metabolomics approach for the comprehensive analysis of malonyl-ginsenosides from Panax ginseng, P. áquinquefolius, and P. ánotoginseng | |
Yan et al. | Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali | |
Yang et al. | Method development and application of offline two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry-fast data directed analysis for comprehensive characterization of the saponins from Xueshuantong Injection | |
Wan et al. | Simultaneous determination of nine saponins from Panax notoginseng using HPLC and pressurized liquid extraction | |
Park et al. | High-performance liquid chromatographic analysis of ginseng saponins using evaporative light scattering detection | |
Han et al. | Rapid profiling and identification of triterpenoid saponins in crude extracts from Albizia julibrissin Durazz. by ultra high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry | |
Xu et al. | A rapid method for simultaneous determination of triterpenoid saponins in Pulsatilla turczaninovii using microwave-assisted extraction and high performance liquid chromatography–tandem mass spectrometry | |
CN109324126B (zh) | 一种利用uplc-ms/ms同时测定酸枣仁中9种化学成分的方法 | |
Li et al. | Simultaneous determination of panax notoginsenoside R1, ginsenoside Rg1, Rd, Re and Rb1 in rat plasma by HPLC/ESI/MS: platform for the pharmacokinetic evaluation of total panax notoginsenoside, a typical kind of multiple constituent traditional Chinese medicine | |
Zhou et al. | Quality evaluation of semen oroxyli through simultaneous quantification of 13 components by high performance liquid chromatography | |
Jin et al. | Simultaneous determination of 12 active components in the roots of Pulsatilla chinensis using tissue‐smashing extraction with liquid chromatography and mass spectrometry | |
Zhang et al. | Chemical profile-and pharmacokinetics-based investigation of the synergistic property of platycodonis radix in traditional Chinese medicine formula Shengxian decoction | |
Qi et al. | Application of high-performance liquid chromatography–electrospray ionization time-of-flight mass spectrometry for analysis and quality control of Radix Astragali and its preparations | |
Zu et al. | Determination and quantification of astragalosides in Radix Astragali and its medicinal products using LC–MS | |
Liu et al. | Identification of new trace triterpenoid saponins from the roots of Panax notoginseng by high‐performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry | |
Kong et al. | Simultaneous targeted analysis of five active compounds in licorice by ultra-fast liquid chromatography coupled to hybrid linear-ion trap tandem mass spectrometry | |
Guo et al. | Characterization of triterpenoidic saponin mixture in crude extracts from leaves of Acanthopanax senticosus harms by saponin structural correlation and mass spectrometry | |
Lin et al. | Global identification and determination of the major constituents in Kai-Xin-San by ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry and gas chromatography-mass spectrometry | |
CN108918733B (zh) | 基于电喷雾质子化裂解定量中药三萜皂苷含量所需碰撞能的预测方法 | |
Qiu et al. | Discovery of the directionally detoxification effect and chemical mechanism of Ginseng-Fuzi co-decoction based on real-time online filtration electrospray ionization mass spectrometry | |
CN112305141B (zh) | 一种人参皂苷虚拟数据库的构建方法及人参皂苷的鉴定方法 | |
Wang et al. | Simultaneous determination and pharmacokinetics study of three triterpenoid saponins in rat plasma by ultra‐high‐performance liquid chromatography tandem mass‐spectrometry after oral administration of Astragalus Membranaceus leaf extract | |
Yang et al. | Rapid analysis of differential chemical compositions of Poria cocos using thin-layer chromatography spray ionization-mass spectrometry | |
Liu et al. | Simultaneous quantification of both triterpenoid and steroidal saponins in various Yunnan Baiyao preparations using HPLC–UV and HPLC–MS | |
Zhang et al. | Rapid and comprehensive identification of chemical constituents in Mai-Luo-Shu-Tong pill by UHPLC-Q-Orbitrap HRMS combined with a data mining strategy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |