CN108897217B - 一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法 - Google Patents

一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法 Download PDF

Info

Publication number
CN108897217B
CN108897217B CN201810723646.0A CN201810723646A CN108897217B CN 108897217 B CN108897217 B CN 108897217B CN 201810723646 A CN201810723646 A CN 201810723646A CN 108897217 B CN108897217 B CN 108897217B
Authority
CN
China
Prior art keywords
error
surface ship
mpc
control
tracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810723646.0A
Other languages
English (en)
Other versions
CN108897217A (zh
Inventor
李慧平
梁昊姣
严卫生
张卓
徐德民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201810723646.0A priority Critical patent/CN108897217B/zh
Publication of CN108897217A publication Critical patent/CN108897217A/zh
Application granted granted Critical
Publication of CN108897217B publication Critical patent/CN108897217B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

本发明涉及一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法,能够在满足欠驱动系统输入和状态约束的基础上根据给定的性能指标得到保证系统稳定的优化跟踪性能,包括以下步骤:1)将轨迹跟踪误差模型投影到体坐标系下,利用Lyapunov直接法和反步法设计使得跟踪误差渐近收敛的控制律并结合系统约束求取终端不变集;2)获取当前时刻系统状态,构建有限时域包含终端约束的MPC约束优化问题;3)求解MPC约束优化问题,获取当前时刻预测的最优控制序列,将第一个最优控制作用于系统;4)新采样时刻获取新的系统状态并更新MPC约束优化问题,滚动迭代直到跟踪控制过程结束。该方法不但考虑了系统的实际约束,也能够根据给定的指标以较短的预测时域获得优化的跟踪性能。

Description

一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法
技术领域
本发明属于水面船运动控制技术领域,具体为一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法。
背景技术
海洋航行器作为海洋资源勘探、开发和海洋军事应用的主要运载平台,以其自主化、智能化、多功能化、适应性强等特点在民用和军用方面都发挥了极其重要的作用,受到了各个发达国家的关注和重视。民用方面的主要应用是海洋资源的勘探、海底地貌地形的勘测、水下设备的检测和深海打捞服务等。军用方面的主要应用是预先了解水下战场环境(战区的侦察和探测)、破坏敌方设备和设施、水下危险的排除、水下中继通信等。
作为各种应用的基础,海洋航行器的运动控制得到了广泛的研究。对于全驱动系统来说,由于系统控制变量的个数等于系统被控制自由度的个数,因此有着更好的灵活性。然而考虑到能量消耗、经济成本、重量等问题,水面船又常被设计成欠驱动的系统。当执行机构发生故障时,全驱动航行器也将成为欠驱动系统。水面船通常由两个执行机构驱动,是较为典型的欠驱动航行器,是海上运输、水上救援、海洋科考的主要平台,因此针对欠驱动水面船的研究具有十分重要的工程意义。
相比于全驱动水面船,欠驱动水面船由于系统控制量的个数少于被控制自由度的个数,属于高度非线性耦合系统,其运动控制更为困难。因此对于欠驱动水面船的跟踪问题较多研究针对的是位置跟踪问题,对于欠驱动水面船的轨迹跟踪问题,主要思路是进行局部线性化和模型的解耦。在欠驱动轨迹跟踪问题中:K.Y.Pettersen等通过坐标变换实现了对参考轨迹的跟踪,但变换后使得跟踪误差的物理意义不是那么明确;K.D.Do等从子系统的角度分析了闭环系统的稳定性,实现了对参考轨迹的跟踪,E.Lefeber等利用级联方法实现了对参考轨迹的跟踪,但是无法获取整个系统的Lyapunov函数且级联方法限制了控制器对不确定参数的自适应性以及无法保证全局指数稳定;Ashrafiuon等利用滑模方法实现了跟踪控制且对抖振进行了削弱,但是也在一定程度上降低了跟踪性能和鲁棒性;李雅普诺夫函数在非线性控制系统设计中具有重要的作用,但是用于系统控制设计的李雅普诺夫函数较难构造,反演法在一定程度上解决了这一问题,Z.P.Jiang等利用反步法实现了对参考轨迹的跟踪,但是控制器的结构一般较为复杂。可以发现,这些控制方法大都没有考虑执行机构和系统状态的实际约束,然而实际应用中执行机构的能力都是有限的,系统状态也常是受限的;另一方面,这些控制方法在控制的过程中无法满足一定的性能指标(能量消耗最少,优先跟踪某一系统状态)。因此,我们迫切地需要一种控制方法能够在设计控制律时考虑到这些因素。
模型预测控制(Model Predictive Control,MPC)方法就可以在满足约束的情况下达到最优控制性能。值得注意的是,虽然B.J.Guerreiro、F.Kühne、H.Zheng和C.G.Liu等研究了利用模型预测控制方法解决欠驱动水面船轨迹跟踪控制相关问题。但是,这些模型预测控制器都未考虑终端约束、难以确保实际应用过程中系统的稳定性。
发明内容
要解决的技术问题
本发明的目的是提供一种在满足约束的情况下能够获取稳定最优控制效果的模型预测控制方法,以解决欠驱动水面船轨迹跟踪控制中实际约束和给定性能无法满足以及无终端约束模型预测控制难以保证稳定性的问题。
技术方案
一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法,其特征在于:第一部分是利用Lyapunov直接法和反步法设计使得跟踪误差渐近收敛的控制律;第二部分是将第一部分求得的控制律作为有终端约束MPC的终端控制律,进而选取合适的终端不变集并结合系统模型、系统约束和优化指标构建MPC约束优化问题;步骤如下:
步骤1:终端控制律的设计及相应参数的选取:
步骤1.1:假设水面船有着良好的对称性且低速航行,忽略动力学模型中惯性矩阵的非对角项和阻尼矩阵的非对角项及非线性项,考虑参考轨迹是由一个虚拟水面船模型产生,则实际水面船运动模型
Figure BDA0001719119710000031
和虚拟水面船运动模型
Figure BDA0001719119710000032
可分别表示为:
Figure BDA0001719119710000033
Figure BDA0001719119710000034
Figure BDA0001719119710000035
Figure BDA0001719119710000036
Figure BDA0001719119710000037
Figure BDA0001719119710000038
其中,x=[x,y,ψ,u,v,r]'为实际水面船的系统状态,xd=[xd,ydd,ud,vd,rd]'为虚拟水面船的系统状态,[x,y,ψ]'为水面船在地面坐标系下的位姿,[u,v,r]'为水面船在载体坐标系下的线速度和角速度,u为实际的控制输入,ud为参考的控制输入;
步骤1.2:将误差模型
Figure BDA0001719119710000039
投影到体坐标系下得到
Figure BDA00017191197100000310
即:
Figure BDA00017191197100000311
Figure BDA00017191197100000312
Figure BDA00017191197100000313
Figure BDA00017191197100000314
Figure BDA00017191197100000315
Figure BDA00017191197100000316
其中,xe=[xe,yee,ue,ve,re]'为地面坐标系下的跟踪误差在载体坐标系下的投影;
步骤1.3:设置水面船的模型参数m11、m22、m33、d11、d22、d33
步骤1.4:设置参考轨迹,设定参考轨迹的初始状态xd(0)和角速度rd,利用虚拟水面船模型生成参考轨迹,设定实际水面船的初始状态x(0);
步骤1.5:选取Lyapunov函数
Figure BDA0001719119710000041
利用反步法设计可得:在选取合适参数ki,i=0,…8的情况下,当实际的控制输入为u=[X,N]'时,能够使得跟踪误差渐近收敛,X、N的具体形式分别为:
Figure BDA0001719119710000042
Figure BDA0001719119710000043
其中,
Figure BDA0001719119710000044
为虚拟角速度误差,
Figure BDA0001719119710000045
为虚拟角速度,
Figure BDA0001719119710000046
为虚拟前向速度误差,
Figure BDA0001719119710000047
为虚拟前向速度;
步骤1.6:由步骤1.4可知,选取合适的参数是设计控制律使得跟踪误差渐近收敛的关键部分,定义k0=m22/(k3d22-m22)、k4=m22/(k3m11)、k6=k4-d11/m11+C1
Figure BDA0001719119710000048
k3=m22/(d22λ)、c=rd(1-k7e_maxm11/d22
Figure BDA0001719119710000049
Figure BDA00017191197100000410
Figure BDA00017191197100000411
ψe_max=maxψe,C1为正常数;
步骤1.7:确定k7:{k7|0<1-k8-k7ψe_max}、确定λ12:{λ12|0<λ12<1}、确定ε347:{ε347|0<ε347}、确定λ56:{λ56|0<λ56<1}、确定k2:{k2|0<k2};
步骤1.8:确定λ的范围,使得k8为实数,λ:
Figure BDA0001719119710000051
步骤1.9:确定k8的范围,使得满足k5为实数的条件:
Figure BDA0001719119710000052
Figure BDA0001719119710000053
步骤1.10:确定k5
Figure BDA0001719119710000054
步骤1.11:构建优化问题
Figure BDA0001719119710000055
求解使得k1最小时的ε1、ε2、ε3、ε4、ε5、ε6、ε7,即:
Figure BDA0001719119710000056
s.t.ε12=ε1256=ε56347=ε347,
ε1>0,ε2>0,ε3>0,ε4>0,ε5>0,ε6>0,ε7>0,
其中,C2为正常数;
步骤1.12:将已确定的参数ki,i=0,…8带入步骤1.4所描述的控制律X、N中;将此控制律X、N作用于误差系统,验证该时变状态反馈控制律是否能够使得跟踪误差渐近收敛,是否能够作为MPC的终端控制律;
步骤2:基于MPC的轨迹跟踪控制方法的设计:
步骤2.1:设置参考轨迹,设定参考轨迹的初始状态xd(0)和角速度rd,利用虚拟水面船模型生成参考轨迹,设定实际水面船的初始状态为x(0);
步骤2.2:设置MPC迭代的时间T/次数Nt、预测时域Tp、采样间隔δ。考虑到实际系统的采样机制,控制输入定义为
Figure BDA0001719119710000057
系统方程的状态值由四阶-五阶Runge-Kutta算法求解,其中
Figure BDA0001719119710000058
表示不大于t的最大采样时刻;
步骤2.3:设置当前tk时刻MPC约束优化问题的目标函数为:
Figure BDA0001719119710000061
其中,Tp为预测时域,xe(t;tk)为系统在tk时刻对t时刻误差状态的预测,ue(t;tk)为系统在tk时刻对t时刻误差输入的预测,Q为误差状态的加权矩阵,R为输入误差的加权矩阵,P为终端误差状态的加权矩阵,其中,
Figure BDA0001719119710000062
Figure BDA0001719119710000063
Pe、Qe的具体形式分别为:
Figure BDA0001719119710000064
步骤2.4:设置MPC优化问题的状态约束xe∈X、输入约束ue∈U以及终端约束xe(tk+Tp)∈Ω(tk+Tp);
步骤2.5:根据模型预测系统未来的动态,求解tk时刻的MPC约束优化问题
Figure BDA0001719119710000065
得到tk时刻预测的最优控制序列,tk时刻优化问题的具体形式为:
Figure BDA0001719119710000066
Figure BDA0001719119710000067
Figure BDA0001719119710000068
Figure BDA0001719119710000069
其中,
Figure BDA00017191197100000610
步骤2.6:将第一个最优控制作用于误差系统,直到新的采样时刻tk+1到来时,将新的采样状态作为初始状态构建新时刻tk+1的MPC约束优化问题,滚动迭代直到跟踪控制过程结束。
有益效果
本发明提出的一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法,利用Lyapunov直接法和反步法,设计的使得跟踪误差渐近收敛的时变状态反馈控制律,在设计过程中跟踪误差不需要进行坐标变换、设计的Lyapunov函数为整个系统的Lyapunov函数,有着更加明确的物理意义;设计的MPC跟踪控制律将实际输入范围和状态范围作为硬约束,更加符合实际应用;设计的MPC跟踪控制律考虑到了给定的优化指标,可以实现对指定状态的优先跟踪;设计的MPC跟踪控制律考虑了终端约束,能够在满足约束的情况下以较短的预测时域得到使得误差系统稳定(输入状态稳定,Input-to-State-Stability,ISS)的最优控制律,解决欠驱动水面船轨迹跟踪控制中实际约束和给定性能无法满足以及无终端MPC难以保证稳定性的问题。
附图说明
图1:Cybership Ⅱ实验船
图2:参考轨迹
图3:反步法作用下的跟踪轨迹
图4:反步法作用下的跟踪误差
图5:反步法作用下跟踪误差的范数
图6:反步法作用下的控制输入
图7:MPC方法作用下的跟踪轨迹
图8:MPC方法作用下的跟踪误差
图9:MPC方法作用下跟踪误差的范数
图10:MPC方法作用下的控制输入
具体实施方式
现结合实施例、附图对本发明作进一步描述:
本发明提出的一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法的原理是将跟踪误差模型投影到体坐标系下,利用Lyapunov直接法和反步法设计使得跟踪误差渐近收敛的控制律并结合系统约束获取合适的终端不变集;采样当前时刻系统状态,构建有限时域带终端约束的MPC约束优化问题;求解约束优化问题,得到当前时刻预测的最优控制序列,将第一个最优控制作用于系统;新采样时刻获取新的系统状态并更新MPC约束优化问题,滚动迭代直到跟踪控制过程结束。
实施方式主要分为两部分,第一部分是利用Lyapunov直接法和反步法设计使得跟踪误差渐近收敛的控制律;第二部分是将第一部分求得的控制律作为有终端约束MPC的终端控制律,进而选取合适的终端不变集并结合系统模型、系统约束和优化指标构建MPC约束优化问题,具体步骤为:
步骤1:终端控制律的设计及相应参数的选取,
步骤1.1:假设水面船有着良好的对称性且低速航行,忽略动力学模型中惯性矩阵的非对角项和阻尼矩阵的非对角项及非线性项,考虑参考轨迹是由虚拟水面船模型产生,则实际水面船运动模型
Figure BDA0001719119710000081
和虚拟水面船运动模型
Figure BDA0001719119710000082
可分别表示为:
Figure BDA0001719119710000083
Figure BDA0001719119710000084
Figure BDA0001719119710000085
Figure BDA0001719119710000086
Figure BDA0001719119710000087
Figure BDA0001719119710000088
其中,x=[x,y,ψ,u,v,r]'为实际水面船的系统状态,xd=[xd,ydd,ud,vd,rd]'为虚拟水面船的系统状态,[x,y,ψ]'为水面船在地面坐标系下的位姿,[u,v,r]'为水面船在载体坐标系下的线速度及角速度,u为实际的控制输入,ud为参考的控制输入。
步骤1.2:将误差模型
Figure BDA0001719119710000089
投影到体坐标系下得到
Figure BDA00017191197100000810
即:
Figure BDA0001719119710000091
Figure BDA0001719119710000092
Figure BDA0001719119710000093
Figure BDA0001719119710000094
Figure BDA0001719119710000095
Figure BDA0001719119710000096
其中,xe=[xe,yee,ue,ve,re]'为地面坐标系下的跟踪误差在载体坐标系下的投影。
步骤1.3:设置水面船的模型参数m11、m22、m33、d11、d22、d33,参照图1,本实施例中使用的模型为CybershipⅡ实验船,该船的驱动机构为尾部的两个推进器,具体参数为m11=25.8、m22=33.8、m33=2.8、d11=0.72、d22=0.89,d33=1.9,最大推力为2N,最大旋转力矩为1.5N·m。
步骤1.4:设置参考轨迹,设定参考轨迹的初始状态xd(0)和角速度rd,利用虚拟水面船模型实现参考轨迹的生成。本实施例中所使用模型的最大前向速度为0.2m/s、最大角速度为0.5236rad/s、最大侧向速度为0.1m/s,本实施例考虑跟踪一圆周轨迹,选取参考角速度rd=0.05rad/s,参考前向速度ud=0.05m/s,参考轨迹的初始状态为xd(0)=[0,0,0,0.05,0,0.05]',参考轨迹参照图2;设定实际水面船的初始状态为x(0)=[-0.0478,-0.0086,0.0001,0.0553,0.0002,0.0426]'。
步骤1.5:选取Lyapunov函数
Figure BDA0001719119710000097
利用反步法设计可得:在选取合适参数(ki,i=0,…8)的情况下,当实际的控制输入为u=[X,N]'时,能够使得跟踪误差渐近收敛,X、N的具体形式分别为:
Figure BDA0001719119710000101
Figure BDA0001719119710000102
其中,
Figure BDA0001719119710000103
为虚拟角速度误差,
Figure BDA0001719119710000104
为虚拟角速度,
Figure BDA0001719119710000105
为虚拟前向速度误差,
Figure BDA0001719119710000106
为虚拟前向速度。
步骤1.6:由步骤1.4可知,选取合适的参数是设计控制律使得跟踪误差渐近收敛的关键部分,定义k0=m22/(k3d22-m22)、k4=m22/(k3m11)、k6=k4-d11/m11+C1k3=m22/(d22λ)、c=rd(1-k7e_maxm11/d22
Figure BDA0001719119710000108
Figure BDA0001719119710000109
Figure BDA00017191197100001010
ψe_max=maxψe
步骤1.7:确定k7:{k7|0<1-k8-k7ψe_max}、确定λ12:{λ12|0<λ12<1}、确定ε347:{ε347|0<ε347}、确定λ56:{λ56|0<λ56<1}、确定k2:{k2|0<k2}。本实施例中,k7=0.8、λ12=0.2、ε347=0.5、λ56=0.5、k2=1、ψe_max=5°,由此可确定c=1.3482、ε12=0.0069、ε56=20.7134。
步骤1.8:确定λ的范围,使得k8为实数,λ:
Figure BDA00017191197100001011
本实施例中λ=0.9167、正常数C1=1,由此可确定k3=41.4268、k0=11.0105、k4=0.0316、k6=1.0037。
步骤1.9:确定k8的范围,使得满足k5为实数的条件:
Figure BDA00017191197100001012
Figure BDA0001719119710000111
本实施例中k8=0.1077。
步骤1.10:确定k5
Figure BDA0001719119710000112
本实施例中k5=2.2026。
步骤1.11:构建优化问题
Figure BDA0001719119710000113
求解使得k1最小时的ε1、ε2、ε3、ε4、ε5、ε6、ε7,即:
Figure BDA0001719119710000114
s.t.ε12=ε1256=ε56347=ε347,
ε1>0,ε2>0,ε3>0,ε4>0,ε5>0,ε6>0,ε7>0,
其中,C2为正常数,本实施例中C2=10,由此可确定k1=85.0826。
步骤1.12:将已确定的参数(ki,i=0,…8)带入控制律X、N中并作用于误差系统,在该时变状态反馈控制律作用下的跟踪轨迹参照图3,从中可以看出该控制律有着较好的跟踪效果;跟踪误差参照图4,从中可看出误差系统的状态呈现收敛趋势;跟踪误差的范数参照图5,从中可看出跟踪误差的范数呈现渐近收敛趋势,与设计要求一致;控制输入的范围参照图6,从中可看出实际系统的控制输入在约束范围内。因此,在满足约束的情况下该控制律可使得跟踪误差渐近收敛,能够作为有终端条件MPC的终端控制律。
在所述步骤1中,本发明将轨迹跟踪误差投影到体坐标系下,并利用Lyapunov直接法和反步法设计了使得跟踪误差渐近收敛的控制律,并将此控制律作为有终端MPC的终端控制律。
步骤2:基于MPC的轨迹跟踪控制方法的实施,
步骤2.1:设置参考轨迹,设定参考轨迹的初始状态xd(0)和参考角速度rd,利用虚拟水面船模型实现参考轨迹的生成。本实施例中所使用模型的最大前向速度为0.2m/s、最大角速度为0.5236rad/s、最大侧向速度为0.1m/s,本实施例考虑跟踪一圆周轨迹,选取参考角速度rd=0.05rad/s,参考前向速度ud=0.05m/s,参考轨迹的初始状态为xd(0)=[0,0,0,0.05,0,0.05]',参考轨迹参照图2;设定实际水面船的初始状态为x(0)=[-0.2,-0.2,0,0,0,0]'。
步骤2.2:设置MPC迭代的时间T/次数Nt、预测时域Tp、采样间隔δ,考虑到实际系统的采样机制,控制输入定义为
Figure BDA0001719119710000121
系统方程的状态值由四阶-五阶Runge-Kutta算法求解,其中
Figure BDA0001719119710000122
表示不大于t的最大采样时刻。本实施例中Nt=274、Tp=10s、δ=0.5s。
步骤2.3:设置当前tk时刻MPC优化问题的目标函数为:
Figure BDA0001719119710000123
其中,xe(t;tk)为tk时刻对t时刻误差状态的预测,ue(t;tk)为tk时刻对t时刻误差输入的预测,Q为状态误差加权矩阵,R为输入误差加权矩阵,P为终端状态误差加权矩阵,
Figure BDA0001719119710000124
Figure BDA0001719119710000125
本实施例中R=diag(0.001,0.001),Qs=diag(0.01,0.005,0.06,0.001,0.005,0.005),Pe、Qe的具体数值分别为:
Figure BDA0001719119710000126
步骤2.4:设置MPC优化问题的状态约束xe∈X、输入约束ue∈U以及终端约束xe(tk+Tp)∈Ω(tk+Tp)。本实施例中所使用模型的最大推力为2N,最大旋转力矩为1.5N·m,由此可确定输入约束,输入约束和终端约束分别为:
Figure BDA0001719119710000127
步骤2.5:根据模型预测系统未来的动态,求解tk时刻的MPC约束优化问题
Figure BDA0001719119710000131
得到tk时刻预测的最优控制序列,tk时刻优化问题的具体形式为:
Figure BDA0001719119710000132
Figure BDA0001719119710000133
Figure BDA0001719119710000134
Figure BDA0001719119710000135
其中,
Figure BDA0001719119710000136
步骤2.6:将第一个最优控制作用于误差系统,直到新的采样时刻tk+1到来时,将新的采样状态作为初始状态构建新时刻tk+1的MPC优化问题,滚动迭代直到跟踪控制过程结束。在模型预测控制的作用下,欠驱动水面船运动轨迹参照图7,从中可看出该控制律有着良好的跟踪性能;跟踪误差参照图8,从中可看出误差状态呈现较快地收敛趋势;跟踪误差的范数参照图9,从中可看出跟踪误差的范数呈现渐近收敛趋势,与设计要求一致;系统控制输入参照图10,从中可看出控制输入皆满足约束。从实施例中可以看出,所设计的基于模型预测控制的欠驱动水面船轨迹跟踪控制方法在满足系统实际约束的情况下以较短的预测时域求解到了保证系统ISS稳定的最优控制律,取得了较好的跟踪效果。
在所述步骤2中,结合系统约束和步骤1设计的终端控制律获取了合适的终端不变集,在MPC跟踪控制律的设计中考虑了实际系统的输入约束和状态约束,在MPC跟踪控制律的设计中考虑了指定的优化指标,并且通过构建有限时域带终端约束的MPC约束优化问题得到了使得欠驱动无人船误差系统稳定的最优控制律。

Claims (1)

1.一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法,其特征在于:第一部分是利用Lyapunov直接法和反步法设计跟踪控制律,从而使得跟踪误差渐进收敛;第二部分是将第一部分求得的控制律作为有终端约束MPC的终端控制律,进而选取合适的终端不变集并结合系统模型、系统约束和优化指标构建MPC约束优化问题;步骤如下:
步骤1:终端控制律的设计及相应参数的选取:
步骤1.1:假设水面船有着良好的对称性且低速航行,忽略动力学模型中惯性矩阵的非对角项和阻尼矩阵的非对角项及非线性项,考虑参考轨迹是由一个虚拟水面船模型产生,则实际水面船运动模型
Figure FDA0002481242090000011
和虚拟水面船运动模型
Figure FDA0002481242090000012
可分别表示为:
Figure FDA0002481242090000013
Figure FDA0002481242090000014
Figure FDA0002481242090000015
Figure FDA0002481242090000016
Figure FDA0002481242090000017
Figure FDA0002481242090000018
其中,x=[x,y,ψ,u,v,r]'为实际水面船的系统状态,xd=[xd,ydd,ud,vd,rd]'为虚拟水面船的系统状态,[x,y,ψ]'为水面船在地面坐标系下的位姿,[u,v,r]'为水面船在载体坐标系下的线速度和角速度,u为实际的控制输入,ud为参考的控制输入;
步骤1.2:将误差模型
Figure FDA0002481242090000019
投影到体坐标系下得到
Figure FDA00024812420900000110
即:
Figure FDA0002481242090000021
Figure FDA0002481242090000022
Figure FDA0002481242090000023
Figure FDA0002481242090000024
Figure FDA0002481242090000025
Figure FDA0002481242090000026
其中,xe=[xe,yee,ue,ve,re]'为地面坐标系下的跟踪误差在载体坐标系下的投影;
步骤1.3:设置水面船的模型参数m11、m22、m33、d11、d22、d33
步骤1.4:设置参考轨迹,设定参考轨迹的初始状态xd(0)和角速度rd,利用虚拟水面船模型生成参考轨迹,设定实际水面船的初始状态x(0);
步骤1.5:选取Lyapunov函数
Figure FDA0002481242090000027
利用反步法设计可得:在选取合适参数ki,i=0,…8的情况下,当实际的控制输入为u=[X,N]'时,能够使得跟踪误差渐近收敛,X、N的具体形式分别为:
Figure FDA0002481242090000028
Figure FDA0002481242090000029
其中,
Figure FDA00024812420900000210
为虚拟角速度误差,
Figure FDA00024812420900000211
为虚拟角速度,
Figure FDA00024812420900000212
为虚拟前向速度误差,
Figure FDA00024812420900000213
为虚拟前向速度;
步骤1.6:由步骤1.4可知,选取合适的参数是设计控制律使得跟踪误差渐近收敛的关键部分,定义k0=m22/(k3d22-m22)、k4=m22/(k3m11)、k6=k4-d11/m11+C1
Figure FDA0002481242090000031
k3=m22/(d22λ)、c=rd(1-k7e_maxm11/d22
Figure FDA0002481242090000032
Figure FDA0002481242090000033
ψe_max=maxψe,C1为正常数;
步骤1.7:确定k7:{k7|0<1-k8-k7ψe_max}、确定λ12:{λ12|0<λ12<1}、确定ε347:{ε347|0<ε347}、确定λ56:{λ56|0<λ56<1}、确定k2:{k2|0<k2};
步骤1.8:确定λ的范围,使得k8为实数,λ:
Figure FDA0002481242090000034
步骤1.9:确定k8的范围,使得满足k5为实数的条件:
Figure FDA0002481242090000035
Figure FDA0002481242090000036
步骤1.10:确定k5
Figure FDA0002481242090000037
步骤1.11:构建优化问题
Figure FDA0002481242090000038
求解使得k1最小时的ε1、ε2、ε3、ε4、ε5、ε6、ε7,即:
Figure FDA0002481242090000039
s.t.ε12=ε1256=ε56347=ε347,
ε1>0,ε2>0,ε3>0,ε4>0,ε5>0,ε6>0,ε7>0,
其中,C2为正常数;
步骤1.12:将已确定的参数ki,i=0,…8带入步骤1.4所描述的控制律X、N中;将此控制律X、N作用于误差系统,验证该时变状态反馈控制律是否能够使得跟踪误差渐近收敛,是否能够作为MPC的终端控制律;
步骤2:基于MPC的轨迹跟踪控制方法的设计:
步骤2.1:设置参考轨迹,设定参考轨迹的初始状态xd(0)和角速度rd,利用虚拟水面船模型生成参考轨迹,设定实际水面船的初始状态为x(0);
步骤2.2:设置MPC迭代的时间T/次数Nt、预测时域Tp、采样间隔δ;考虑到实际系统的采样机制,控制输入定义为
Figure FDA0002481242090000049
系统方程的状态值由四阶-五阶Runge-Kutta算法求解,其中
Figure FDA00024812420900000410
表示不大于t的最大采样时刻;
步骤2.3:设置当前tk时刻MPC约束优化问题的目标函数为:
Figure FDA0002481242090000041
其中,Tp为预测时域,xe(t;tk)为系统在tk时刻对t时刻误差状态的预测,ue(t;tk)为系统在tk时刻对t时刻误差输入的预测,Q为误差状态的加权矩阵,R为输入误差的加权矩阵,P为终端误差状态的加权矩阵,其中,
Figure FDA0002481242090000042
Pe、Qe的具体形式分别为:
Figure FDA0002481242090000043
步骤2.4:设置MPC优化问题的状态约束
Figure FDA0002481242090000044
输入约束
Figure FDA0002481242090000045
以及终端约束xe(tk+Tp)∈Ω(tk+Tp);
步骤2.5:根据模型预测系统未来的动态,求解tk时刻的MPC约束优化问题
Figure FDA0002481242090000046
得到tk时刻预测的最优控制序列,tk时刻优化问题的具体形式为:
Figure FDA0002481242090000047
其中,
Figure FDA0002481242090000048
步骤2.6:将第一个最优控制作用于误差系统,直到新的采样时刻tk+1到来时,将新的采样状态作为初始状态构建新时刻tk+1的MPC约束优化问题,滚动迭代直到跟踪控制过程结束。
CN201810723646.0A 2018-07-04 2018-07-04 一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法 Active CN108897217B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810723646.0A CN108897217B (zh) 2018-07-04 2018-07-04 一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810723646.0A CN108897217B (zh) 2018-07-04 2018-07-04 一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法

Publications (2)

Publication Number Publication Date
CN108897217A CN108897217A (zh) 2018-11-27
CN108897217B true CN108897217B (zh) 2020-07-14

Family

ID=64348249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810723646.0A Active CN108897217B (zh) 2018-07-04 2018-07-04 一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法

Country Status (1)

Country Link
CN (1) CN108897217B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109739107B (zh) * 2018-12-18 2022-03-18 西北工业大学 一种基于模型预测控制的功率缓冲器设计方法
CN110161853A (zh) * 2019-05-09 2019-08-23 大连海事大学 一种新型具有实时性的船舶综合自动驾驶系统
CN110262513B (zh) * 2019-07-12 2022-01-28 大连海事大学 一种海洋机器人轨迹跟踪控制结构的设计方法
CN110647161B (zh) * 2019-10-15 2022-07-15 哈尔滨工程大学 基于状态预测补偿的欠驱动uuv水平面轨迹跟踪控制方法
CN110889198B (zh) * 2019-11-01 2023-05-19 中国科学院国家空间科学中心 一种基于多因素联合学习的航位概率分布预测方法及系统
CN111045432B (zh) * 2019-12-31 2022-07-15 哈尔滨工程大学 一种欠驱动水面船非线性路径跟踪控制系统及方法
CN111694277B (zh) * 2020-06-12 2021-09-10 华北电力大学 一种基于多步状态反馈的非线性随机模型预测控制方法
CN112034865B (zh) * 2020-08-12 2021-10-08 浙江大学 基于优化算法的全驱动水下航行器航迹跟踪控制方法
CN112051742A (zh) * 2020-09-17 2020-12-08 哈尔滨工程大学 一种基于mpc的全驱动船舶航迹跟踪方法
CN112684793B (zh) * 2020-12-03 2022-06-28 南京理工大学 一种离散系统中的机器人零半径过弯的轨迹跟踪控制方法
CN113110468B (zh) * 2021-04-22 2022-07-26 中国船舶重工集团公司第七0七研究所九江分部 一种应用于欠驱动双桨双舵船舶自主靠泊的控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040181498A1 (en) * 2003-03-11 2004-09-16 Kothare Simone L. Constrained system identification for incorporation of a priori knowledge
US9241510B2 (en) * 2011-04-23 2016-01-26 Ics Solutions B.V. Apparatus and method for optimizing and controlling food processing system performance
CN102298326B (zh) * 2011-06-30 2013-05-08 哈尔滨工程大学 欠驱动auv自适应轨迹跟踪控制装置及控制方法
CN103777635A (zh) * 2014-01-13 2014-05-07 哈尔滨工程大学 动力定位船舶鲁棒自适应航迹跟踪控制系统
CN105843224A (zh) * 2016-03-25 2016-08-10 哈尔滨工程大学 基于神经动态模型反步法的auv水平面路径跟踪控制方法
CN105929842B (zh) * 2016-04-20 2019-01-11 哈尔滨工程大学 一种基于动态速度调节的欠驱动uuv平面轨迹跟踪控制方法
CN106292287B (zh) * 2016-09-20 2019-03-05 哈尔滨工程大学 一种基于自适应滑模控制的uuv路径跟踪方法
CN106444794B (zh) * 2016-09-20 2019-03-05 哈尔滨工程大学 一种无参数欠驱动uuv垂直面路径跟踪滑模控制方法
CN106444806B (zh) * 2016-09-27 2019-03-05 哈尔滨工程大学 基于生物速度调节的欠驱动auv三维轨迹跟踪控制方法
CN107015562B (zh) * 2017-04-26 2019-08-20 华南理工大学 一种满足预设跟踪性能的欠驱动水面船舶控制方法
CN107368085B (zh) * 2017-08-29 2020-03-31 中国人民解放军国防科技大学 基于模型预测的风场中平流层飞艇高度控制方法

Also Published As

Publication number Publication date
CN108897217A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
CN108897217B (zh) 一种基于模型预测控制的欠驱动水面船轨迹跟踪控制方法
Li et al. Study of 3 dimension trajectory tracking of underactuated autonomous underwater vehicle
Peng et al. Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization
CN108008628B (zh) 一种不确定欠驱动无人艇系统的预设性能控制方法
Lapierre Robust diving control of an AUV
Huang et al. Design of UDE-based dynamic surface control for dynamic positioning of vessels with complex disturbances and input constraints
Liu et al. Saturated coordinated control of multiple underactuated unmanned surface vehicles over a closed curve
CN111736600A (zh) 一种时滞非对称时变全状态约束下的水面无人艇轨迹跟踪控制方法
Huang et al. Vehicle-manipulator system dynamic modeling and control for underwater autonomous manipulation
Liu et al. Drift angle compensation-based adaptive line-of-sight path following for autonomous underwater vehicle
Bian et al. Three-dimensional coordination control for multiple autonomous underwater vehicles
Zhang et al. Anti-disturbance control for dynamic positioning system of ships with disturbances
CN114115262B (zh) 基于方位角信息的多auv执行器饱和协同编队控制系统和方法
Makavita et al. Predictor-based model reference adaptive control of an unmanned underwater vehicle
Zhou et al. Spatial path following for AUVs using adaptive neural network controllers
CN108363400B (zh) 一种基于虚拟锚泊的欠驱动auv三维控制区域镇定控制方法
Shen Motion control of autonomous underwater vehicles using advanced model predictive control strategy
Caharija et al. Topics on current compensation for path following applications of underactuated underwater vehicles
Gao et al. Disturbance observer based finite-time exact bottom-following control for a BUV with input saturation
Ai et al. A source-seeking strategy for an autonomous underwater vehicle via on-line field estimation
Al Makdah et al. Modeling and optimal three-dimensional trajectory tracking for an autonomous underwater vehicle
CN113110512B (zh) 一种减弱未知干扰与抖振影响的可底栖式auv自适应轨迹跟踪控制方法
Zhang et al. Research on Backstepping Tracking Control of Deep-diving AUV Based on Biological Inspiration
Haseltalab et al. Adaptive control for a class of partially unknown non-affine systems: Applied to autonomous surface vessels
Huang et al. Robust adaptive maneuvering control for an unmanned surface vessel with uncertainties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant