CN108872314A - 一种压电型氢气传感器及其制备方法和应用 - Google Patents

一种压电型氢气传感器及其制备方法和应用 Download PDF

Info

Publication number
CN108872314A
CN108872314A CN201810718269.1A CN201810718269A CN108872314A CN 108872314 A CN108872314 A CN 108872314A CN 201810718269 A CN201810718269 A CN 201810718269A CN 108872314 A CN108872314 A CN 108872314A
Authority
CN
China
Prior art keywords
gas sensor
hydrogen gas
piezo
electric type
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810718269.1A
Other languages
English (en)
Other versions
CN108872314B (zh
Inventor
田先清
王新锋
余堃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemical Material of CAEP
Original Assignee
Institute of Chemical Material of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemical Material of CAEP filed Critical Institute of Chemical Material of CAEP
Priority to CN201810718269.1A priority Critical patent/CN108872314B/zh
Publication of CN108872314A publication Critical patent/CN108872314A/zh
Application granted granted Critical
Publication of CN108872314B publication Critical patent/CN108872314B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种压电型氢气传感器,包括封装壳体和氢气传感器压电芯片,其特征在于:氢气传感器压电芯片由金属钯薄膜、导电衬底和ZnO纳米材料阵列组成,氢气传感器压电芯片设置在封装壳体内部,所述封装壳体顶部和底部装配有两个金电极,两个金电极分别与氢气传感器压电芯片的导电衬底和金属钯薄膜导通,封装壳体两侧有透气孔。本发明的压电型氢气传感器,是一种本质安全型无源器件;工作时不需要外接电源输入,可直接对外输出可测量的电压信号,实现氢气含量的检测;成本低,与现有MEMS工艺兼容,可批量生产。

Description

一种压电型氢气传感器及其制备方法和应用
技术领域
本发明涉及一种传感器,具体涉及一种压电型氢气传感器,本发明还涉及压电型氢气传感器的制备方法和应用,属于氢气传感检测技术领域。
背景技术
氢气由于其燃烧效率高、产物无污染等优点,与太阳能、核能一起被称为三大新能源。作为一种新能源,氢气在航空、动力等领域得到广泛的应用;同时,氢气作为一种还原性气体和载气,在化工、电子、医疗、金属冶炼,特别在军事国防领域有着极为重要的应用价值。但氢气分子很小,在生产、储存、运输和使用的过程中易泄漏,由于氢气不利于呼吸,无色无味,不能被人鼻所发觉,且着火点仅为585℃,空气中含量在4%~75%范围内,遇明火即发生爆炸,故在氢气的使用中必须利用氢气传感器对环境中氢气的含量进行检测并对其泄漏进行监测。
长期以来,人们一直在寻找选择性好、灵敏度高、响应速度快、能耗低、稳定性好、制作工艺简单且易集成化的廉价氢气传感器。根据工作原理的不同,氢气传感器主要有电化学型、半导体型、热电型和光纤型等几种类型。电化学型和半导体型氢气传感器工作时均需要外接电源输入,而电化学型氢气传感器的漏液、半导体型氢气传感器的工作高温进一步增加了使用时的风险;热电型氢气传感器(无源器件)虽然不需要外接电源输入,但却需要氧气参与,低氧或无氧环境中无法正常工作;光纤型氢气传感器虽为本征安全型器件,但低技术成熟度、高硬件成本限制了其推广应用。因此,市场亟需新型、可靠、宽适应能力的氢气传感器。
发明内容
本发明的目的在于提供一种压电型氢气传感器,以解决现有氢气传感器使用范围受限或成本高的问题,实现氢气含量的低成本、高可靠测量。
本发明是这样实现的:
一种压电型氢气传感器,包括封装壳体和氢气传感器压电芯片,其中氢气传感器压电芯片由金属钯薄膜、导电衬底和ZnO纳米材料阵列组成,氢气传感器压电芯片设置在封装壳体内部,所述封装壳体顶部和底部装配有两个金电极,两个金电极分别与氢气传感器压电芯片的导电衬底和金属钯薄膜导通,封装壳体两侧有透气孔。
更进一步的方案是:
所述的封装壳体为高强度陶瓷材料。
更进一步的方案是:
所述导电衬底可以是高掺杂n型或p型硅片,亦或是金属片。
更进一步的方案是:
ZnO纳米材料阵列具有压电效应,为大长径比ZnO纳米棒、纳米柱阵列。
更进一步的方案是:
金属钯薄膜通过磁控溅射、热蒸发等真空镀膜工艺沉积,厚度控制在10~50nm。
本发明利用ZnO纳米材料的压电性质以及金属钯膜吸氢体积膨胀的物理特性,构建压电型氢气传感器。ZnO是一种具有特殊压电效应的材料,ZnO纳米材料被广泛用于构建各种类型的纳米无源器件,并具备持续对外输出电压的能力。另一方面,金属钯对氢气具有专一选择性,吸收氢气后体积发生膨胀,脱附后恢复膨胀前状态。这种体积膨胀的程度与氢气含量有直接的关联,如果采用ZnO纳米材料对金属钯进行空间束缚,金属钯吸氢后体积膨胀将对ZnO纳米材料进行挤压,进而引发ZnO的压电效应,致使对外输出电压发生改变。因此,我们通过输出电压的变化可以实现氢气含量的检测。ZnO纳米材料的压电效应,使本发明的氢气传感器可以实现自发供电,不需要外界电源输入,是一种无源器件。与此同时,金属钯吸氢体积膨胀是一种可逆的物理现象,不需要氧气参与且不发生化学反应或释放热量,是一种本征安全的技术。
本发明还提供了压电型氢气传感器的制备方法,包括如下步骤:
步骤1ZnO纳米材料阵列的制备
首先,在导电衬底上旋涂乙酸锌溶液并热分解制备ZnO晶种。
然后,利用水热反应釜在乙酸锌-六次甲基四胺溶液中进一步生长制备ZnO纳米材料,获得规则生长的ZnO纳米材料阵列。
步骤2氢气传感器压电芯片的制备
将获得规则生长的ZnO纳米材料阵列的导电基底上通过磁控溅射、热蒸发等真空镀膜工艺沉积金属钯薄膜,形成构建了ZnO纳米材料阵列和金属钯薄膜的导电衬底,并由划片机划片成所需大小,获得氢气传感器压电芯片;
步骤3压电型氢气传感器的制备
将氢气传感器压电芯片压入封装壳体内,将氢气传感器压电芯片的导电衬底和金属钯薄膜分别与封装壳体两侧的两个金电极导通,经激光焊接边缘获得压电型氢气传感器。
本发明还进一步提供了压电型氢气传感器的应用,是应用于检测环境中氢气含量,具体包括:
将压电型氢气传感器的两个金电极和分别与变送器上滤波电路的I/O端子相连;当环境中存在氢气时,氢气通过透气孔进入氢气传感器压电芯片内部,受封装壳体限制,金属钯膜吸收氢气后,体积向纵向膨胀,挤压ZnO纳米棒阵列,致使压电型氢气传感器输出电压发生改变;压电型氢气传感器的输出电压信号经滤波电路滤波后,由A/D转化模块转化成数字信号,输入MCU模块;经MCU模块内部寄存的电压—氢气含量函数处理后,转化成氢气含量信息;氢气含量信息进一步通过信号输出模块以4~20mA标准信号或RS485/232数字信号传递至上位机或其他采集终端。
本发明具有以下优点:
(1)本发明涉及一种压电型氢气传感器,是一种本质安全型无源器件;
(2)本发明采用ZnO纳米材料为压电材料、金属钯为氢气敏感材料,利用金属钯吸氢体积膨胀效应和ZnO纳米压电效应,构建氢气传感器;
(3)本发明氢气传感器工作时不需要外接电源输入,可直接对外输出可测量的电压信号,实现氢气含量的检测;
(4)本发明氢气传感器工作时不要氧气参与,在有氧或无氧惰性气体环境中均能正常工作。
(5)本发明氢气传感器成本低,与现有MEMS工艺兼容,可批量生产。
附图说明
图1压电型氢气传感器示意图;
图2压电型氢气传感器氢敏原理图;
图3压电型氢气传感器电气使用原理图。
1压电型氢气传感器,11封装壳体,12透气孔,13金电极,14金电极,2氢气传感器压电芯片,21金属钯薄膜,22导电衬底,23 ZnO纳米棒,3变送器,31滤波电路,32 A/D转换模块,33 MCU模块,34信号输出模块,35电源模块
具体实施方式
下面结合附图和具体实施例对本发明作进一步的说明。
实施例1
如附图1所示,一种压电型氢气传感器1,包括封装壳体11和氢气传感器压电芯片2,其中氢气传感器压电芯片2由金属钯薄膜21、导电衬底22和ZnO纳米棒23组成,氢气传感器压电芯片2设置在封装壳体11内部,所述封装壳体11顶部和底部装配有两个金电极13、14,两个金电极分别与氢气传感器压电芯片2的导电衬底22和金属钯薄膜21导通,封装壳体两侧有透气孔12。
其中,封装壳体为高强度陶瓷材料。
作为一个优化的实施例,本发明的导电衬底22可以是高掺杂n型或p型硅片,亦或是金属片。
实施例2
本实施例提供了一种压电型氢气传感器的制备方法,包括:
第一步:在导电衬底22上旋涂乙酸锌溶液并热分解制备ZnO晶种,利用水热反应釜在乙酸锌-六次甲基四胺溶液中进一步生长制备ZnO纳米棒,获得规则生长的ZnO纳米棒阵列23。
第二步:利用真空镀膜设备,在ZnO纳米棒阵列上端部沉积金属钯膜21,厚度10~50nm。
第三步:利用划片机,划片得到氢气传感器压电芯片2。
第四步:将氢气传感器压电芯片2装入封装壳体11中,利用激光焊接技术将壳体边缘密封,获得压电型氢气传感器1。
实施例3
本发明提供了压电型氢气传感器对氢气测量的具体方法,如附图3所示,包括:
第一步:将压电型氢气传感器1的两个金电极13和14分别与变送器3上滤波电路31的I/O端子相连;
第二步:将压电型氢气传感器1或和变送器3放入测试腔内;
第三步:压电型氢气传感器1为无源器件,对外输出直流电,工作时不需要变送器3供电。当环境中存在氢气时,氢气通过透气孔12进入氢气传感器压电芯片2内部,受封装壳体11限制,金属钯膜21吸收氢气后,体积向纵向膨胀,挤压ZnO纳米棒阵列23,如附图2所示,致使压电型氢气传感器1输出电压发生改变。
第四步:压电型氢气传感器1输出电压信号经滤波电路31滤波后,由A/D转化模块32转化成数字信号,输入MCU模块33;
第五步:经MCU模块33内部寄存的电压—氢气含量函数处理后,转化成氢气含量信息;
第六步:氢气含量信息进一步通过信号输出模块34以4~20mA标准信号或RS485/232数字信号传递至上位机或其他采集终端。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (7)

1.一种压电型氢气传感器,包括封装壳体和氢气传感器压电芯片,其特征在于:氢气传感器压电芯片由金属钯薄膜、导电衬底和ZnO纳米材料阵列组成,氢气传感器压电芯片设置在封装壳体内部,所述封装壳体顶部和底部装配有两个金电极,两个金电极分别与氢气传感器压电芯片的导电衬底和金属钯薄膜导通,封装壳体两侧有透气孔。
2.根据权利要求1所述压电型氢气传感器,其特征在于:
所述的封装壳体为高强度陶瓷材料。
3.根据权利要求1所述压电型氢气传感器,其特征在于:
所述导电衬底是高掺杂n型或p型硅片或金属片。
4.根据权利要求1所述压电型氢气传感器,其特征在于:
ZnO纳米材料阵列具有压电效应,为大长径比ZnO纳米棒、纳米柱阵列。
5.根据权利要求1所述压电型氢气传感器,其特征在于:
金属钯薄膜是通过真空镀膜工艺沉积,厚度控制在10~50nm。
6.权利要求1至5任一权利要求所述压电型氢气传感器的制备方法,其特征在于包括如下步骤:
步骤1ZnO纳米材料阵列的制备
首先,在导电衬底上旋涂乙酸锌溶液并热分解制备ZnO晶种;
然后,利用水热反应釜在乙酸锌-六次甲基四胺溶液中进一步生长制备ZnO纳米材料,获得规则生长的ZnO纳米材料阵列;
步骤2氢气传感器压电芯片的制备
将获得规则生长的ZnO纳米材料阵列的导电基底上通过磁控溅射、热蒸发等真空镀膜工艺沉积金属钯薄膜,形成构建了ZnO纳米材料阵列和金属钯薄膜的导电衬底,并由划片机划片成所需大小,获得氢气传感器压电芯片;
步骤3压电型氢气传感器的制备
将氢气传感器压电芯片压入封装壳体内,将氢气传感器压电芯片的导电衬底和金属钯薄膜分别与封装壳体两侧的两个金电极导通,经激光焊接边缘获得压电型氢气传感器。
7.权利要求1至5任一权利要求所述压电型氢气传感器的应用,是应用于检测环境中氢气含量,其特征在于包括:
将压电型氢气传感器的两个金电极和分别与变送器上滤波电路的I/O端子相连;当环境中存在氢气时,氢气通过透气孔进入氢气传感器压电芯片内部,受封装壳体限制,金属钯膜吸收氢气后,体积向纵向膨胀,挤压ZnO纳米棒阵列,致使压电型氢气传感器输出电压发生改变;压电型氢气传感器的输出电压信号经滤波电路滤波后,由A/D转化模块转化成数字信号,输入MCU模块;经MCU模块内部寄存的电压—氢气含量函数处理后,转化成氢气含量信息;氢气含量信息进一步通过信号输出模块以4~20mA标准信号或RS485/232数字信号传递至采集终端。
CN201810718269.1A 2018-07-03 2018-07-03 一种压电型氢气传感器及其制备方法和应用 Active CN108872314B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810718269.1A CN108872314B (zh) 2018-07-03 2018-07-03 一种压电型氢气传感器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810718269.1A CN108872314B (zh) 2018-07-03 2018-07-03 一种压电型氢气传感器及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108872314A true CN108872314A (zh) 2018-11-23
CN108872314B CN108872314B (zh) 2021-01-26

Family

ID=64298338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810718269.1A Active CN108872314B (zh) 2018-07-03 2018-07-03 一种压电型氢气传感器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108872314B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856198A (zh) * 2019-01-10 2019-06-07 高炬 一种连续响应氢气阵列化气敏传感器及其制备方法
CN111208059A (zh) * 2020-02-11 2020-05-29 南京信息工程大学 基于核/壳纳米周期性线阵列等离子体超材料的光纤氢气传感器
EP3754329A1 (de) 2019-06-21 2020-12-23 Materion GmbH Wasserstoffsensor und verfahren zu dessen herstellung, messvorrichtung und verfahren zum messen einer wasserstoffkonzentration

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290310A (zh) * 2007-04-20 2008-10-22 中国科学院大连化学物理研究所 一种压电式氢气传感器及其制备和应用
CN201903532U (zh) * 2010-10-28 2011-07-20 山东科技大学 双敏感层体声波氢气谐振传感器
CN103579490A (zh) * 2012-07-18 2014-02-12 国家纳米科学中心 一种晶体管和晶体管阵列
CN104034763A (zh) * 2014-05-28 2014-09-10 南京工业大学 一种混杂贵金属掺粒子和金属氧化物薄膜的集成气体传感器及其制备方法
CN105334245A (zh) * 2015-11-10 2016-02-17 湖北大学 一种氧化钼纳米纤维纸氢气传感器的制备方法
CN105762272A (zh) * 2016-04-29 2016-07-13 南京信息工程大学 基于巨压电效应的氧化锌纳米阵列应变传感器及其测量电路、标定系统和制备方法
US20170003272A1 (en) * 2015-07-02 2017-01-05 Korea Advanced Institute Of Science And Technology Porous semiconductor metal oxide complex nanofibers including nanoparticle catalyst functionalized by nano-catalyst included within metal-organic framework, gas sensor and member using the same, and method of manufacturing the same
CN107024507A (zh) * 2017-04-18 2017-08-08 电子科技大学 一种氧化钛和钯多孔复合薄膜氢气传感器
CN107870182A (zh) * 2016-09-26 2018-04-03 罗门哈斯电子材料有限责任公司 气体传感器和其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290310A (zh) * 2007-04-20 2008-10-22 中国科学院大连化学物理研究所 一种压电式氢气传感器及其制备和应用
CN201903532U (zh) * 2010-10-28 2011-07-20 山东科技大学 双敏感层体声波氢气谐振传感器
CN103579490A (zh) * 2012-07-18 2014-02-12 国家纳米科学中心 一种晶体管和晶体管阵列
CN104034763A (zh) * 2014-05-28 2014-09-10 南京工业大学 一种混杂贵金属掺粒子和金属氧化物薄膜的集成气体传感器及其制备方法
US20170003272A1 (en) * 2015-07-02 2017-01-05 Korea Advanced Institute Of Science And Technology Porous semiconductor metal oxide complex nanofibers including nanoparticle catalyst functionalized by nano-catalyst included within metal-organic framework, gas sensor and member using the same, and method of manufacturing the same
CN105334245A (zh) * 2015-11-10 2016-02-17 湖北大学 一种氧化钼纳米纤维纸氢气传感器的制备方法
CN105762272A (zh) * 2016-04-29 2016-07-13 南京信息工程大学 基于巨压电效应的氧化锌纳米阵列应变传感器及其测量电路、标定系统和制备方法
CN107870182A (zh) * 2016-09-26 2018-04-03 罗门哈斯电子材料有限责任公司 气体传感器和其制造方法
CN107024507A (zh) * 2017-04-18 2017-08-08 电子科技大学 一种氧化钛和钯多孔复合薄膜氢气传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENBO YIN: "The investigation of hydrogen gas sensing properties of SAW gas sensor", 《MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING》 *
刘然: "一维有序ZnO纳米棒阵列薄膜的制备及应用", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856198A (zh) * 2019-01-10 2019-06-07 高炬 一种连续响应氢气阵列化气敏传感器及其制备方法
CN109856198B (zh) * 2019-01-10 2021-09-24 枣庄学院 一种连续响应氢气阵列化气敏传感器及其制备方法
EP3754329A1 (de) 2019-06-21 2020-12-23 Materion GmbH Wasserstoffsensor und verfahren zu dessen herstellung, messvorrichtung und verfahren zum messen einer wasserstoffkonzentration
US11428659B2 (en) 2019-06-21 2022-08-30 Materion Gmbh Hydrogen sensor and method for its production, measuring device, and method for measuring a hydrogen concentration
CN111208059A (zh) * 2020-02-11 2020-05-29 南京信息工程大学 基于核/壳纳米周期性线阵列等离子体超材料的光纤氢气传感器
CN111208059B (zh) * 2020-02-11 2022-09-30 南京信息工程大学 基于核/壳纳米周期性线阵列等离子体超材料的光纤氢气传感器

Also Published As

Publication number Publication date
CN108872314B (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
CN108872314A (zh) 一种压电型氢气传感器及其制备方法和应用
CN108896623B (zh) 一种用于测量气体相对湿度的数字频率式湿度传感器
CN201909754U (zh) 光学气体传感器
CN106093164B (zh) 常温固体电解质co2传感器及其制备方法
CN110161084B (zh) 微传感芯片及其制备方法、气体检测方法和应用
CN109946358A (zh) 一种以MTiO3为敏感电极的YSZ基混成电位型SO2传感器、制备方法及其应用
KR101269510B1 (ko) 수소 농도 측정이 가능한 수소 감지 센서
CN112611788A (zh) 一种半导体硫化氢气体传感器
CN103760196B (zh) 一种水钠锰矿型二氧化锰纳米片氢气传感器及其制备方法
CN108614015B (zh) 一种催化及热导集成气体传感器的制造方法、传感器及工作方法
CN110687185A (zh) 基于SnO2@Fe2O3纳米异质结构敏感材料的低功耗丙酮气体传感器及其制备方法
CN201322660Y (zh) 一种温度湿度复合传感器
CN204188558U (zh) 用于半导体气体传感器的高精度多种气体检测电路
CN101825596A (zh) 一种多端输出薄膜气敏传感器
CN106966444A (zh) 一种镍掺杂的氧化锌材料及其在制备气敏传感器中的应用
CN101949813B (zh) 用于检测器件封装水氧渗透指标的方法及其检测装置
CN207133226U (zh) 一种高稳定性低湿度检测的qcm湿度传感器
CN105157906A (zh) 一种飞行器高速飞行过程中微压力测量装置及测量方法
CN115308270A (zh) 一种钯合金薄膜氢气传感器及其制备方法和使用方法
CN108801536A (zh) 一种薄片式高灵敏度压力传感器
CN108872083A (zh) 一种钯纳米颗粒离散薄膜检测氢气的方法
CN102520018A (zh) 基于半导体氧化物敏感的集成化二氧化碳传感器
KR101665828B1 (ko) 복합형 단일 화재감지 센서
CN203011528U (zh) 新型高敏紫外光强探测器及紫外光强测控系统
CN218512354U (zh) 一种检测低浓度甲醛气体的传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant