CN108855180B - 一种含有氧空位的碳、氮自掺杂二氧化钛空心球光催化材料及其制备方法和应用 - Google Patents

一种含有氧空位的碳、氮自掺杂二氧化钛空心球光催化材料及其制备方法和应用 Download PDF

Info

Publication number
CN108855180B
CN108855180B CN201810524296.5A CN201810524296A CN108855180B CN 108855180 B CN108855180 B CN 108855180B CN 201810524296 A CN201810524296 A CN 201810524296A CN 108855180 B CN108855180 B CN 108855180B
Authority
CN
China
Prior art keywords
reaction
titanium dioxide
carbon
hollow sphere
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810524296.5A
Other languages
English (en)
Other versions
CN108855180A (zh
Inventor
向全军
马夕阳
冯雄汉
刘凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201810524296.5A priority Critical patent/CN108855180B/zh
Publication of CN108855180A publication Critical patent/CN108855180A/zh
Application granted granted Critical
Publication of CN108855180B publication Critical patent/CN108855180B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料的制备方法,包括如下步骤:(1)将超纯水、无水乙醇、氢氟酸、硝酸和碳氮化钛依次加入到反应釜中,充分搅拌;(2)将反应釜置于烘箱中进行水热反应,反应结束后反应釜冷却,反应物离心、洗涤、干燥、研磨得所述纳米材料。该材料由于碳和氮元素的自掺杂使得材料在紫外‑可见光区域吸收增强,并且在二氧化钛的导带与能带之间形成的杂质带促进了光生电子与空穴的光催化反应;同时,氧空位和三价钛的存在提供了更多的活性位,延长电子和空穴的寿命;并且这种由片状二氧化钛组装成的空心球结构使其具有大量的活性位点,从而有效增强了该材料的光催化产氢活性。

Description

一种含有氧空位的碳、氮自掺杂二氧化钛空心球光催化材料 及其制备方法和应用
技术领域
本发明属于半导体光催化材料技术领域,具体地说,涉及一种可以增强可见光光催化产氢活性的含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球光催化材料及其制备方法和应用。
背景技术
环境与能源问题越来越成为当下全球发展的重点问题,开发新能源迫在眉睫。太阳能这种无限利用的可再生清洁能源和清洁能源氢气是被广泛认可的两大重要能源。利用光催化技术可以实现太阳能向氢能的转化,就有可能永久性的解决环境与能源问题。因此光催化技术的发展受到了研究者们的广泛关注。
二氧化钛(TiO2)作为当前最重要的半导体光催化剂中的一种,已经被广泛应用于空气净化、废水净化、污染物处理等领域。它具有化学稳定性高,无毒,光电转换效率高,价格低廉等优点,但是量子效率低、电子-空穴对的复合率高和带隙宽(3.2eV)等问题阻碍了它的利用。以碳、氮化钛作为原料,利用硝酸的强氧化作用进行水热反应,引入氧空位和三价钛。氧空位和三价钛的碳、氮自掺杂的存在影响着材料的电子结构、电荷传输和表面性质,特别是能够延长光生电子与空穴的寿命从而促进光催化反应分解水产氢的效率。TiO2纳米空心球具有低密度特征形貌、比表面积大的腔体结构以及增强的捕光效率,同时这种结构有利于从浆体中分离再利用。在本发明中,我们首次提出了制备引入了氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料的方法及其该材料在光催化分解水产氢中的应用。
发明内容
本发明针对二氧化钛本身缺陷及现有技术中存在的不足,目的之一是提供一种含有氧空位和三价钛的碳、氮自掺杂的二氧化钛空心球纳米材料。该材料从三个方面提高光催化产氢活性。首先,在反应过程中自掺杂了碳和氮元素,在二氧化钛的导带与能带之间形成的杂质带促进了光生电子与空穴的光催化反应;其次,成功引入了氧空位和三价钛,氧空位和三价钛的存在延长了光生电子与空穴的寿命;最后,二氧化钛纳米片堆积而成的空心球提供了大量的光催化产氢反应活性位点,从而保证了光催化反应的高效性。
本发明的另一个目的是在于提供了一种含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料的制备方法,该制备方法具有工艺简单,操作方便,适合大规模生产等优点。
为了解决上述问题,本发明采取的技术方案为:
一种含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料,所述纳米材料以碳氮化钛为原料通过水热法自掺杂制备而成,所述纳米材料具有由纳米片堆积成的空心球结构。
本发明所述纳米材料的制备方法,包括如下步骤:
(1)将超纯水、无水乙醇、氢氟酸、硝酸和碳氮化钛依次加入到聚四氟乙烯反应釜中,充分搅拌;
(2)将反应釜置于烘箱中加热并保温进行水热反应,反应结束后反应釜冷却至室温,反应物离心、洗涤,所得固体产品烘干、研磨即得所述含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料。
优选的,步骤(1)中所述超纯水、无水乙醇、氢氟酸和硝酸的体积分别为5~15mL、5~20mL、0.6~1.2mL和7.0~8.0mL;碳氮化钛的质量为0.20~0.50g,氢氟酸的质量浓度为40%,硝酸的质量浓度为68%。
优选的,步骤(2)中所述水热反应的条件为:反应温度为180℃,反应时间为18~24h。
优选的,步骤(2)中洗涤是采用去离子水和无水乙醇交替洗涤3次,干燥条件60~80℃,时间为6h。
本发明还要求保护由所述方法制备得到的含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料以及所述纳米材料作为光催化剂在光解水产氢中的应用。
与现有技术相比,本发明具有以下的明显有益效果:
(1)本发明制备的含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球光催化剂从三个方面提高光催化产氢活性。首先碳、氮元素的掺杂使得材料在紫外-可见光区域吸收增强,并且在二氧化钛的导带与能带之间形成的杂质带促进了光生电子与空穴的光催化反应;其次,引入的氧空位和三价钛在价带和导带间形成一种贡献态,它的存在延长了光生电子与空穴的寿命,从而增强了该光催化剂的光催化活性;并且二氧化钛纳米片堆积而成的空心球结构由于具有很高的比表面积可以提供大量的光催化产氢反应活性位点,同时有利于使其沉降和分离。
(2)本发明以碳氮化钛为原料,经过水热反应后制备出含有氧空位和三价钛的碳、氮自掺杂的二氧化钛空心球光催化剂的方法,具备工艺条件温和、操作简便、适合大规模生产等特点。
(3)本发明制备含有氧空位和三价钛的碳、氮自掺杂的二氧化钛空心球光催化剂的制备方法,采用引入缺陷增加价带与导带间的贡献态促进光生电子转移从而提高光催化产氢活性的思路可以在光催化领域加以推广。
附图说明
图1为原料碳氮化钛(TiCN)、二氧化钛纳米片、实施例1所制备材料的XRD衍射图谱;
图2中a、b分别为实施例1所制备材料的透射电镜图和扫描电镜图;
图3中a为实施例1所制备材料、原料碳氮化钛(TiCN)以及白钛粉(P25)的电子顺磁共振图,b为实施例1所制备材料和二氧化钛纳米片的Ti边XANES一阶导图谱;
图4中实施例1所制备材料和二氧化钛纳米片在420nm单色光下的光催化产氢性能图;
图5为实施例1所制备材料的光催化产氢的机理图。
具体实施方式
下面以具体实施例子,进一步阐述本发明。下述实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1
一种含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料的制备方法,包括如下步骤:
(1)将超纯水10mL、无水乙醇10mL、氢氟酸1.0mL、浓硝酸7.5mL和碳氮化钛0.25g依次加入到聚四氟乙烯反应釜中,充分搅拌15min;
(2)将反应釜置于烘箱中加热180℃并保温24h进行水热反应,反应结束后反应釜冷却至室温,反应物离心、用水和乙醇清洗3次,所得固体产品60℃干燥箱放置6h、研磨即得所述含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料。
实施例2
一种含有氧空位和三价钛的碳、氮自掺杂二氧化钛实心球纳米材料的制备方法,包括如下步骤:
(1)将超纯水15mL、无水乙醇5mL、氢氟酸1.0mL、硝酸7.5mL和碳氮化钛0.25g依次加入到聚四氟乙烯反应釜中,充分搅拌15min;
(2)将反应釜置于烘箱中加热180℃并保温24h进行水热反应,反应结束后反应釜冷却至室温,反应物离心、用水和乙醇清洗3次,所得固体产品60℃干燥箱放置6h、研磨即得所述含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料。
实施例3
一种含有氧空位和三价钛的碳、氮自掺杂二氧化钛纳米片材料的制备方法,包括如下步骤:
(1)将将超纯水15mL、无水乙醇20mL、氢氟酸0.8mL、硝酸7.5mL和碳氮化钛0.25g依次加入到聚四氟乙烯反应釜中,充分搅拌15min;
(2)将反应釜置于烘箱中加热180℃并保温24h进行水热反应,反应结束后反应釜冷却至室温,反应物离心、用水和乙醇清洗3次,所得固体产品60℃干燥箱放置6h、研磨即得所述含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料。
实施例4
对上述实施例1所得材料及二氧化钛纳米片在420nm单色光下光催化产氢活性实验,具体实验工艺如下:
(1)配制体积浓度为10%的甲醇水溶液;
(2)将实施例1所得材料CNTH和二氧化钛纳米片各称取20mg于100ml三口烧瓶中,加入80mL甲醇水溶液;
(3)向三口烧瓶中加入0.1%的H2PtCl6·H2O溶液(10g·L-1)并置于全光下照射20分钟,然后把三口烧瓶利用橡胶塞和橡胶管进行密封;
(4)边搅拌边通入氮气以去除烧瓶中的空气和水中溶解的气体,20分钟后,夹紧橡皮管以防止漏气;
(5)将处理好的三口烧瓶反应器放在420nm单色光下照射一个小时,保持磁力搅拌使光催化剂与溶液的充分接触,利用气相色谱仪测量三口烧瓶中产生的氢气;
附图1为原料碳氮化钛(TiCN)、二氧化钛纳米片、实施例1所制备材料的XRD衍射图谱,表明所制备的材料是锐钛矿二氧化钛;
附图2中a、b分别为实施例1所制备材料的透射电镜图和扫描电镜图,表面了所制备样品由纳米片组装成的空心球结构;
附图3中a为实施例1所制备材料、原料碳氮化钛(TiCN)以及白钛粉(P25)的电子顺磁共振图,b为实施例1所制备材料和二氧化钛纳米片的Ti边XANES一阶导图谱,共同证明了材料中存在的三价钛离子;
附图4中实施例1所制备材料和二氧化钛纳米片在420nm单色光下的光催化产氢性能图,由图可见该材料的可见光催化产氢活性比纯的二氧化钛纳米片有明显提高;
附图5为实施例1所制备材料的光催化产氢的机理图。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所作出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (2)

1.一种含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料作为光催化剂在光解水产氢中的应用,其特征在于,所述纳米材料以碳氮化钛为原料通过水热法自掺杂制备而成,所述纳米材料具有由纳米片堆积成的空心球结构;
其中,所述纳米材料的制备包括如下步骤:
(1)将超纯水、无水乙醇、氢氟酸、硝酸和碳氮化钛依次加入到聚四氟乙烯反应釜中,充分搅拌;
(2)将反应釜置于烘箱中加热并保温进行水热反应,反应结束后反应釜冷却至室温,反应物离心、洗涤,所得固体产品烘干、研磨即得所述含有氧空位和三价钛的碳、氮自掺杂二氧化钛空心球纳米材料;
其中,步骤(1)中所述超纯水、无水乙醇、氢氟酸和硝酸的体积分别为5~15mL、5~20mL、0.6~1.2mL和7.0~8.0mL;碳氮化钛的质量为0.20~0.50g,氢氟酸的质量浓度为40%,硝酸的质量浓度为68%;
其中,步骤(2)中所述水热反应的条件为:反应温度为180℃,反应时间为18~24h。
2.根据权利要求1所述的应用,其特征在于,步骤(2)中洗涤是采用去离子水和无水乙醇交替洗涤3次,干燥条件60~80℃,时间为6h。
CN201810524296.5A 2018-05-28 2018-05-28 一种含有氧空位的碳、氮自掺杂二氧化钛空心球光催化材料及其制备方法和应用 Expired - Fee Related CN108855180B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810524296.5A CN108855180B (zh) 2018-05-28 2018-05-28 一种含有氧空位的碳、氮自掺杂二氧化钛空心球光催化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810524296.5A CN108855180B (zh) 2018-05-28 2018-05-28 一种含有氧空位的碳、氮自掺杂二氧化钛空心球光催化材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108855180A CN108855180A (zh) 2018-11-23
CN108855180B true CN108855180B (zh) 2021-06-18

Family

ID=64335131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810524296.5A Expired - Fee Related CN108855180B (zh) 2018-05-28 2018-05-28 一种含有氧空位的碳、氮自掺杂二氧化钛空心球光催化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108855180B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101513610A (zh) * 2009-02-20 2009-08-26 复旦大学 一种C、N共掺杂纳米TiO2光催化剂的制备方法
CN101591769A (zh) * 2009-07-02 2009-12-02 复旦大学 一种C、N含量可调的共掺杂纳米TiO2薄膜的制备方法
WO2012051641A1 (en) * 2010-10-22 2012-04-26 University Of Queensland Metal oxide particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101513610A (zh) * 2009-02-20 2009-08-26 复旦大学 一种C、N共掺杂纳米TiO2光催化剂的制备方法
CN101591769A (zh) * 2009-07-02 2009-12-02 复旦大学 一种C、N含量可调的共掺杂纳米TiO2薄膜的制备方法
WO2012051641A1 (en) * 2010-10-22 2012-04-26 University Of Queensland Metal oxide particles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A simple preparation of carbon and nitrogen co-doped nanoscaled TiO2 with exposed {001} facets for enhanced visible-light photocatalytic activity;GaopengDai等;《Journal of Molecular Catalysis A: Chemical》;20121128;第368-369卷;第38-42页 *
Gd3+掺杂纳米TiO2的制备及性能;李凤丽等;《有色金属》;20070612;摘要 *
原位碳、氮共掺杂二氧化钛空心球的制备与可见光光催化性能;刘素芹等;《物理化学学报》;20130331;第29卷;第585-589页 *

Also Published As

Publication number Publication date
CN108855180A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
Jiang et al. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production
Xiang et al. Graphene‐based photocatalysts for solar‐fuel generation
Liu et al. Easily and synchronously ameliorating charge separation and band energy level in porous g-C3N4 for boosting photooxidation and photoreduction ability
Xu et al. Enhanced photocatalytic activity by the construction of a TiO 2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly
Zhu et al. Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light
Hou et al. Nitrogen vacancy structure driven photoeletrocatalytic degradation of 4-chlorophenol using porous graphitic carbon nitride nanosheets
Liu et al. One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light
Li et al. Hydrogen generation by photocatalytic reforming of glucose with heterostructured CdS/MoS2 composites under visible light irradiation
CN108067281B (zh) 多孔g-C3N4光催化剂及其制备方法和应用
CN110975918B (zh) 一种硫化铟锌-氮掺杂石墨烯泡沫复合光催化材料及其制备方法和应用
CN105289689A (zh) 一种氮掺杂石墨烯量子点/类石墨烯相氮化碳复合材料的合成及应用
Gai et al. 2D-2D heterostructured CdS–CoP photocatalysts for efficient H2 evolution under visible light irradiation
CN107983371B (zh) 一种光催化材料Cu2-xS/Mn0.5Cd0.5S/MoS2及其制备方法与应用
Wang et al. Decoration of CdS nanowires with Ni3S4 nanoballs enhancing H2 and H2O2 production under visible light
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
CN102633303A (zh) 一种三维分等级二氧化钛空心纳米盒子及其制备方法
Rasheed et al. Synthesis and studies of ZnO doped with g-C3N4 nanocomposites for the degradation of tetracycline hydrochloride under the visible light irradiation
CN111203231A (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
CN105771948A (zh) 具有高光催化制氢性能的双壳二氧化钛催化剂及其制备方法
CN105709793A (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂、制备方法与应用
CN112958116B (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
Jiang et al. ZIF-9 derived cobalt phosphide and In2O3 as co-catalysts for efficient hydrogen production
Yue et al. A facile synthesis method of TiO2@ SiO2 porous core shell structure for photocatalytic hydrogen evolution
CN109395759B (zh) 一种具有核壳结构的Fe3C纳米粒子及其制备方法和应用
He et al. A highly efficient NiFe-layer double hydroxide/TiO2 heterojunction photoanode-based high-performance bifunctional photocatalytic fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210618

CF01 Termination of patent right due to non-payment of annual fee