CN108846246B - 一种基于预测控制的高超声速飞行器机翼颤振减损方法及减损控制器 - Google Patents

一种基于预测控制的高超声速飞行器机翼颤振减损方法及减损控制器 Download PDF

Info

Publication number
CN108846246B
CN108846246B CN201810768979.5A CN201810768979A CN108846246B CN 108846246 B CN108846246 B CN 108846246B CN 201810768979 A CN201810768979 A CN 201810768979A CN 108846246 B CN108846246 B CN 108846246B
Authority
CN
China
Prior art keywords
wing
flutter
damage
controller
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810768979.5A
Other languages
English (en)
Other versions
CN108846246A (zh
Inventor
王玉惠
张晓辉
吴庆宪
冯星凯
陈谋
侯思远
徐超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201810768979.5A priority Critical patent/CN108846246B/zh
Publication of CN108846246A publication Critical patent/CN108846246A/zh
Application granted granted Critical
Publication of CN108846246B publication Critical patent/CN108846246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于预测控制的高超声速飞行器机翼颤振减损方法及减损控制器,方法包括基于三阶活塞理论计算机翼颤振时的非定常气动力,并建立三自由度机翼运动方程;建立考虑当前损伤值的非线性损伤模型,对机翼颤振损伤进行在线估计;对高超声速飞行器在不同飞行速度下的机翼颤振响应和损伤累积情况进行仿真分析;设计具有自适应预测周期的预测控制器对机翼颤振进行控制,实现颤振减损,并仿真验证该预测控制器对实现机翼减损目的的有效性。本发明弥补了现有技术中预测控制周期为固定值,不能灵活变动的缺陷;本发明控制器具有随系统输出误差变化的自适应预测周期,对机翼颤振具有良好的控制效果,能够有效减缓损伤。

Description

一种基于预测控制的高超声速飞行器机翼颤振减损方法及减 损控制器
技术领域
本发明涉及飞行器颤振控制减损方法,特别涉及一种基于预测控制的高超声速飞行器机翼颤振减损方法及减损控制器。
背景技术
机翼颤振是高超声速飞行器经常发生的一种非线性动不稳定现象。一旦机翼颤振发生,尤其是对于高超声速飞行器而言,机翼颤振时的振动幅值以及损伤累积将快速增加,极大地威胁了飞行器的飞行安全。因此,为了减少机翼颤振的负面影响并减缓损伤累积,研究者提出许多的控制方案来控制颤振。
在过去的几十年里,气动弹性分析以及颤振控制在高超声速流中取得了极大的关注,许多成果主要集中在非定常气动的推导以及主动控制器的设计方面。一阶活塞理论和三阶活塞理论等被广泛应用于机翼颤振时非定常气动力的求取。神经网络控制、滑膜控制、L-M控制、线性二次型控制等被成功应用于机翼颤振的控制以减缓颤振损伤。
预测控制是基于最优目标函数的一种控制方法,被认为是工业上最有前途的控制方法之一。通过寻找最优目标函数,使得系统输出跟踪给定输入值。早在1994年,Clarke就将广义预测控制器成功应用到线性系统,之后,为了满足非线性系统的要求,经过改进的预测控制方法开始被应用到非线性系统当中。Chen等针对一类多变量非线性系统提出了非线性预测控制器,并分析验证了预测周期和控制相对阶的重要性。Hedjar提出有限时域非线性预测控制器,并将其应用于移动机器人的轨迹规划问题和刚性连杆机器人的轨迹跟踪问题。Cheng等将预测控制器应用于高超声速飞行器的姿态跟踪问题。Errouissi设计了鲁棒预测控制器来加强控制系统的鲁棒性。这些预测控制方法的改进都已经成功在工程实践中得到了广泛应用。然而,这些预测控制器中的预测周期是静态的,对于机翼颤振运动系统,固定不变的预测周期可能造成机翼颤振控制缓慢,进一步造成不必要的损伤累积,因此针对预测控制中的不足,本发明设计了具有自适应预测周期的机翼颤振减损控制器,来进一步减缓机翼颤振损伤。
由于机翼颤振的极大破坏性,任何微小的结构损伤都有可能演化成一场灾难性的事故。因此,建立精确的损伤模型对于机翼颤振损伤的估计以及控制器的设计至关重要。今年来,关于结构的损伤寿命问题以取得了不少有价值的成就。Caplin、Ray和Newman等建立了疲劳裂纹增长模型,分析了不同载荷水平下裂纹的增长情况。在Li和Tangirala建立的损伤模型中,分层寿命延长控制被应用于发动机系统。另外,计算机技术的进步使得有限元软件技术也被广泛应用于机翼颤振损伤受力的分析。
综合以上讨论可见,针对机翼颤振控制方面以及材料损伤预测方面的研究成果显著,这都为颤振减损的研究提供了依据。
发明内容
发明目的:为解决现有技术的不足,本发明旨在提供一种基于预测控制的高超声速飞行器机翼颤振减损方法及减损控制器,并利用损伤模型对机翼颤振进行损伤预测,本发明所设计的预测控制器可以有效抑制机翼颤振,减缓机翼颤振损伤。
技术方案:一种基于预测控制的高超声速飞行器机翼颤振减损方法,包括以下步骤:
(1)基于三阶活塞理论计算机翼颤振时的非定常气动力,并基于拉格朗日方程建立三自由度机翼颤振运动模型;
(2)基于应力-损伤模型,建立考虑当前损伤值的非线性损伤模型,对机翼颤振损伤进行在线估计;
(3)结合步骤(1)和步骤(2)建立的机翼颤振运动模型和非线性损伤模型,在对机翼运动模型无量纲的基础上,对高超声速飞行器在不同飞行速度下的机翼颤振响应和损伤累积情况进行仿真分析;
(4)设计具有自适应预测周期的预测控制器对机翼颤振进行控制,实现颤振减损,并仿真验证所设计的预测控制器对实现机翼减损目的的有效性。
进一步的,所述步骤(1)包括以下步骤:
(11)基于拉个朗日方程建立具有结构非线性和气动非线性的三自由度机翼颤振运动模型如下:
Figure BDA0001729771360000021
Figure BDA0001729771360000022
Figure BDA0001729771360000023
其中,h和α分别是机翼沉浮和俯仰角位移,β是机翼控制面偏转角,
Figure BDA0001729771360000024
Figure BDA0001729771360000025
分别是h,α,β的一阶和二阶导数,b是机翼半翼展长度,a和d分别是机翼刚心和控制面铰链轴到机翼前缘的无量纲距离,m是单位体积机翼质量,Sα和Sβ分别是机翼刚心和控制面对铰链轴的质量静矩,Iα和Iβ分别是机翼刚心和控制面对铰链轴的转动惯量,ch、cα和cβ分别是沉浮、俯仰和控制面偏转方向上的阻尼系数,Kh,Kα和Kβ分别是拉伸弹簧、扭转弹簧和控制面铰链的刚度系数,δα是俯仰方向非线性刚度跟踪量,
Figure BDA0001729771360000031
是俯仰方向非线性刚度系数,Qα是非定常气动力,Mα,Mβ是气动力矩,u是控制输入;
(12)基于等熵公式和动量守恒定理的三阶活塞理论,将机翼颤振时单位面积的上下表面的压力差△p表示为:
Figure BDA0001729771360000032
其中,qd是动压力,MA=V/a是飞行马赫数,a是声速,V是飞行器飞行速度,
Figure BDA0001729771360000033
为气动修正系数,k为气体登熵系数,x和z(x,t)分别是机翼上任意一点横向和纵向位移,其中t代表时间,z(x,t)表示为:
Figure BDA0001729771360000034
通过对机翼上下表面压力差△p积分,可得机翼颤振时的非定常气动力和气动力矩为:
Figure BDA0001729771360000035
Figure BDA0001729771360000036
Figure BDA0001729771360000037
(13)结合非定常气动力,通过等式变换,机翼颤振运动模型表示为如下形式:
Figure BDA0001729771360000041
Figure BDA0001729771360000042
Figure BDA0001729771360000043
进一步的,步骤(2)包括以下步骤:
(21)机翼颤振时的线性损伤δ由弹性损伤δe和塑性损伤δp两部分组成,表示为:
δ=δep
其中,
Figure BDA0001729771360000044
Figure BDA0001729771360000045
其中,σ=Qα/2b为机翼颤振时所受的平均应力,σr为参考应力,σm=(σ+σr)/2是平均应力;σ′f是疲劳强度系数,
Figure BDA0001729771360000046
是疲劳强度指数,ε′f是疲劳延性系数,
Figure BDA0001729771360000047
是疲劳延性指数,K′为循环强度系数,n′为循环应变硬化指数;
(22)在循环降程即机翼在卸载过程中的损伤可以忽略不计,因此忽略机翼在σ<σr时的损伤,并引入加权函数来提高损伤的预测精度,则损伤变化率dδ/dt表示为:
Figure BDA0001729771360000051
其中,η=△εe/△ε,△εe=(σ-σr)/E,△ε=2((σ-σr)/2K′)1/n′,E为机翼材料弹性模量;
(23)复杂的机翼颤振行为,使得线性损伤模型不足以精确的描述损伤,因此基于疲劳裂纹增长模型中,裂纹增长取决于当前损伤累积水平以及所受应力幅值,建立非线性损伤模型,其损伤变化率dD/dt表示为:
Figure BDA0001729771360000052
其中,γ1=(2/3)δ-0.4,则在τ1时间段内的累积损伤表示为:
Figure BDA0001729771360000053
此处,D=0代表理想的无损伤结构状态,D=1代表结构断裂或完全破坏状态。
进一步的,步骤(3)的包括以下步骤:
(31)为了对机翼颤振进行有效控制并估计机翼颤振损伤以达到减损目的,对不同速度下的机翼颤振响应以及损伤情况进行分析;
首先,对机翼颤振运动模型进行无量纲化;
ξ=h/b,χα=Sα/(mb),τ=Vt/b,V1=V/bwα,μ=m/(4ρb2),
Figure BDA0001729771360000054
Figure BDA0001729771360000055
ξh=ch/(2mwh),ξα=cα/(2Iαwα),ξβ=cβ/(2Iβwβ);
其中,ξ为无量纲沉浮位移,χα为无量纲质量静矩,V1是机翼无量纲飞行速度,τ无量纲时间,rα和rβ分别为相对于机翼的刚心和控制面铰链轴的无量纲质量惯矩,μ为无量纲质量参数,wh、wα和wβ为线性化系统解耦的俯仰频率、沉浮频率和控制面偏转频率;ξh、ξα和ξβ为无量纲沉浮、俯仰和控制面偏转阻尼比;
则无量纲化的机翼颤振模型写成如下状态空间的形式为:
Figure BDA0001729771360000061
其中,
Z=[h,α,β]T
Figure BDA0001729771360000062
Figure BDA0001729771360000063
Figure BDA0001729771360000064
Figure BDA0001729771360000065
Figure BDA0001729771360000066
ρ代表空气密度,
Figure BDA0001729771360000067
Figure BDA0001729771360000068
是Z的一阶导数和二阶导数;
(32)定义状态空间变量
Figure BDA0001729771360000069
则无量纲化之后的机翼颤振运动方程表示成如下更加紧凑的形式:
Figure BDA00017297713600000610
其中,
Figure BDA0001729771360000071
Figure BDA0001729771360000072
B1=[0 M-1]T
(33)设置机翼颤振运动模型的无量纲化参数μ,χα,χβ
Figure BDA0001729771360000073
a,d,wh,wα,wβ,B,b,ξh,ξα,ξβ的取值,并根据选取的机翼材料,获得相应的材料系数E,K′,n′,σ′f,ε′f
Figure BDA0001729771360000074
Figure BDA0001729771360000075
的值,选取机翼运动的初始状态,并基于Hopf分叉理论求得机翼临界颤振速度为V1′;分别对机翼在临界颤振速度V1′以及低于和高于该临界速度的不同飞行速度下的颤振响应及损伤情况进行仿真,观察其颤振响应及损伤累积情况。
进一步的,步骤(4)包括以下步骤:
(41)定义机翼颤振运动系统输出y(τ)=x2,并将机翼颤振运动方程表示为如下形式:
Figure BDA0001729771360000076
其中f(x)和g(x)定义为:
Figure BDA0001729771360000077
Figure BDA0001729771360000078
其中a11,a12,a13,a14,a15,a11,a16,a21,a22,a23,a24,a25,a26,a31,a32,a33,a34,a35,a36
Figure BDA0001729771360000079
b11,b21,b31分别是矩阵A,
Figure BDA00017297713600000710
中的矩阵元素。
机翼运动方程满足如下性质:①f(x)、g(x)和参考信号有界,且连续可微,②系统每个输出具有相同的相对阶,且系统零状态稳定;
(42)减损控制器的目标是设计控制器u使得目标函数最小化,即
Figure BDA00017297713600000711
其中yc(τ)为系统的期望输出。选取待优化的目标函数为:
Figure BDA0001729771360000081
其中,
Figure BDA0001729771360000082
是根据当前时刻τ预测的τ+τa时刻的系统输出和参考输出,θ是预测周期,其中0≤τa≤θ;
由于机翼颤振运动系统忽略了系统的扰动及其他不确定因素,因此κ(τa),
Figure BDA0001729771360000083
Figure BDA0001729771360000084
设计如下:
Figure BDA0001729771360000085
Figure BDA0001729771360000086
Figure BDA0001729771360000087
其中,
Figure BDA0001729771360000088
为机翼颤振运动系统相对阶,
Figure BDA0001729771360000089
的设计是为了在机翼颤振预测控制过程中将系统的误差
Figure BDA00017297713600000810
考虑在内,以加强系统鲁棒性;
根据非线性系统相对度的概念,基于李导数的定义,将机翼颤振运动系统输出扩展至2阶得:
Figure BDA00017297713600000811
其中Lfh1(x)=x5
Figure BDA00017297713600000812
Lgh1(x)=0,LgLfh1(x)=b21≠0,则系统的相对阶
Figure BDA00017297713600000813
就为2;
最优目标函数表示为:
Figure BDA00017297713600000814
其中,
Figure BDA0001729771360000091
Figure BDA0001729771360000092
然后,最优目标函数表示为:
Figure BDA0001729771360000093
(43)最小化目标函数以得到最优控制器的必要条件是令
Figure BDA0001729771360000094
求解上式得最优控制器为:
Figure BDA0001729771360000095
上式也可以表示为:
Figure BDA0001729771360000096
其中,
Figure BDA0001729771360000101
(44)自适应预测周期设计
预测周期设计公式为:
Figure BDA0001729771360000102
其中,θ(e)为随误差自适应变化的预测周期,
Figure BDA0001729771360000103
Figure BDA0001729771360000104
是常值参数,他们的取值取决于实际控制器的跟踪性能要求及控制器的动作限制范围,并保证计算量在一定的范围内,即保证所设计控制器的可行性,其中0<θmin≤|θ(e)≤θmax,
Figure BDA0001729771360000105
θmin和θmax分别为θ的最小值和最大值;
(45)系统稳定性分析;
结合所设计的最优控制器,则机翼颤振运动系统的2阶导数表示为:
Figure BDA0001729771360000106
则闭环机翼颤振运动系统表示为:
Figure BDA0001729771360000107
即可以表示为:
Figure BDA0001729771360000108
其中,
Figure BDA0001729771360000109
并且0<θmin≤|θ(e)|≤θmax
Figure BDA00017297713600001010
则由劳斯判据,可判断机翼颤振运动系统是渐进稳定的,也即闭环系统误差趋向于0。
一种用于高超声速飞行器机翼颤振减损方法的减损控制器,该减损控制器的设计方法为:
(a)定义机翼颤振运动系统输出y(τ)=x2,并将机翼颤振运动方程表示为如下形式:
Figure BDA0001729771360000111
其中f(x)和g(x)定义为:
Figure BDA0001729771360000112
Figure BDA0001729771360000113
其中a11,a12,a13,a14,a15,a11,a16,a21,a22,a23,a24,a25,a26,a31,a32,a33,a34,a35,a36
Figure BDA0001729771360000114
b11,b21,b31分别是矩阵A,
Figure BDA0001729771360000115
中的矩阵元素;
机翼运动方程满足如下性质:①f(x)、g(x)和参考信号有界,且连续可微,②系统每个输出具有相同的相对阶,且系统零状态稳定;
(b)减损控制器的目标是设计控制器u使得目标函数最小化,即
Figure BDA0001729771360000116
其中yc(τ)为系统的期望输出。选取待优化的目标函数为:
Figure BDA0001729771360000117
其中,
Figure BDA0001729771360000118
是根据当前时刻τ预测的τ+τa时刻的系统输出和参考输出,θ是预测周期,其中0≤τa≤θ;
由于机翼颤振运动系统忽略了系统的扰动及其他不确定因素,因此κ(τa),
Figure BDA0001729771360000119
Figure BDA00017297713600001110
设计如下:
Figure BDA00017297713600001111
Figure BDA0001729771360000121
Figure BDA0001729771360000122
其中,
Figure BDA0001729771360000123
为机翼颤振运动系统相对阶,
Figure BDA0001729771360000124
的设计是为了在机翼颤振预测控制过程中将系统的误差
Figure BDA0001729771360000125
考虑在内,以加强系统鲁棒性;
根据非线性系统相对度的概念,基于李导数的定义,将机翼颤振运动系统输出扩展至2阶得:
Figure BDA0001729771360000126
其中Lfh1(x)=x5
Figure BDA0001729771360000127
Lgh1(x)=0,LgLfh1(x)=b21≠0,则系统的相对阶
Figure BDA0001729771360000128
就为2;
最优目标函数表示为:
Figure BDA0001729771360000129
其中,
Figure BDA00017297713600001210
Figure BDA0001729771360000131
然后,最优目标函数表示为:
Figure BDA0001729771360000132
(c)最小化目标函数以得到最优控制器的必要条件是令
Figure BDA0001729771360000133
求解上式得最优控制器为:
Figure BDA0001729771360000134
上式也可以表示为:
Figure BDA0001729771360000135
其中,
Figure BDA0001729771360000136
有益效果:与现有技术相比,本发明建立的在线损伤动力学模型,能对机翼颤振损伤进行实时估计,为控制器设计,机翼设备检修提供参考依据,以提高超声速飞行器机翼部件的可靠性;本发明设计的具有自适应预测周期的颤振预测控制器,能够寻找最优控制规律,有效控制高超声速飞行器机翼颤振,抑制颤振造成的损伤,更加适用于高超声速飞行器颤振抑制的快速性要求。
附图说明
图1是本发明的流程图;
图2是本发明三自由度机翼颤振运动模型;
图3是无控制时,速度为V1=14.3000,初始状态为x(0)=[0.001,0,0,0,0,0]时的机翼颤振响应和损伤估计图;其中(a)是俯仰角响应图;(b)是俯仰角与俯仰角变化率相位图;(c)是损伤累积曲线;
图4是无控制时,速度为V1=19.5883,初始状态为x(0)=[0.001,0,0,0,0,0]时的机翼颤振响应和损伤估计图;其中(a)是俯仰角响应图;(b)是俯仰角与俯仰角变化率相位图;(c)是损伤累积曲线;
图5是无控制时,速度为V1=21.0000,初始状态为x(0)=[0.001,0,0,0,0,0]时的机翼颤振响应和损伤估计图;其中(a)是俯仰角响应图;(b)是俯仰角与俯仰角变化率相位图;(c)是损伤累积曲线;
图6是自适应预测周期随误差的变化简图;
图7是加控制时,速度为V1=19.5883,初始状态为x(0)=[0.001,0,0,0,0,0]时的机翼颤振响应和损伤估计图;其中(a)是俯仰角响应图;(b)是俯仰角与俯仰角变化率相位图;(c)是损伤累积曲线;
图8是无控制时,速度为V1=21.0000,初始状态为x(0)=[0.001,0,0,0,0,0]时的机翼颤振响应和损伤估计图;其中(a)是俯仰角响应图;(b)是俯仰角与俯仰角变化率相位图;(c)是损伤累积曲线。
具体实施方式
以下将结合附图和具体实施例,对本发明的技术方案进行详细说明。实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。
本发明的基于预测控制的高超声速飞行器机翼颤振减损方法及减损控制器,其方法包括(1)建立三自由二元机翼颤振运动模型,并利用三阶活塞理论求解机翼颤振的非定常气动力;(2)建立损伤动力学模型,利用损伤模型获取实时损伤信息;(3)基于建立的机翼运动模型和损伤模型对不同飞行速度下的机翼颤振响应以及颤振损伤情况进行仿真分析;(4)根据输出系统误差,设计具有自适应预测周期的鲁棒预测性能控制器对机翼颤振及进行控制,进而达到减损的目的。本发明弥补了以往文献中预测控制周期一般设定为固定值,不能灵活变动的缺陷。所设计的预测控制器具有随系统输出误差变化的自适应预测周期,对机翼颤振具有良好的控制效果,能够有效减缓损伤。
如图1所示,一种基于预测控制的高超声速飞行器机翼颤振减损方法,包括以下步骤:
(1)基于三阶活塞理论计算机翼颤振时的非定常气动力,并基于拉格朗日方程建立三自由度机翼运动方程;
(11)基于拉个朗日方程建立具有结构非线性和气动非线性的三自由度机翼颤振运动方程为:
Figure BDA0001729771360000151
Figure BDA0001729771360000152
Figure BDA0001729771360000153
三自由度机翼颤振简图如图2所示,结合图2,上式中h和α分别是机翼沉浮和俯仰角位移,β是机翼控制面偏转角,
Figure BDA0001729771360000154
Figure BDA0001729771360000155
分别是h,α,β的一阶和二阶导数,b是机翼半翼展长度,a和d分别是机翼刚心和控制面铰链轴到机翼前缘的无量纲距离,m是单位体积机翼质量,Sα和Sβ分别是机翼刚心和控制面对铰链轴的质量静矩,Iα和Iβ分别是机翼刚心和控制面对铰链轴的转动惯量,ch、cα和cβ分别是沉浮、俯仰和控制面偏转方向上的阻尼系数,Kh,Kα和Kβ分别是拉伸弹簧、扭转弹簧和控制面铰链的刚度系数,δα是俯仰方向非线性刚度跟踪量,
Figure BDA0001729771360000156
是俯仰方向非线性刚度系数,Qα是非定常气动力,Mα,Mβ是气动力矩,u是控制输入。
(12)基于等熵公式和动量守恒定理的三阶活塞理论,将机翼颤振时单位面积的上下表面的压力差△p表示为:
Figure BDA0001729771360000161
上式中,qd是动压力,MA=V/a是飞行马赫数,a是声速,V是飞行器飞行速度,
Figure BDA0001729771360000162
为气动修正系数,k为气体登熵系数(k=1.4),x和z(x,t)分别是对应于图1上机翼任意一点的横向和纵向位移,其中t代表时间,z(x,t)可以表示为:
Figure BDA0001729771360000163
通过对机翼上下表面压力差△p积分,可得机翼颤振时的非定常气动力和气动力矩为:
Figure BDA0001729771360000164
Figure BDA0001729771360000165
Figure BDA0001729771360000166
(13)结合以上非定常气动力和气动力矩的计算,通过等式变换,机翼颤振运动方程可以表示为如下形式:
Figure BDA0001729771360000167
Figure BDA0001729771360000168
Figure BDA0001729771360000171
(2)基于应力-损伤模型,建立考虑当前损伤值的非线性损伤模型,对机翼颤振损伤进行在线估计;
高超声速飞行器一旦发生颤振,如果没有得到及时的控制,很有可能造成灾难性的后果。即使颤振得到了有效控制,颤振的发生也会导致机翼部件上损伤的累积,一旦损伤达到最大值,极有可能造成飞行器损坏。因此机翼颤振损伤的精确估计对于控制器设计,确保飞行器部件可靠性具有重要意义。
(21)根据以往文献的描述,机翼颤振时的线性损伤δ由弹性损伤δe和塑性损伤δp两部分组成,可以表示为:
δ=δep (12);
其中,
Figure BDA0001729771360000172
Figure BDA0001729771360000173
上式中,σ=Qα/2b为机翼颤振时所受的平均应力,σr为参考应力,σm=(σ+σr)/2是平均应力。σ′f是疲劳强度系数,
Figure BDA0001729771360000174
是疲劳强度指数,ε′f是疲劳延性系数,
Figure BDA0001729771360000175
是疲劳延性指数,K′为循环强度系数,n′为循环应变硬化指数,这些都是通过实验测得的材料参数。
(22)学者认为循环降程即机翼在卸载过程中的损伤可以忽略不计。因此本发明忽略机翼在σ<σr时的损伤,并引入加权函数来提高损伤的预测精度,则损伤变化率dδ/dt可以表示为:
Figure BDA0001729771360000176
上式中,η=△εe/△ε,其中,△εe=(σ-σr)/E,△ε=2((σ-σr)/2K′)1/n′,E为机翼材料弹性模量。
(23)复杂的机翼颤振行为,使得线性损伤模型不足以精确描述的描述损伤,因此基于疲劳裂纹增长模型中,裂纹增长取决于当前损伤累积水平以及所受应力幅值,建立非线性损伤模型,其损伤变化率dD/dt表示为:
Figure BDA0001729771360000181
其中,γ1=(2/3)δ-0.4,则在τ1时间段内的累积损伤可以表示为:
Figure BDA0001729771360000182
此处,D=0代表理想的无损伤结构状态,D=1代表结构断裂或完全破坏状态。
(3)结合步骤(1)和步骤(2)建立的机翼颤振运动模型和非线性损伤模型,在对机翼颤振运动模型无量纲的基础上,对高超声速飞行器在不同飞行速度下的机翼颤振响应和损伤累积情况进行仿真分析;
(31)为了对机翼颤振进行有效控制并估计机翼颤振损伤以达到减损目的,这里对不同速度下的机翼颤振响应以及损伤情况进行分析。
首先,对机翼颤振运动模型进行无量纲化;
ξ=h/b,χα=Sα/(mb),τ=Vt/b,V1=V/bwα,μ=m/(4ρb2),
Figure BDA0001729771360000183
Figure BDA0001729771360000184
ξh=ch/(2mwh),ξα=cα/(2Iαwα),ξβ=cβ/(2Iβwβ);
其中,ξ为无量纲沉浮位移,χα为无量纲质量静矩,V1是机翼无量纲飞行速度,τ无量纲时间,rα和rβ分别为相对于机翼的刚心和控制面铰链轴的无量纲质量惯矩,μ为无量纲质量参数,wh、wα和wβ为线性化系统解耦的俯仰频率、沉浮频率和控制面偏转频率。ξh、ξα和ξβ为无量纲沉浮、俯仰和控制面偏转阻尼比;
则无量纲化的机翼颤振模型可以写成如下状态空间的形式:
Figure BDA0001729771360000185
其中,
Z=[h,α,β]T
Figure BDA0001729771360000191
Figure BDA0001729771360000192
Figure BDA0001729771360000193
Figure BDA0001729771360000194
Figure BDA0001729771360000195
ρ代表空气密度,
Figure BDA0001729771360000196
Figure BDA0001729771360000197
是Z的一阶导数和二阶导数;
(32)定义状态空间变量
Figure BDA0001729771360000198
则无量纲化之后的机翼颤振运动方程可以表示成如下更加紧凑的形式:
Figure BDA0001729771360000199
其中,
Figure BDA0001729771360000201
Figure BDA0001729771360000202
Figure BDA0001729771360000203
其中,B1=[0 M-1]T,a11,a12,a13,a14,a15,a11,a16,a21,a22,a23,a24,a25,a26,a31,a32,a33,a34,a35,a36
Figure BDA0001729771360000204
b11,b21,b31分别是矩阵A,
Figure BDA0001729771360000205
中的矩阵元素。
(33)设置机翼颤振运动模型的无量纲化参数如下:
μ=100,χα=0.25,χβ=0.0125,
Figure BDA0001729771360000206
a=0.6,d=1.6,wh=80,wα=100,wβ=120,B=50,b=1,ξh=0.14,ξα=0.16,ξβ=0.1。
并选取机翼材料为TA15,则相应的材料系数为:E=110GPa,K′=1.4GPa,n′=0.214,σ′f=1.3GPa,ε′f=0.201,
Figure BDA0001729771360000207
选取机翼运动的初始状态为x=[0 0.001 0 0 0 0]T,基于Hopf分叉理论求得机翼临界颤振速度为V1′=19.5883。分别对飞行速度为V1=14.3000,V1=19.5883,V1=21.0000下的颤振响应及损伤情况进行仿真,观察其损伤累积情况。仿真结果如图3、图4、图5所示。
由图3可见,当飞行器飞行速度低于机翼临界颤振速度时,机翼颤振收敛,对应的损伤趋于常值。有图4可见,当飞行器飞行速度等于机翼临界颤振速度时,机翼发生等幅颤振,对应的损伤持续增大。由图5可见,当飞行器飞行速度高于机翼临界颤振速度时,机翼颤振发散,对应的损伤呈指数增加。且由图3(c)和图5(c)的损伤累积曲线可见,机翼颤振如果不及时的加以控制,损伤将快速累积,最终导致机翼断裂。因此机翼颤振预测控制器的设计对飞行器飞行安全具有重要意义。
(4)设计具有自适应预测周期的预测控制器对机翼颤振进行控制,实现颤振减损,并仿真验证所设计的预测控制器对实现机翼减损目的的有效性;
预测控制器设计:
(41)定义机翼颤振运动系统输出y(τ)=x2,并将机翼颤振运动方程表示为如下形式:
Figure BDA0001729771360000211
其中f(x)和g(x)定义为:
Figure BDA0001729771360000212
Figure BDA0001729771360000213
其中a11,a12,a13,a14,a15,a11,a16,a21,a22,a23,a24,a25,a26,a31,a32,a33,a34,a35,a36
Figure BDA0001729771360000214
b11,b21,b31分别是矩阵A,
Figure BDA0001729771360000215
中的矩阵元素。
机翼运动方程满足如下性质:①f(x)、g(x)和参考信号有界,且连续可微,②系统每个输出具有相同的相对阶,且系统零状态稳定;
(42)减损控制器的目标是设计控制器u使得目标函数最小化,即
Figure BDA0001729771360000216
其中yc(τ)为系统的期望输出。选取待优化的目标函数为:
Figure BDA0001729771360000217
其中,
Figure BDA0001729771360000218
是根据当前时刻τ预测的τ+τa时刻的系统输出和参考输出,θ是预测周期,其中0≤τa≤θ;
由于机翼颤振运动系统忽略了系统的扰动及其他不确定因素,因此κ(τa),
Figure BDA0001729771360000219
Figure BDA00017297713600002110
设计如下:
Figure BDA0001729771360000221
Figure BDA0001729771360000222
Figure BDA0001729771360000223
其中,
Figure BDA0001729771360000224
为机翼颤振运动系统相对阶,
Figure BDA0001729771360000225
的设计是为了在机翼颤振预测控制过程中将系统的误差
Figure BDA0001729771360000226
考虑在内,以加强系统鲁棒性;
根据非线性系统相对度的概念,基于李导数的定义,将机翼颤振运动系统输出扩展至2阶得:
Figure BDA0001729771360000227
其中Lfh1(x)=x5
Figure BDA0001729771360000228
Lgh1(x)=0,LgLfh1(x)=b21≠0,则系统的相对阶
Figure BDA0001729771360000229
就为2;
最优目标函数表示为:
Figure BDA00017297713600002210
其中,
Figure BDA00017297713600002211
Figure BDA0001729771360000231
然后,最优目标函数表示为:
Figure BDA0001729771360000232
(43)最小化目标函数以得到最优控制器的必要条件是令
Figure BDA0001729771360000233
求解上式得最优控制器为:
Figure BDA0001729771360000234
上式也可以表示为:
Figure BDA0001729771360000235
其中,
Figure BDA0001729771360000236
(44)自适应预测周期设计
由所设计的控制器u的表达式可以看出Kρ是控制增益矩阵,且Kρ与θ的取值密切相关。根据已有文献的描述,在保证控制器在规定限制范围内的前提下,预测周期设置的越大越好,但是随着控制器的预测周期增大,矩阵K中的元素会随之变小,这将导致控制效果的下降。并且以往文献中的预测周期一般设定为常值。为了提高控制器的控制精度,提高控制器的跟踪速度,当跟踪误差增大时,应增大控制增益矩阵即减小预测周期θ的取值;当跟踪误差减小时,应减少控制增益矩阵以减小计算量,因此本发明将随误差自适应变化的预测周期设计为:
Figure BDA0001729771360000241
其中,θ(e)为随误差自适应变化的预测周期,
Figure BDA0001729771360000242
Figure BDA0001729771360000243
是常值参数,他们的取值取决于实际控制器的跟踪性能要求及控制器的动作限制范围,并保证计算量在一定的范围内,即保证所设计控制器的可行性,其中0<θmin≤|θ(e)≤θmax,
Figure BDA0001729771360000244
θmin和θmax分别为θ的最小值和最大值;θ随误差e的变化曲线可由图6表示。
(45)系统稳定性分析
结合所设计的最优控制器,则机翼颤振运动系统的2阶导数表示为:
Figure BDA0001729771360000245
则闭环机翼颤振运动系统表示为:
Figure BDA0001729771360000246
即可以表示为:
Figure BDA0001729771360000247
其中,
Figure BDA0001729771360000248
并且0<θmin≤|θ(e)|≤θmax
Figure BDA0001729771360000249
则由劳斯判据,可判断机翼颤振运动系统是渐进稳定的,也即闭环系统误差趋向于0。
接下来,为了验证所设计控制器的可行性,在V1=19.5883和V1=21.0000的速度下进行仿真,由图4和图5可见,在无控制时,机翼在V1=19.5883和V1=21.0000速度时,颤振幅值不断增大,呈等幅振荡和发散状态。相同初始条件下,选取控制器中预测周期θ的常值参数
Figure BDA0001729771360000251
则加控制时的机翼颤振响应如图7和图8所示,由图7和图8可见,在本发明设计的控制器下,机翼颤振得到有效控制,且本发明设计的具有自适应预测周期的预测控制器与传统预测控制器的控制效果相比,机翼颤振具有更小的颤振幅值和更快的收敛速度。
除此之外,相比于无控制时持续增加的机翼损伤(如图4(c)和图5(c)),控制器作用下的机翼颤振损伤逐渐趋于稳定值(如图7(c)和图8(c))。在速度V1=19.5883时等幅振荡下的机翼颤振损伤为1.2×10-7(如图4(c)),且损伤持续增加;传统预测控制器作用下的机翼颤振损伤为3.15×10-8(如图7(c)),而本发明设计的具有自适应预测周期的控制器作用下的机翼颤振损伤为9.13×10-9(如图7(c)),有效减小机翼颤振损伤,且损伤最终趋于稳定值。同样地,在速度V1=21.0000时等幅振荡下的机翼颤振损伤为3.85×10-7(如图4(c)),且损伤持续增加;传统预测控制器作用下的机翼颤振损伤为3.66×10-8(如图7(c)),而本发明设计的具有自适应预测周期的控制器作用下的机翼颤振损伤为7.71×10-9(如图7(c)),有效减小机翼颤振损伤,且损伤最终趋于稳定值。
由图4(c)和图5(c)以及7(c)和图8(c)的损伤累积对比情况可见,本发明所设计的预测控制器可以有效减缓机翼颤振损伤,且相比与传统的预测控制器,本发明设计的自适应控制器具有更好的控制效果。
本发明在建立精确的损伤动力学模型对机翼颤振损伤进行有效预测的基础上,进一步建立具有自适应预测周期的预测减损控制器,对高超声速飞行器机翼颤振进行抑制。本发明对估计机翼颤振时的损伤,有效控制机翼颤振以减少机翼颤振损伤,保证飞行器飞行安全具有重要意义。

Claims (5)

1.一种基于预测控制的高超声速飞行器机翼颤振减损方法,其特征在于,包括以下步骤:
(1)基于三阶活塞理论计算机翼颤振时的非定常气动力,并基于拉格朗日方程建立三自由度机翼颤振运动模型;
(2)基于应力-损伤模型,建立考虑当前损伤值的非线性损伤模型,对机翼颤振损伤进行在线估计;
(3)结合步骤(1)和步骤(2)建立的机翼颤振运动模型和非线性损伤模型,在对机翼运动模型无量纲的基础上,对高超声速飞行器在不同飞行速度下的机翼颤振响应和损伤累积情况进行仿真分析;
(4)设计具有自适应预测周期的预测控制器对机翼颤振进行控制,实现颤振减损,并仿真验证所设计的预测控制器对实现机翼减损目的的有效性;包括以下步骤:
(41)定义机翼颤振运动系统输出y(τ)=x2,并将机翼颤振运动方程表示为如下形式:
Figure FDA0002351294330000011
其中f(x)和g(x)定义为:
Figure FDA0002351294330000012
Figure FDA0002351294330000013
其中a11,a12,a13,a14,a15,a11,a16,a21,a22,a23,a24,a25,a26,a31,a32,a33,a34,a35,a36
Figure FDA0002351294330000014
b11,b21,b31分别是矩阵A,
Figure FDA0002351294330000015
中的矩阵元素;
机翼运动方程满足如下性质:①f(x)、g(x)和参考信号有界,且连续可微,②系统每个输出具有相同的相对阶,且系统零状态稳定;
(42)减损控制器的目标是设计控制器u使得目标函数最小化,即
Figure FDA0002351294330000021
其中yc(τ)为系统的期望输出;选取待优化的目标函数为:
Figure FDA0002351294330000022
其中,
Figure FDA0002351294330000023
是根据当前时刻τ预测的τ+τa时刻的系统输出和参考输出,θ是预测周期,其中0≤τa≤θ;
由于机翼颤振运动系统忽略了系统的扰动及其他不确定因素,因此κ(τa),
Figure FDA0002351294330000024
Figure FDA0002351294330000025
设计如下:
Figure FDA0002351294330000026
Figure FDA0002351294330000027
Figure FDA0002351294330000028
其中,
Figure FDA0002351294330000029
为机翼颤振运动系统相对阶,
Figure FDA00023512943300000210
的设计是为了在机翼颤振预测控制过程中将系统的误差
Figure FDA00023512943300000211
考虑在内,以加强系统鲁棒性;
根据非线性系统相对度的概念,基于李导数的定义,将机翼颤振运动系统输出扩展至2阶得:
Figure FDA00023512943300000212
其中Lfh1(x)=x5
Figure FDA00023512943300000213
Lgh1(x)=0,LgLfh1(x)=b21≠0,则系统的相对阶
Figure FDA00023512943300000214
就为2;
最优目标函数表示为:
Figure FDA0002351294330000031
其中,
Figure FDA0002351294330000032
Figure FDA0002351294330000033
Figure FDA0002351294330000034
然后,最优目标函数表示为:
Figure FDA0002351294330000035
(43)最小化目标函数以得到最优控制器的必要条件是令
Figure FDA0002351294330000036
求解上式得最优控制器为:
Figure FDA0002351294330000037
上式也可以表示为:
Figure FDA0002351294330000041
其中,
Figure FDA0002351294330000042
(44)自适应预测周期设计
预测周期设计公式为:
Figure FDA0002351294330000043
其中,θ(e)为随误差自适应变化的预测周期,
Figure FDA0002351294330000044
Figure FDA0002351294330000045
是常值参数,他们的取值取决于实际控制器的跟踪性能要求及控制器的动作限制范围,并保证计算量在一定的范围内,即保证所设计控制器的可行性,其中0<θmin≤|θ(e)|≤θmax,
Figure FDA0002351294330000046
θmin和θmax分别为θ的最小值和最大值;
(45)系统稳定性分析;
结合所设计的最优控制器,则机翼颤振运动系统的2阶导数表示为:
Figure FDA0002351294330000047
则闭环机翼颤振运动系统表示为:
Figure FDA0002351294330000048
即可以表示为:
Figure FDA0002351294330000049
其中,
Figure FDA00023512943300000410
并且0<θmin≤|θ(e)|≤θmax
Figure FDA00023512943300000411
则由劳斯判据,可判断机翼颤振运动系统是渐进稳定的,也即闭环系统误差趋向于0。
2.根据权利要求1所述的基于预测控制的高超声速飞行器机翼颤振减损方法,其特征在于,所述步骤(1)包括以下步骤:
(11)基于拉个朗日方程建立具有结构非线性和气动非线性的三自由度机翼颤振运动模型如下:
Figure FDA0002351294330000051
Figure FDA0002351294330000052
Figure FDA0002351294330000053
其中,h和α分别是机翼沉浮和俯仰角位移,β是机翼控制面偏转角,
Figure FDA0002351294330000054
Figure FDA0002351294330000055
分别是h,α,β的一阶和二阶导数,b是机翼半翼展长度,a和d分别是机翼刚心和控制面铰链轴到机翼前缘的无量纲距离,m是单位体积机翼质量,Sα和Sβ分别是机翼刚心和控制面对铰链轴的质量静矩,Iα和Iβ分别是机翼刚心和控制面对铰链轴的转动惯量,ch、cα和cβ分别是沉浮、俯仰和控制面偏转方向上的阻尼系数,Kh,Kα和Kβ分别是拉伸弹簧、扭转弹簧和控制面铰链的刚度系数,δα是俯仰方向非线性刚度跟踪量,
Figure FDA0002351294330000056
是俯仰方向非线性刚度系数,Qα是非定常气动力,Mα,Mβ是气动力矩,u是控制输入;
(12)基于等熵公式和动量守恒定理的三阶活塞理论,将机翼颤振时单位面积的上下表面的压力差△p表示为:
Figure FDA0002351294330000057
其中,qd是动压力,MA=V/a是飞行马赫数,a是声速,V是飞行器飞行速度,
Figure FDA0002351294330000058
为气动修正系数,k为气体登熵系数,x和z(x,t)分别是机翼上任意一点横向和纵向位移,其中t代表时间,z(x,t)表示为:
Figure FDA0002351294330000059
通过对机翼上下表面压力差△p积分,可得机翼颤振时的非定常气动力和气动力矩为:
Figure FDA0002351294330000061
Figure FDA0002351294330000062
Figure FDA0002351294330000063
(13)结合非定常气动力,通过等式变换,机翼颤振运动模型表示为如下形式:
Figure FDA0002351294330000064
Figure FDA0002351294330000065
Figure FDA0002351294330000066
3.根据权利要求1所述基于预测控制的高超声速飞行器机翼颤振减损方法,其特征在于,步骤(2)包括以下步骤:
(21)机翼颤振时的线性损伤δ由弹性损伤δe和塑性损伤δp两部分组成,表示为:
δ=δep
其中,
Figure FDA0002351294330000067
Figure FDA0002351294330000071
其中,σ=Qα/2b为机翼颤振时所受的平均应力,σr为参考应力,σm=(σ+σr)/2是平均应力;σ′f是疲劳强度系数,
Figure FDA0002351294330000072
是疲劳强度指数,ε′f是疲劳延性系数,
Figure FDA0002351294330000073
是疲劳延性指数,K′为循环强度系数,n′为循环应变硬化指数;
(22)在循环降程即机翼在卸载过程中的损伤可以忽略不计,因此忽略机翼在σ<σr时的损伤,并引入加权函数来提高损伤的预测精度,则损伤变化率dδ/dt表示为:
Figure FDA0002351294330000074
其中,η=△εe/△ε,△εe=(σ-σr)/E,△ε=2((σ-σr)/2K′)1/n′,E为机翼材料弹性模量;
(23)复杂的机翼颤振行为,使得线性损伤模型不足以精确的描述损伤,因此基于疲劳裂纹增长模型中,裂纹增长取决于当前损伤累积水平以及所受应力幅值,建立非线性损伤模型,其损伤变化率dD/dt表示为:
Figure FDA0002351294330000075
其中,γ1=(2/3)δ-0.4,则在τ1时间段内的累积损伤表示为:
Figure FDA0002351294330000076
此处,D=0代表理想的无损伤结构状态,D=1代表结构断裂或完全破坏状态。
4.根据权利要求1所述基于预测控制的高超声速飞行器机翼颤振减损方法,其特征在于,步骤(3)的包括以下步骤:
(31)为了对机翼颤振进行有效控制并估计机翼颤振损伤以达到减损目的,对不同速度下的机翼颤振响应以及损伤情况进行分析;
首先,对机翼颤振运动模型进行无量纲化;
ξ=h/b,χα=Sα/(mb),τ=Vt/b,V1=V/bwα,μ=m/(4ρb2),
Figure FDA0002351294330000077
Figure FDA0002351294330000078
ξh=ch/(2mwh),ξα=cα/(2Iαwα),ξβ=cβ/(2Iβwβ);
其中,ξ为无量纲沉浮位移,χα为无量纲质量静矩,V1是机翼无量纲飞行速度,τ无量纲时间,rα和rβ分别为相对于机翼的刚心和控制面铰链轴的无量纲质量惯矩,μ为无量纲质量参数,wh、wα和wβ为线性化系统解耦的俯仰频率、沉浮频率和控制面偏转频率;ξh、ξα和ξβ为无量纲沉浮、俯仰和控制面偏转阻尼比;
则无量纲化的机翼颤振模型写成如下状态空间的形式为:
Figure FDA0002351294330000081
其中,
Z=[h,α,β]T
Figure FDA0002351294330000082
Figure FDA0002351294330000083
Figure FDA0002351294330000084
Figure FDA0002351294330000085
Figure FDA0002351294330000091
ρ代表空气密度,
Figure FDA0002351294330000092
Figure FDA0002351294330000093
是Z的一阶导数和二阶导数;
(32)定义状态空间变量
Figure FDA0002351294330000094
则无量纲化之后的机翼颤振运动方程表示成如下更加紧凑的形式:
Figure FDA0002351294330000095
其中,
Figure FDA0002351294330000096
B1=[0 M-1]T
(33)设置机翼颤振运动模型的无量纲化参数μ,χα,χβ
Figure FDA0002351294330000097
a,d,wh,wα,wβ,B,b,ξh,ξα,ξβ的取值,并根据选取的机翼材料,获得相应的材料系数E,K′,n′,σ′f,ε′f
Figure FDA0002351294330000098
Figure FDA0002351294330000099
的值,选取机翼运动的初始状态,并基于Hopf分叉理论求得机翼临界颤振速度为V′1;分别对机翼在临界颤振速度V′1以及低于和高于该临界速度的不同飞行速度下的颤振响应及损伤情况进行仿真,观察其颤振响应及损伤累积情况。
5.一种用于高超声速飞行器机翼颤振减损方法的减损控制器,其特征在于,该减损控制器的设计方法为:
(a)定义机翼颤振运动系统输出y(τ)=x2,并将机翼颤振运动方程表示为如下形式:
Figure FDA00023512943300000910
其中f(x)和g(x)定义为:
Figure FDA00023512943300000911
Figure FDA0002351294330000101
其中a11,a12,a13,a14,a15,a11,a16,a21,a22,a23,a24,a25,a26,a31,a32,a33,a34,a35,a36
Figure FDA0002351294330000102
b11,b21,b31分别是矩阵A,
Figure FDA0002351294330000103
中的矩阵元素;
机翼运动方程满足如下性质:①f(x)、g(x)和参考信号有界,且连续可微,②系统每个输出具有相同的相对阶,且系统零状态稳定;
(b)减损控制器的目标是设计控制器u使得目标函数最小化,即
Figure FDA0002351294330000104
其中yc(τ)为系统的期望输出;选取待优化的目标函数为:
Figure FDA0002351294330000105
其中,
Figure FDA0002351294330000106
是根据当前时刻τ预测的τ+τa时刻的系统输出和参考输出,θ是预测周期,其中0≤τa≤θ;
由于机翼颤振运动系统忽略了系统的扰动及其他不确定因素,因此κ(τa),
Figure FDA0002351294330000107
Figure FDA0002351294330000108
设计如下:
Figure FDA0002351294330000109
Figure FDA00023512943300001010
Figure FDA00023512943300001011
其中,
Figure FDA00023512943300001012
为机翼颤振运动系统相对阶,
Figure FDA00023512943300001013
的设计是为了在机翼颤振预测控制过程中将系统的误差
Figure FDA00023512943300001014
考虑在内,以加强系统鲁棒性;
根据非线性系统相对度的概念,基于李导数的定义,将机翼颤振运动系统输出扩展至2阶得:
Figure FDA0002351294330000111
其中Lfh1(x)=x5
Figure FDA0002351294330000112
Lgh1(x)=0,LgLfh1(x)=b21≠0,则系统的相对阶
Figure FDA0002351294330000113
就为2;
最优目标函数表示为:
Figure FDA0002351294330000114
其中,
Figure FDA0002351294330000115
Figure FDA0002351294330000116
然后,最优目标函数表示为:
Figure FDA0002351294330000117
(c)最小化目标函数以得到最优控制器的必要条件是令
Figure FDA0002351294330000121
求解上式得最优控制器为:
Figure FDA0002351294330000122
上式也可以表示为:
Figure FDA0002351294330000123
其中,
Figure FDA0002351294330000124
CN201810768979.5A 2018-07-13 2018-07-13 一种基于预测控制的高超声速飞行器机翼颤振减损方法及减损控制器 Active CN108846246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810768979.5A CN108846246B (zh) 2018-07-13 2018-07-13 一种基于预测控制的高超声速飞行器机翼颤振减损方法及减损控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810768979.5A CN108846246B (zh) 2018-07-13 2018-07-13 一种基于预测控制的高超声速飞行器机翼颤振减损方法及减损控制器

Publications (2)

Publication Number Publication Date
CN108846246A CN108846246A (zh) 2018-11-20
CN108846246B true CN108846246B (zh) 2020-05-15

Family

ID=64197217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810768979.5A Active CN108846246B (zh) 2018-07-13 2018-07-13 一种基于预测控制的高超声速飞行器机翼颤振减损方法及减损控制器

Country Status (1)

Country Link
CN (1) CN108846246B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111159812B (zh) * 2019-12-13 2022-03-15 南京航空航天大学 一种吸气式高超声速无人机损伤特性分析方法
CN111306995B (zh) * 2020-01-17 2022-07-01 西安智芯通达科技有限公司 一种面向弹体颤振抑制的组合控制器设计方法
CN111174645B (zh) * 2020-01-17 2022-04-15 西安智芯通达科技有限公司 一种基于l1自适应控制算法的弹翼主动颤振抑制方法
CN112163275A (zh) * 2020-09-28 2021-01-01 南京航空航天大学 一种高超声速飞行器损伤主要累积面分析方法
CN113205858B (zh) * 2021-04-29 2024-03-22 西北工业大学 模拟颤振环境铰链机构运动分子动力学仿真模型及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106156403A (zh) * 2016-06-21 2016-11-23 南京航空航天大学 基于应力‑强度干涉理论的高超声速飞行器翼梁结构可靠性分析方法
CN108052787A (zh) * 2018-02-01 2018-05-18 南京航空航天大学 基于飞行动态的高超声速飞行器机翼颤振损伤估计方法
CN108170886A (zh) * 2017-11-29 2018-06-15 南京航空航天大学 基于预设性能的高超声速飞行器纵向减损控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625913B2 (en) * 2014-12-09 2017-04-18 Embry-Riddle Aeronautical University, Inc. System and method for robust nonlinear regulation control of unmanned aerial vehicles synthetic jet actuators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106156403A (zh) * 2016-06-21 2016-11-23 南京航空航天大学 基于应力‑强度干涉理论的高超声速飞行器翼梁结构可靠性分析方法
CN108170886A (zh) * 2017-11-29 2018-06-15 南京航空航天大学 基于预设性能的高超声速飞行器纵向减损控制方法
CN108052787A (zh) * 2018-02-01 2018-05-18 南京航空航天大学 基于飞行动态的高超声速飞行器机翼颤振损伤估计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
高超声速飞行器机翼关键部件损伤特性分析;邵鹏 等;《电光与控制》;20170731;第24卷(第7期);全文 *
高超声速飞行器机翼关键部件损伤特性研究;应竣棫;《吉林大学学报(信息科学版)》;20170531;第35卷(第3期);全文 *

Also Published As

Publication number Publication date
CN108846246A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
CN108846246B (zh) 一种基于预测控制的高超声速飞行器机翼颤振减损方法及减损控制器
Reddy et al. Multi-input/multi-output adaptive output feedback control design for aeroelastic vibration suppression
CN105182742A (zh) 一种弹性体飞行器自适应受限跟踪控制间接法
Huang et al. Nonlinear reduced-order models for transonic aeroelastic and aeroservoelastic problems
CN111352340A (zh) 一种基于时变可靠度的不确定性系统pid控制器设计方法
Yang et al. Transonic flutter suppression for a three-dimensional elastic wing via active disturbance rejection control
Andrievsky et al. Simple adaptive control for airfoil flutter suppression
Mannarino et al. Multifidelity control of aeroelastic systems: an immersion and invariance approach
CN115079574B (zh) 一种挠性高超声速飞行器分布式故障补偿方法
Sirisha et al. A comparative study of controllers for stabilizing a rotary inverted pendulum
Xing et al. Modeling and vibration control of aero two-blade propeller with input magnitude and rate saturations
Chen et al. Flight-loads effects on horizontal tail free-play-induced limit cycle oscillation
Barzgaran et al. Real-time Model Predictive Control for Gust Load Alleviation on an Aeroelastic Wind Tunnel Test Article
Vindigni et al. Simple adaptive wing-aileron flutter suppression system
Pado et al. Neural predictive control for active buffet alleviation
Tavasoli et al. Adaptive robust boundary control of coupled bending‐torsional vibration of beams with only one axis of symmetry
CN112904898B (zh) 旋转弹箭非定常气动响应特性评估方法和系统
Drew et al. Multi-objective gust load alleviation control designs for an aeroelastic wind tunnel demonstration wing
Capello et al. A comprehensive robust adaptive controller for gust load alleviation
Bialy et al. Lyapunov-based tracking of store-induced limit cycle oscillations in an aeroelastic system
Gao et al. Finite-time H∞ adaptive fault-tolerant control for wing flutter of reentry vehicle subject to input saturation
Degaki et al. Sliding mode control application for two-dimensional active flutter suppression
Yang et al. Tube-MPC Control via Notch Filter for Flexible Air-Breathing Hypersonic Vehicle with Actuator Fault
Bhoir et al. Output feedback modular adaptive control of a nonlinear prototypical wing section
Bialy et al. Saturated rise tracking control of store-induced limit cycle oscillations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant