CN108832087B - 一种电池负极材料及其制备方法 - Google Patents

一种电池负极材料及其制备方法 Download PDF

Info

Publication number
CN108832087B
CN108832087B CN201810583702.5A CN201810583702A CN108832087B CN 108832087 B CN108832087 B CN 108832087B CN 201810583702 A CN201810583702 A CN 201810583702A CN 108832087 B CN108832087 B CN 108832087B
Authority
CN
China
Prior art keywords
graphite
bromide
electrode material
negative electrode
functionalized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810583702.5A
Other languages
English (en)
Other versions
CN108832087A (zh
Inventor
韩飞
沈薇
张成智
刘金水
李轩科
张福全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Sizhou Information Technology Co ltd
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201810583702.5A priority Critical patent/CN108832087B/zh
Publication of CN108832087A publication Critical patent/CN108832087A/zh
Application granted granted Critical
Publication of CN108832087B publication Critical patent/CN108832087B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种石墨层间化合物基电池负极材料,包括功能化石墨及金属卤化物基石墨层间化合物,通过对石墨主体进行功能化改性处理,引入功能基团,以提高石墨片层与金属卤化物插入客体之间的化合键合力,获取高可逆容量的同时保持较好的循环稳定性。本发明同时还提供该负极材料的制备方法,该制备方法能够克服现有技术中的不足之处,提供一种高容量且循环性能好的负极材料,同时该生产过程安全、环保、适合大规模生产。

Description

一种电池负极材料及其制备方法
技术领域
本发明属于电池技术领域,尤其涉及一种石墨层间化合物基电池负极材料及其制备方法。
背景技术
负极材料是制造电池的关键材料之一,是决定电池性能和价格的重要因素。对于锂离子电池而言,目前商业化的负极材料主要是石墨,其实际容量已接近理论值(372mAh/g),且随着循环次数的增加容量显著下降,无法满足电池日益增长的容量和性能要求。天然石墨结晶程度高,具有很高的容量( 接近石墨理论容量372mAh/g),但其结构不稳定,循环性能差,即使通过各种手段对其表面进行改性,仍无法满足要求。人造石墨结构稳定,具有优秀的循环寿命,但容量较天然石墨偏低。尽管通过选择合理的原料和石墨化工艺,可以具备接近天然石墨的容量,但仍然无法完全满足高端消费电子产品的应用要求。
由于石墨片层之间的结合力弱,间距较大,在插层剂的作用下,化学反应物质插入石墨片层间,并在层间与碳原子键合,形成的一种并不破坏石墨层状结构的石墨层间化合物。定向选择可与Li+、Na+、K+等离子发生可逆反应的金属卤化物作为插层剂,制备金属卤化物基石墨层间化合物,如氯化铁-石墨层间化合物。以锂离子电池为例,由于金属氯化物与锂离子反应所具有的容量远高于纯石墨负极的容量,因而该石墨层间化合物作为电极材料使用,其石墨主体和金属氯化物客体均能作为锂离子存储的活性位点,从而,获取远高于纯石墨作为电极材料时的可逆容量。另外,由于插入的金属卤化物与石墨片层的相互作用,可改变石墨片层的电子结构,作为电极材料时能够表现出高的可逆容量。由于石墨片层的束缚作用,插入的卤化物客体在空气中较为稳定,材料存储时不需要采取特殊的保护措施以避免其分解。然而,在作为电极材料使用时,由于离子反复地嵌入脱出,会造成石墨片层束缚力的削弱,导致卤化物溶解于电解液中,造成活性物质的损失,最终导致电极材料循环性能不稳定。为了提高金属卤化物基石墨层间化合物作为电极材料的结构稳定性,避免金属卤化物的溶解问题,需对石墨主体进行改性处理以提高其对金属卤化物插入客体的化学键合能力。
发明内容
为了解决上述问题,本发明提供一种石墨层间化合物基电池负极材料及其制备方法。为了在获取高可逆容量的同时保持较好的循环稳定性,通过对石墨主体进行功能化改性处理,引入功能基团,以提高石墨片层与金属卤化物插入客体之间的化合键合力。该制备方法能够克服现有技术中的不足之处,提供一种高容量且循环性能好的负极材料,同时该生产过程安全、环保、适合大规模生产。
一种电池负极材料,包括功能化石墨及石墨层间化合物。
所述的功能化石墨是通过化学法或物理法在石墨片层间引入氧、氮、硫、磷杂原子中的一种或几种获得的。
所述的石墨层间化合物是通过熔盐法将金属卤化物作为插层剂插入到功能化石墨层间,形成石墨层间化合物。
所述的功能化石墨,优选氧杂原子中的环氧官能团;所述功能化石墨中杂原子与碳原子的原子比为0-20%。
所述的石墨包括天然石墨、人造石墨或膨胀石墨。
所述的金属卤化物插层剂都是无水化合物,形成受电子型的石墨层间化合物,包括铍、镁、钪、钇、锆、铪、铌、钽、铬、钼、钨、锰、铼、铁、钌、锇、钴、铑、铱、镍、钯、铂、铜、银、金、锌、镉、汞、铝、镓、铟、铊、锗、锡、铅、锑、铋、铀的金属氯化物以及溴化铁、溴化镍、溴化铝、溴化镓、溴化锰、溴化钴、溴化镉、溴化金、溴化汞、溴化铊和溴化铀中的一种或几种。
所述的熔盐法制备石墨层间化合物的所有过程都在空气中进行,所制备的石墨层间化合物可以为1阶、2阶、3阶、4阶或混合阶数。
所述的电池,包括锂离子电池、钠离子电池、钾离子电池、镁离子电池、铝离子电池和超级电容器。
一种负极材料的制备方法,包括以下步骤:
(1)先通过化学法或物理法在石墨片层间引入氧、氮、硫、磷杂原子中的一种或几种,获得功能化石墨主体材料;
(2)以功能化石墨为主体,与金属卤化物插层剂混合,再通过熔盐法将金属卤化物插入到功能化石墨层间,使得金属卤化物以分子的形式存在于石墨片层间隙;所述的熔盐法的条件为:插层剂与石墨的质量比为1:0.2-20,干燥温度为60-150℃,干燥时间为0.2-5h,插层反应温度300-1100℃,反应时间为1-72h。
作用机理:以环氧基功能化的石墨主体和金属卤化物FeCl3客体为例,主体与客体之间的结合能高达0.216 eV,而未功能化的石墨主体与客体之间的结合能仅0.059 eV,更高的结合能意味着更加稳定的化学结构。因而,在作为电极材料使用时,本发明所制备的石墨层间化合物可避免FeCl3客体溶解于电解液中,从而在保证高容量的同时具有稳定的循环性能。另外,由于FeCl3的插入,改变了石墨片层的电子结构,大大增加了石墨的电化学离子存储活性位点,能够获取极高的可逆容量。
本发明的有益效果:
(1)容量大
本发明所制备材料作为锂离子电池负极材料使用,具有1200 mAh g-1 以上的可逆容量,远高于石墨主体372 mAh g-1的理论容量。同时,较高的振实密度(1.3 g cm-3)使其具有较高的体积能量密度。
本发明所制备的材料作为钠离子电池负极材料使用,具有583 mAh g-1可逆容量(纯石墨难以储存钠离子),扩大的石墨层间距和插入的金属卤化物均有利于钠离子的存储。
(2)循环性能好
本发明所制备材料作为锂离子电池负极材料使用,50次循环后具有90%以上的容量保持率。而传统金属卤化物石墨层间化合物的循环性能较差,经过50次循环后,容量保持率不到15%。
(3)制备方法简单
以功能化的石墨作为主体材料,制备金属卤化物基石墨层间化合物,在熔盐法插入金属卤化物过程中不会造成石墨中杂原子的损失,插层剂以单分子层的形式存在于石墨层间。功能化的石墨片层与金属卤化物之间的化学键合力远远大于纯石墨片层与金属卤化物之间的键合力;且合成方法简单、易于操作、制作成本低,适合大规模量产。
附图说明
图1为本发明实施例1中环氧基功能化石墨和纯石墨的傅里叶红外光谱图;
图2为本发明实施例1中FeCl3-OGIC和对比例1 中FeCl3-GIC的(a)XRD图和(b)Raman图;
图3为本发明实施例1中FeCl3-OGIC和对比例1 中FeCl3-GIC作为锂离子电池负极材料的循环性能图。
具体实施方式
为了更好地理解本发明,下面结合附图和实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1:
一种负极材料FeCl3-OGIC的制备方法:
(1)制备环氧基功能化石墨:在机械搅拌条件下,将10g天然鳞片石墨(D50=16μm)、5.4g高锰酸钾依次加入盛有60g混酸(80%的硫酸与浓硝酸按质量比3:1制成混合物)的烧杯中,室温搅拌反应50min,再用30%的过氧化氢还原体系中残余的KMnO4,用蒸馏水洗涤产物3次,抽滤,在60℃下干燥4h,得到氧化石墨。最后将氧化石墨在马弗炉中900℃热处理12s,得到环氧基团功能化的石墨主体。如附图1的傅里叶红外光谱图所示,经过处理之后,石墨内部引入了大量的环氧基团,通过元素分析测试得知氧原子含量为15.04 at%。
(2)制备FeCl3插层的GICs:将上述功能化的石墨与无水氯化铁按照质量比1:2在空气中搅拌混合,然后在120℃下真空干燥1h后转移至反应釜中,将反应釜密封后在加热器中加热到450℃保温24h。得到的产物用去离子水、酒精和丙酮清洗后在80℃下干燥12h后得到FeCl3-OGIC(O表示环氧基官能化)。附图2可以看出氯化铁以分子形式成功插入石墨层间形成了石墨层间化合物,而不是混合物,也没有铁的其他化合物存在。
电化学结果显示,实施例1制备的FeCl3-OGIC作为锂离子电池负极材料使用可逆比容量在1371 mAh g-1以上,经过50次循环后,容量保持率为98%,循环性能稳定;FeCl3-OGIC作为钠离子电池负极材料使用,具有583 mAh g-1可逆容量(纯石墨难以储存钠离子)。
对比例1:使用未功能化的石墨作为主体
一种负极材料的制备方法:直接以天然石墨作为客体插入氯化铁,具体做法如下:将粒度为16μm的天然石墨在120℃下干燥4h后与无水氯化铁按照质量比1:2在空气中搅拌混合,然后在120℃下真空干燥1h后转移至反应釜中,将反应釜密封后在铸铜加热器中在450℃中保温24h。得到的产物用去离子水、酒精和丙酮清洗后在80℃下干燥12h后收集备用,样品命名为FeCl3-GIC。
与实施例1比,对比例1的该材料没有引入环氧官能团,作为锂离子电池负极材料,容量仅为752mAh g-1,且50次循环后,容量保持率仅为36%,循环性能不稳定。
实施例2:
一种负极材料FeCl3+ZnCl2-OGIC的制备方法:
(1)制备环氧基功能化石墨:在机械搅拌条件下,将10g天然鳞片石墨(D50=16μm)、5.4g高锰酸钾依次加入盛有60g混酸(80%的硫酸与浓硝酸按质量比3:1制成混合物)的烧杯中,室温搅拌反应50min,再用30%的过氧化氢还原体系中残余的KMnO4,用蒸馏水洗涤产物3次,抽滤,在60℃下干燥4h,得到氧化石墨。最后将氧化石墨在马弗炉中900℃热处理12s,得到环氧基团功能化的石墨主体。如附图1的傅里叶红外光谱图所示,经过处理之后,石墨内部引入了大量的环氧基团,通过元素分析测试得知氧原子含量为15.04 at%。
(2)制备FeCl3和ZnCl2插层的GICs:将上述功能化的石墨与无水氯化铁和无水氯化锌按照质量比1:2:1在空气中搅拌混合,然后在120℃下真空干燥1h后转移至反应釜中,将反应釜密封后在加热器中加热到450℃保温24h。得到的产物用去离子水、酒精和丙酮清洗后在80℃下干燥12h后得到FeCl3+ZnCl2-OGIC(O表示环氧基官能化)。
电化学结果显示,实施例2的FeCl3+ZnCl2-OGIC作为锂离子电池负极材料使用,可逆比容量在1289 mAh g-1以上,经过50次循环后,容量保持率为95%,循环性能稳定。
实施例3:
一种负极材料FeCl3-PGIC的制备方法:
(1)制备磷原子掺杂的石墨:在机械搅拌条件下,将10g天然鳞片石墨(D50=16μm)、5.4g高锰酸钾依次加入盛有60g混酸(80%的硫酸与浓硝酸按质量比3:1制成混合物)的烧杯中,室温搅拌反应50min,再用30%的过氧化氢还原体系中残余的KMnO4,用蒸馏水洗涤产物3次,抽滤,在60℃下干燥4h,得到氧化石墨。最后将氧化石墨在马弗炉中900℃热处理12s后置于管式炉中加热到900℃处理2h除去环氧基团。将得到的石墨粉末浸渍在1.0 mol/L的磷酸溶液中,取出烘干后在管式炉中加热到800℃处理2h得到磷原子掺杂的石墨。
(2)制备FeCl3插层的GICs:将上述磷原子掺杂的石墨与无水氯化铁按照质量比1:2在空气中搅拌混合,然后在120℃下真空干燥1h后转移至反应釜中,将反应釜密封后在加热器中加热到450℃保温24h。得到的产物用去离子水、酒精和丙酮清洗后在80℃下干燥12h后得到FeCl3-PGIC(P表示磷原子官能化)。
电化学结果显示,实施例3的FeCl3-PGIC作为锂离子电池负极材料使用,可逆比容量在1254 mAh g-1以上,经过50次循环后,容量保持率为91%,循环性能稳定。
实施例4:
一种负极材料FeCl3-NSGIC的制备方法:
(1)制备氮硫原子共掺杂的石墨:在机械搅拌条件下,将10g天然鳞片石墨(D50=16μm)、5.4g高锰酸钾依次加入盛有60g混酸(80%的硫酸与浓硝酸按质量比3:1制成混合物)的烧杯中,室温搅拌反应50min,再用30%的过氧化氢还原体系中残余的KMnO4,用蒸馏水洗涤产物3次,抽滤,在60℃下干燥4h,得到氧化石墨。最后将氧化石墨在马弗炉中900℃热处理12s后置于管式炉中加热到900℃处理2h除去环氧基团。将得到的石墨粉末浸渍在1.0 mol/L的硫氰酸铵溶液中,取出烘干后在管式炉中加热到600℃处理2h得到氮硫原子共掺杂的石墨。
(2)制备FeCl3插层的GICs:将上述氮硫原子共掺杂的石墨与无水氯化铁按照质量比1:2在空气中搅拌混合,然后在120℃下真空干燥1h后转移至反应釜中,将反应釜密封后在加热器中加热到450℃保温24h。得到的产物用去离子水、酒精和丙酮清洗后在80℃下干燥12h后得到FeCl3-NSGIC(NS表示氮硫原子官能化)。
电化学结果显示,实施例4的FeCl3-NSGIC作为锂离子电池负极材料使用,可逆比容量在1242 mAh g-1以上,经过50次循环后,容量保持率为90%,循环性能稳定。
尽管参照实施例对所公开的涉及一种石墨层间化合物及衍生物的制造方法进行了特别描述,本领域技术人员将能理解,在不偏离本发明的范围和精神的情况下,可以对它进行形式和细节的种种显而易见的修改。因此,以上描述的实施例是说明性的而不是限制性的,在不脱离本发明的精神和范围的情况下,所有的变化和修改都在本发明的范围之内。

Claims (8)

1.一种电池负极材料,其特征在于,包括功能化石墨及金属卤化物基石墨层间化合物;所述的功能化石墨是通过化学法在石墨片层间引入氧、氮、硫、磷杂原子中的一种或几种获得的;
所述负极材料的制备方法,包括以下步骤:
(1)先通过化学法在石墨片层间引入氧、氮、硫、磷杂原子中的一种或几种,获得功能化石墨主体材料;
(2)以功能化石墨为主体,与金属卤化物插层剂混合,再通过熔盐法将金属卤化物插入到功能化石墨层间,使得金属卤化物以分子的形式存在于石墨片层间隙;插层剂与石墨的质量比为1:0.2-20,干燥温度为60-150℃,干燥时间为0.2-5h,插层反应温度300-1100℃,反应时间为1-72h。
2.根据权利要求1所述的负极材料,其特征在于,所述的功能化石墨为在石墨片层间引入氧杂原子中的环氧官能团得到的石墨。
3.根据权利要求1所述的负极材料,其特征在于,所述功能化石墨中杂原子与碳原子的原子比为0-20%。
4.根据权利要求1所述的负极材料,其特征在于,所述的石墨层间化合物是通过熔盐法将金属卤化物作为插层剂插入到功能化石墨层间,形成石墨层间化合物。
5.根据权利要求1所述的负极材料,其特征在于,所述的熔盐法制备石墨层间化合物的所有过程都在空气中进行,所制备的石墨层间化合物为1阶、2阶、3阶、4阶或混合阶数。
6.根据权利要求1所述的负极材料,其特征在于,所述的金属卤化物插层剂都是无水化合物,形成受电子型的石墨层间化合物,包括铍、镁、钪、钇、锆、铪、铌、钽、铬、钼、钨、锰、铼、铁、钌、锇、钴、铑、铱、镍、钯、铂、铜、银、金、锌、镉、汞、铝、镓、铟、铊、锗、锡、铅、锑、铋、铀的金属氯化物以及溴化铁、溴化镍、溴化铝、溴化镓、溴化锰、溴化钴、溴化镉、溴化金、溴化汞、溴化铊和溴化铀中的一种或几种。
7.根据权利要求1所述的负极材料,其特征在于,所述的石墨包括天然石墨、人造石墨或膨胀石墨。
8.根据权利要求1所述的负极材料,其特征在于,所述的电池为锂离子电池。
CN201810583702.5A 2018-06-08 2018-06-08 一种电池负极材料及其制备方法 Active CN108832087B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810583702.5A CN108832087B (zh) 2018-06-08 2018-06-08 一种电池负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810583702.5A CN108832087B (zh) 2018-06-08 2018-06-08 一种电池负极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108832087A CN108832087A (zh) 2018-11-16
CN108832087B true CN108832087B (zh) 2021-04-30

Family

ID=64143410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810583702.5A Active CN108832087B (zh) 2018-06-08 2018-06-08 一种电池负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108832087B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584248B (zh) * 2020-05-29 2022-01-28 湖南大学 一种钾离子混合电容器及其制备方法
US11824199B2 (en) 2020-07-17 2023-11-21 International Business Machines Corporation Metal halide cathode with enriched conductive additive
CN113725437B (zh) * 2021-08-31 2022-09-16 哈尔滨工业大学 一种氯化锰包覆石墨高倍率锂离子电池负极材料及其制备方法
CN114023955B (zh) * 2021-10-29 2024-01-30 凯盛石墨碳材料有限公司 一种碱金属离子电池用负极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841019A (zh) * 2010-04-30 2010-09-22 湖南大学 锂离子电池用炭包覆扩层石墨复合材料及其制备方法
CN103296277A (zh) * 2012-03-01 2013-09-11 复旦大学 一种石墨插层化合物锂离子电池负极材料及其制备方法和应用
CN106450312A (zh) * 2016-10-18 2017-02-22 福建翔丰华新能源材料有限公司 一种无机掺杂改性天然石墨的制备方法
CN107032345A (zh) * 2017-05-12 2017-08-11 湖南大学 一种石墨层间化合物的制备方法
CN107195879A (zh) * 2017-05-09 2017-09-22 东南大学 一种高性能锂离子电池的氧化石墨负极材料的制备方法
CN107394158A (zh) * 2017-07-21 2017-11-24 张娟 一种基于膨胀石墨制备硅碳复合型锂电池负极材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841019A (zh) * 2010-04-30 2010-09-22 湖南大学 锂离子电池用炭包覆扩层石墨复合材料及其制备方法
CN103296277A (zh) * 2012-03-01 2013-09-11 复旦大学 一种石墨插层化合物锂离子电池负极材料及其制备方法和应用
CN106450312A (zh) * 2016-10-18 2017-02-22 福建翔丰华新能源材料有限公司 一种无机掺杂改性天然石墨的制备方法
CN107195879A (zh) * 2017-05-09 2017-09-22 东南大学 一种高性能锂离子电池的氧化石墨负极材料的制备方法
CN107032345A (zh) * 2017-05-12 2017-08-11 湖南大学 一种石墨层间化合物的制备方法
CN107394158A (zh) * 2017-07-21 2017-11-24 张娟 一种基于膨胀石墨制备硅碳复合型锂电池负极材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Intercalation of CoO in S-Doped Graphite as High-Performance Anodes for Lithium-Ion Batteries;Xinlong Ma等;《Energy Technol.》;20170801;第5卷(第12期);第2244-2252页 *

Also Published As

Publication number Publication date
CN108832087A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
CN108832087B (zh) 一种电池负极材料及其制备方法
Xu et al. Progress and perspective: MXene and MXene‐based nanomaterials for high‐performance energy storage devices
Li et al. Porous V 2 O 5 yolk–shell microspheres for zinc ion battery cathodes: activation responsible for enhanced capacity and rate performance
Balamurugan et al. Hierarchical Ni Mo S and Ni Fe S Nanosheets with Ultrahigh Energy Density for Flexible All Solid‐State Supercapacitors
KR102402341B1 (ko) 리튬이온전지 음극소재 및 그의 제조방법
EP3157080B1 (en) Positive electrode comprising a nitrogen-doped graphene coated nano-sulfur positive composite material, and preparation method and application thereof
Wang et al. Hollow NiCoP nanocubes derived from a Prussian blue analogue self-template for high-performance supercapacitors
Zhang et al. Novel flowerlike metastable vanadium dioxide (B) micronanostructures: facile synthesis and application in aqueous lithium ion batteries
CN106099113B (zh) 一种核壳结构硅碳复合材料及其制备方法
CN108899482B (zh) 铝离子电池及其正极材料
Wang et al. α-Fe 2 O 3-mediated growth and carbon nanocoating of ultrafine SnO 2 nanorods as anode materials for Li-ion batteries
CN109273682B (zh) 一种钠离子电池正极材料及其制备方法
CN111285347B (zh) 一种三维石墨化多孔碳材料及其制备方法和用途
Wang et al. Flexible reduced graphene oxide/V2O5 composite battery-type cathode and MXene capacitor-type anode for aqueous zinc ion hybrid supercapacitors with high energy density
CN110429270B (zh) 一种负极复合材料Sn/MXene@C及其制备方法
CN110416537B (zh) 钛酸锂复合负极材料及其制备方法和锂离子电池
WO2007049880A1 (en) Methods for manufacturing manganese oxide nanotube or nanorod by anodic aluminum oxide template
CN109616651B (zh) 一种钠离子正极材料杂原子掺杂石墨烯基磷酸钒钠复合纳米材料
CN112010291B (zh) 一种镍掺杂二硫化钼/石墨烯三维复合材料的制备方法及应用
Yu et al. Strategies for Fabricating High‐Performance Electrochemical Energy‐Storage Devices by MXenes
Zhao et al. Nondestructive CNT chained Fe3O4 anode materials for high-performance Li-ion batteries
Choi et al. Processing and characterization of titanium dioxide grown on titanium foam for potential use as Li-ion electrode
Kang et al. Robust hollow Bowl-like α-Fe2O3 nanostructures with enhanced electrochemical lithium storage performance
CN113380994A (zh) 一种无粘结剂、含氧缺陷的碳包覆氧化物电极及电池
Yang et al. Upcycling of spent carbon cathode (SCC) into SCC-2600@ rGO facilitates ultrastable and fast lithium storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240131

Address after: Room A2-4-2003-1, Jingu, Gaoxin Hanyu, Jinan City, Shandong Province, 250000

Patentee after: SHANDONG SIZHOU INFORMATION TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: 410012 lushanmen, Lushan South Road, Yuelu District, Changsha City, Hunan Province

Patentee before: HUNAN University

Country or region before: China

TR01 Transfer of patent right