CN108823541A - 一种表面增强拉曼散射活性基底的制备方法 - Google Patents

一种表面增强拉曼散射活性基底的制备方法 Download PDF

Info

Publication number
CN108823541A
CN108823541A CN201810585687.8A CN201810585687A CN108823541A CN 108823541 A CN108823541 A CN 108823541A CN 201810585687 A CN201810585687 A CN 201810585687A CN 108823541 A CN108823541 A CN 108823541A
Authority
CN
China
Prior art keywords
preparation
raman scattering
enhanced raman
silver
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810585687.8A
Other languages
English (en)
Other versions
CN108823541B (zh
Inventor
郎咸忠
马骥
苏江滨
蒋美萍
王旭东
史雅莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201810585687.8A priority Critical patent/CN108823541B/zh
Publication of CN108823541A publication Critical patent/CN108823541A/zh
Application granted granted Critical
Publication of CN108823541B publication Critical patent/CN108823541B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/045Anodisation of aluminium or alloys based thereon for forming AAO templates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及纳米结构的制造领域,特别涉及一种表面增强拉曼散射活性基底的制备方法。本发明解决了表面增强拉曼散射活性基底制备方法的技术问题。该制备方法包括:I、利用两步氧化法制备多孔阳极氧化铝模板;II、利用磁控溅射技术将银沉积到多孔氧化铝模板表面漏斗形开口表面;III、利用湿化学腐蚀法先后将剩余的铝基底和多孔阳极氧化铝层去除,从而得到具有表面增强拉曼散射效应的银纳米火山岛阵列。本发明的表面增强拉曼散射活性基底及其制备方法具有成本低廉,实施简单,适合大面积生产等优点,有望被用于基于表面增强拉曼散射的化学生物分析。

Description

一种表面增强拉曼散射活性基底的制备方法
技术领域
本发明涉及纳米结构的制造领域,特别涉及一种表面增强拉曼散射活性基底的制备方法。
背景技术
拉曼光谱相比于同类光谱技术,具有无需样品准备、不受水分子干扰、可快速、无损的定性定量分析等优点,已被广泛应用于食品药品安全、生物分子和环境监测、考古和矿物经典等领域。然而当被测分子浓度较低时,分子的拉曼信号会因为太过微弱而无法监测。这种与生俱来低灵敏度的缺陷限制了拉曼光谱在痕量检测和表面科学领域的应用。
Fleischmann等人于1974年对光滑银电极表面进行粗糙化处理后,首次获得吸附在银电极表面上单分子层吡啶分子的高质量拉曼光谱。随后,Van Duyne及其合作者通过系统的实验和计算发现吸附在粗糙银表面上的每个吡啶分子的拉曼散射信号与溶液中的吡啶的拉曼散射信号相比,增强约6个数量级,而这种与粗糙表面相关的表面增强拉曼效应被称为表面增强拉曼散射(SERS)效应。与其他检测技术相比,SERS具有高灵敏度、高选择性、非破坏性、高重复性、原位检测等优点,被广泛应用于成分检测、环境科学、生物科学及传感器等领域。
SERS效应主要是在纳米尺度上的粗糙表面或颗粒体系做具有的异常光学增强,其强弱主要取决于入射光子与纳米结构表面或纳米颗粒体系以及表面分子的相互作用。传统的制备SERS活性基底的技术包括金属电极粗糙化处理或金属溶胶法构建二维银岛膜结构。虽然这些技术操作简单而且成本低廉,但是这些材料表面纳米结构尺寸和形貌无规则且不可控,这使得仅在其表面随机的位置处可以检测到较高质量的SERS信号,即难以在较宽的动态范围内获得可靠、稳定、均匀的SERS信号,限制了SERS机理的深入研究和技术的广泛应用。为了解决这一问题,现代纳米刻蚀技术被用于制备有序贵金属纳米阵列。但是,这些技术存在一些技术弊端,如制备成本高,技术复杂,难以大面积量产,使其不适于大规模实际应用。因此,寻求一种简单、低成本的制备方法,用以大面积制备有序可控的高灵敏度的SERS活性基底,已成为目前亟待解决的技术问题。
发明内容
为了解决上述SERS活性基底制备方法的技术瓶颈,本发明提供一种有序可控的表面增强拉曼散射活性基底的制备方法,即利用多孔阳极氧化铝表面漏斗形开口作为模板,大面积制备中空的银纳米火山岛阵列,本发明具有成本低廉、操作简单、结构均一、有序可控等优点。
为了实现上述发明目的,本发明采用的技术方案如下:
1、多孔阳极氧化铝模板的制备:取高纯铝箔,先去除高纯铝箔表面吸附的杂质和油污,再经电化学抛光处理,在去除其表面氧化层同时使其表面光滑平整,然后利用两步氧化法对铝箔进行阳极氧化,获得大面积有序的多孔阳极氧化铝模板。
步骤1所得到的多孔氧化铝模板表面为漏斗形开口表面,且多孔氧化铝模板成本低廉、制备过程简单、可以轻易实现厘米级的制备。
2、采用磁控溅射技术将银沉积到多孔阳极氧化铝模板的漏斗形开口表面,从而在多孔阳极氧化铝表面形成倒置的中空的银纳米火山岛结构的样品;
步骤2中采用磁控溅射沉积技术,该技术成熟、稳定,技术成本和门槛较低,且可实现大面积的沉积。在该步骤中,通过在多孔阳极氧化铝模板的漏斗形开口表面沉积银,从而形成中空的银纳米火山岛结构。该中空结构的形成原理是:由于磁控溅射沉积过程中准直行较好,相较于多孔阳极氧化铝漏斗形开口下方的中心竖直纳米孔道,表面上漏斗形开口的斜面更有利于磁控溅射中银原子的沉积和生长;随着沉积的进行,银原子在漏斗形开口的斜面逐渐成膜,从而形成与漏斗形开口相对应的银纳米火山结构;值得注意的是,在多孔阳极氧化铝模板漏斗形开口上方还存在有六边形排列的尖端突起,相对于下方的漏斗形开口,银原子最先在这些尖端突起上成核,生长速度较快。在适当的沉积参数下,最终使得漏斗形开口的上方最先封死,而下方的形成纳米火山岛形成中空结构。而优于对称性的破坏,这种中空的银火山岛结构能够导致许多新颖的等离激元共振模式,从而影响表面增强拉曼散射性能。
3、采用湿化学腐蚀法先将步骤2样品中剩余的铝基底去除,后将氧化铝层去除,从而获得有序可控的,可用于表面增强拉曼散射效应的银纳米火山岛阵列。
进一步地,步骤1中所述的去除高纯铝箔表面吸附的杂质和油污,是将铝箔先后置于蒸馏水和丙酮中进行超声清洗5min。
进一步地,步骤1中所述的电化学抛光处理,是指将铝箔作为阳极置于抛光液(高氯酸和乙醇体积比为1:5的混合溶液)中,钼片作为阴极,在15V恒压下抛光3min,最后经去离子水冲洗并氮气下吹干从而到表面呈光滑镜面的铝箔。
进一步地,步骤1中所述的两步氧化法,是指铝箔作阳极,钼片作阴极,在0.5mol/L的草酸溶液进行一次氧化,氧化电压根据需求可设为40~70V,温度维持在10℃,氧化时间为2h;再将其置于等1.8wt.%的铬酸和6wt.%磷酸混合溶液(体积比1:1)中,温度维持在75℃,反应时间为2h,以去除上步形成的阳极氧化铝层;最后再将其置于0.5mol/L的草酸溶液进行二次氧化,氧化电压与第一步氧化电压相同(相应的分别为40~70V),温度维持在10℃,氧化时间为2h,从而获得多孔阳极氧化铝模板。
进一步地,步骤2中所述的利用磁控溅射技术将银沉积到多孔阳极氧化铝表面漏斗形开口表面,是指在室温下氩气环境中,采用恒压磁控溅射方法将银溅射到多孔阳极氧化铝表面漏斗形开口表面,溅射时银靶与模板的距离均为20cm,磁控管的功率约为50W,磁控室里压强为3.8×10-1Pa,沉积层厚度50nm以上。
进一步地,步骤3中所述的利用湿化学腐蚀法先后将剩余的铝基底和氧化铝层去除,是指首先将步骤2中获得样品浸泡入饱和氯化铜溶液中以腐蚀掉剩余的铝基底,然后将其反转并利用0.5M NaOH溶液将多孔阳极氧化铝模板溶解。
本发明有益效果如下:
(1)本发明中所制备的SERS衬底,具有中空的上下非对称结构,SERS增强位点可以在火山岛结构之间,而且可以实现中空腔体内部的SERS增强;并且所制备SERS衬底有序度高,信号重复性好,SERS增强因子可以达到105以上;
(2)本发明制得的银纳米火山岛阵列SERS衬底,可以根据多孔氧化铝模板的结构参数调节,实现银纳米火山岛阵列基底对拉曼表面增强效果的调控和优化;
(3)本发明制备的SERS活性基底,具有成本低廉,实施简单,适合大面积生产等优点,可用于基于SERS的化学生物分析。
附图说明
图1是本发明中SERS活性基底的制备流程示意图;
图2是本发明中SERS活性基底的结构示意图;
图3是实施例1制备的SERS活性基底的实物图和电镜图;
图4是在不同模板氧化电压下制备银纳米火山岛基底检测水体污染物孔雀石绿的SERS信号;
图5是60V银纳米火山基底上随机10个位置处的SERS光谱;
图6是60V银纳米火山基底上不同浓度水体污染物孔雀石绿的SERS光谱。
具体实施方式
为使本发明所述SERS活性基底的制备方法更易于理解,下面结合附图和实施范例对本发明做进一步的解释,进一步直观展示本发明多孔阳极氧化铝模板的制备方法:
实施例1
步骤I、将铝箔先后置于蒸馏水和丙酮中超声清洗5min,去除表面粘附的油污;将铝箔作为阳极置于抛光液(高氯酸和乙醇体积比为1:5的混合溶液)中,钼片作为阴极,在15V恒压下抛光3min,最后经去离子水冲洗并氮气下吹干从而到表面呈光滑镜面的铝箔;然后将铝箔作阳极,钼片作阴极,在0.5mol/L的草酸溶液进行一次氧化,氧化电压为40V,温度维持在10℃,氧化时间为2h;再将其置于等1.8wt.%的铬酸和6wt.%磷酸混合溶液(体积比1:1)中,温度维持在75℃,反应时间为2h,以去除上步形成的多孔阳极氧化铝层;最后再将其置于0.5mol/L的草酸溶液进行二次氧化,氧化电压为40V,温度维持在10℃,氧化时间为2h,以获得多孔阳极氧化铝模板。
步骤II、在室温下氩气环境中,采用恒压磁控溅射方法将银溅射到多孔阳极氧化铝表面漏斗形开口表面,溅射时银靶与模板的距离均为20cm,磁控管的功率约为50W,磁控室里压强为3.8×10-1Pa,沉积层厚度500nm,从而在多孔阳极氧化铝表面形成倒置的中空的银纳米火山岛结构。
步骤III、将步骤II中获得样品浸泡入饱和氯化铜溶液中以腐蚀掉剩余的铝基底,然后将其反转并利用0.5M NaOH溶液将多孔阳极氧化铝模板溶解。最终获得低成本、大面积、有序可控的、可用于表面增强拉曼散射效应的银纳米火山岛阵列活性基底。
实施例2
步骤I、将铝箔先后置于蒸馏水和丙酮中超声清洗5min,去除表面粘附的油污;将铝箔作为阳极置于抛光液(高氯酸和乙醇体积比为1:5的混合溶液)中,钼片作为阴极,在15V恒压下抛光3min,最后经去离子水冲洗并氮气下吹干从而到表面呈光滑镜面的铝箔;然后将铝箔作阳极,钼片作阴极,在0.5mol/L的草酸溶液进行一次氧化,氧化电压为60V,温度维持在10℃,氧化时间为2h;再将其置于等1.8wt.%的铬酸和6wt.%磷酸混合溶液(体积比1:1)中,温度维持在75℃,反应时间为2h,以去除上步形成的多孔阳极氧化铝层;最后再将其置于0.5mol/L的草酸溶液进行二次氧化,氧化电压为60V,温度维持在10℃,氧化时间为2h,以获得多孔阳极氧化铝模板。
步骤II、在室温下氩气环境中,采用恒压磁控溅射方法将银溅射到多孔阳极氧化铝表面漏斗形开口表面,溅射时银靶与模板的距离均为20cm,磁控管的功率约为50W,磁控室里压强为3.8×10-1Pa,沉积层厚度200nm,从而在多孔阳极氧化铝表面形成倒置的中空的银纳米火山岛结构。
步骤III、将步骤II中获得样品浸泡入饱和氯化铜溶液中以腐蚀掉剩余的铝基底,然后将其反转并利用0.5M NaOH溶液将多孔阳极氧化铝模板溶解。最终获得低成本、大面积、有序可控的、可用于表面增强拉曼散射效应的银纳米火山岛阵列活性基底。
图3为实施例1制得的银纳米火山岛阵列活性基底的实物图和电镜图,从图中可以看出银纳米火山岛呈现有序六角密堆排列,底部直径约为100nm,孔洞约为12nm,面积可以达到厘米级别。
图4为40V、50V、60V模板氧化电压下制备银纳米火山岛基底检测水体污染物孔雀石绿的SERS信号,可见能够通过调控模板的氧化电压实现对SERS信号的调控和优化。
图5为60V银纳米火山基底上随机10个位置处的SERS光谱,可见该SERS基底具有较好信号可重现性。
图6为60V银纳米火山基底上不同浓度水体污染物孔雀石绿的SERS光谱,可见该基底具有较大的信号动态响应范围,测试浓度可低至10-9M。
以上仅是本发明众多具体应用范例中的一小部分,对本发明的保护范围不构成任何限制。凡采用等同变换或是等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (6)

1.一种表面增强拉曼散射活性基底的制备方法,其特征在于,包括以下制备步骤:
(1)取高纯铝箔,先去除高纯铝箔表面吸附的杂质和油污,再经电化学抛光处理,在去除其表面氧化层同时使其表面光滑平整,然后利用两步氧化法对铝箔进行阳极氧化,获得大面积有序的多孔阳极氧化铝模板;
(2)采用磁控溅射技术将银沉积到多孔阳极氧化铝模板的漏斗形开口表面,从而在多孔阳极氧化铝表面形成倒置的中空的银纳米火山岛结构的样品;
(3)采用湿化学腐蚀法先将步骤(2)样品中剩余的铝基底去除,再将氧化铝层去除,从而获得有序可控的,可用于表面增强拉曼散射效应的银纳米火山岛阵列活性基底。
2.根据权利要求1所述的表面增强拉曼散射活性基底的制备方法,其特征在于:步骤(1)中所述的去除高纯铝箔表面吸附的杂质和油污的方法为:将铝箔先后置于蒸馏水和丙酮中进行超声清洗5min。
3.根据权利要求1所述的表面增强拉曼散射活性基底的制备方法,其特征在于:步骤(1)中所述的电化学抛光处理方法为:将铝箔作为阳极置于抛光液中,钼片作为阴极,在15V恒压下抛光3min,最后经去离子水冲洗并氮气下吹干从而到表面呈光滑镜面的铝箔;所述的抛光液为高氯酸和乙醇体积比为1:5的混合溶液。
4.根据权利要求1所述的表面增强拉曼散射活性基底的制备方法,其特征在于:步骤(1)中所述的两步氧化法的具体步骤为:
(1)以铝箔作阳极,钼片作阴极,在0.5mol/L的草酸溶液进行一次氧化,氧化电压为40~60V,氧化温度维持在10℃,氧化时间为2h;
(2)待一次氧化完成后将铝箔置于1.8wt.%的铬酸和6wt.%磷酸混合溶液(体积比1:1)中,在75℃下反应2h,以去除形成的阳极氧化铝层;
(3)将步骤(2)处理后的铝箔置于0.5mol/L的草酸溶液中进行二次氧化,氧化电压与第一次氧化电压相同,为40~60V,氧化温度维持在10℃,氧化时间为2h,氧化后获得多孔阳极氧化铝模板。
5.根据权利要求1所述的表面增强拉曼散射活性基底的制备方法,其特征在于:步骤(2)中所述的利用磁控溅射技术将银沉积到多孔阳极氧化铝表面漏斗形开口表面的方法为:在室温下氩气环境中,采用恒压磁控溅射方法将银溅射到多孔阳极氧化铝表面漏斗形开口表面,溅射时银靶与模板的距离均为20cm,磁控管的功率约为50W,磁控室里压强为3.8×10-1Pa,沉积层厚度50nm以上。
6.根据权利要求1所述的表面增强拉曼散射活性基底的制备方法,其特征在于:步骤(3)中所述的湿化学腐蚀法具体操作方法为:先将步骤(2)中样品浸泡于饱和氯化铜溶液中以腐蚀掉剩余的铝基底,然后将其反转并利用0.5M NaOH溶液将多孔阳极铝模板溶解。
CN201810585687.8A 2018-06-06 2018-06-06 一种表面增强拉曼散射活性基底的制备方法 Active CN108823541B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810585687.8A CN108823541B (zh) 2018-06-06 2018-06-06 一种表面增强拉曼散射活性基底的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810585687.8A CN108823541B (zh) 2018-06-06 2018-06-06 一种表面增强拉曼散射活性基底的制备方法

Publications (2)

Publication Number Publication Date
CN108823541A true CN108823541A (zh) 2018-11-16
CN108823541B CN108823541B (zh) 2022-02-15

Family

ID=64143431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810585687.8A Active CN108823541B (zh) 2018-06-06 2018-06-06 一种表面增强拉曼散射活性基底的制备方法

Country Status (1)

Country Link
CN (1) CN108823541B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109929905A (zh) * 2019-04-01 2019-06-25 天津国科医工科技发展有限公司 用于细菌快速鉴定的三维拉曼增强膜及其方法和系统
WO2022266691A1 (en) 2021-06-25 2022-12-29 Phornano Holding Gmbh Sers substrate comprising nanoparticles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566570A (zh) * 2009-05-27 2009-10-28 东南大学 有序可控的表面增强拉曼散射活性基底及其制备方法
CN102590179A (zh) * 2012-03-28 2012-07-18 上海大学 银纳米点阵表面增强拉曼活性基底及其制备方法
CN105424676A (zh) * 2015-11-24 2016-03-23 郭秋泉 一种柔性表面增强拉曼光谱基底的制备方法及其应用
KR20160109626A (ko) * 2015-03-12 2016-09-21 (주)광림정공 표면증강 라만 분광기판 및 그의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566570A (zh) * 2009-05-27 2009-10-28 东南大学 有序可控的表面增强拉曼散射活性基底及其制备方法
CN102590179A (zh) * 2012-03-28 2012-07-18 上海大学 银纳米点阵表面增强拉曼活性基底及其制备方法
KR20160109626A (ko) * 2015-03-12 2016-09-21 (주)광림정공 표면증강 라만 분광기판 및 그의 제조방법
CN105424676A (zh) * 2015-11-24 2016-03-23 郭秋泉 一种柔性表面增强拉曼光谱基底的制备方法及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109929905A (zh) * 2019-04-01 2019-06-25 天津国科医工科技发展有限公司 用于细菌快速鉴定的三维拉曼增强膜及其方法和系统
WO2022266691A1 (en) 2021-06-25 2022-12-29 Phornano Holding Gmbh Sers substrate comprising nanoparticles

Also Published As

Publication number Publication date
CN108823541B (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
US9557272B2 (en) Substrate for surface-enhanced Raman spectroscopy and method for producing same
Kaniukov et al. Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template
Du et al. SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template
CN108277484B (zh) 一种中空Ag-Au合金复合结构微纳阵列的制备方法
CN208399384U (zh) 一种sers单元、sers芯片及sers检测系统
CN104949957A (zh) 嵌入式纳米点阵列表面增强拉曼活性基底及其制备方法
KR101932195B1 (ko) 표면강화 라만 분광용 기판의 제조방법
CN103451610B (zh) 新型仿生表面增强拉曼光谱基底及其制备方法
CN102590179A (zh) 银纳米点阵表面增强拉曼活性基底及其制备方法
CN104911667B (zh) 一种新型的具有蜂巢状阵列构造的多层复合贵金属纳米孔阵列sers基底的制备方法
Urbanová et al. Porous bismuth film electrodes for signal increase in anodic stripping voltammetry
CN105129724A (zh) 表面增强拉曼散射衬底的制备方法
CN103257132B (zh) 银纳米帽阵列表面增强拉曼活性基底及其制备方法
CN108823541A (zh) 一种表面增强拉曼散射活性基底的制备方法
CN104259475A (zh) 一种纳米银/石墨烯衍生物表面增强拉曼基体的制备方法
CN104977289B (zh) 贵金属有序纳米结构阵列及其制备方法和用途
CN112647104A (zh) 一种花状金银纳米复合结构阵列的制备方法
CN103213938B (zh) 金纳米帽阵列表面增强拉曼活性基底及其制备方法
Deng et al. Rapid fabrication and characterization of SERS substrates
Singh et al. Nanopatterning of transition metal surfaces via electrochemical dimple array formation
Zhang et al. Synthesis and electrochemical sensing toward heavy metals of bunch-like bismuth nanostructures
Hu et al. Preparation and SERS performance of gold nanoparticles-decorated patterned silicon substrate
CN109115746A (zh) 一种表面增强拉曼活性基底及其制备方法
Chen et al. Self-generating nanogaps for highly effective surface-enhanced Raman spectroscopy
CN106350058B (zh) 基于纳米多孔金的荧光增强基底的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant