CN108819790A - 一种自动谐振的电动汽车无线充电装置 - Google Patents

一种自动谐振的电动汽车无线充电装置 Download PDF

Info

Publication number
CN108819790A
CN108819790A CN201810888845.7A CN201810888845A CN108819790A CN 108819790 A CN108819790 A CN 108819790A CN 201810888845 A CN201810888845 A CN 201810888845A CN 108819790 A CN108819790 A CN 108819790A
Authority
CN
China
Prior art keywords
resistance
triode
capacitor
circuit
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810888845.7A
Other languages
English (en)
Other versions
CN108819790B (zh
Inventor
汝玉星
张飞
吴宗霖
吕向南
高铭萱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810888845.7A priority Critical patent/CN108819790B/zh
Publication of CN108819790A publication Critical patent/CN108819790A/zh
Application granted granted Critical
Publication of CN108819790B publication Critical patent/CN108819790B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

本发明的一种自动谐振的电动汽车无线充电装置属于电子技术的技术领域,其结构有交直流转换电路(1),高频逆变电路(2),电容补偿电路(3),单片机(4),幅度检测电路(5),模数转换电路(6)。本发明具有负载适应范围宽、传输效率高、使用灵活、系统稳定性和可靠性高等优点。

Description

一种自动谐振的电动汽车无线充电装置
技术领域
本发明属于电子技术的技术领域。特别涉及一种自动谐振的电动汽车无线充电装置。
背景技术
随着传统石油能源未来可能存在的枯竭隐患和污染问题,新能源汽车有逐渐取代传统燃油、燃气汽车的趋势。在新能源汽车中,电动汽车具有对环境影响小、噪音低、轻便等优点,其前景被广泛看好。但目前充电技术的落后极大限制了电动汽车的发展及普及。目前主流的电动汽车充电方式多为有线充电桩,有线充电使用场合固定,具有很大的不便利性。为了进一步拓展使用场合,无线充电必然是电动汽车充电的发展趋势。
在无线充电技术中,磁耦合共振的方式因其传输效率高、功率大、结构方便等优点而被广泛关注。其原理是先将220V/50Hz的市电整流成200V左右的稳压直流电,再由高频逆变电路逆变成50kHz的高频交流电,发射线圈配合适当的电容进行选频谐振,将电能转换成磁能,再通过磁耦合共振的方式由接收线圈接收能量,最终再由接收线圈后续的整流滤波电路将线圈接收的能量转换成恒压或恒流为接收端的蓄电池进行充电。为了保证传输效率和功率,上述系统要求发射线圈所在的初级回路必须谐振,接收线圈所在的次级回路也要谐振。众所周知,当发射线圈和接收线圈进行耦合时,次级回路对初级回路会产生影响,其影响可等效成一个反射阻抗串联在初级回路中,该反射阻抗包括反射电阻和反射电抗,其中反射电抗(呈感性或容性)对初级回路的谐振程度会产生严重影响,因此在设计发射系统时必须考接收系统的参数影响。
目前的磁耦合共振无线传输系统一般都是针对固定的接收回路进行设计的,一旦接收回路的参数发生变化时,其在发射回路中等效的反射阻抗也会发生变化,原本发射回路的谐振状态便会遭到破坏,出现失谐的现象,导致发射回路的电流、功率、效率等重要参数迅速变差。而事实上由于不同的电动汽车生产厂家不同、汽车型号不同,必然导致不同的汽车的接收回路参数的不同,因此目前现有的无线充电系统难以满足在一个充电系统兼容多种型号的汽车的需求。
综上,为了扩宽对不同汽车的适应范围,提高系统的使用灵活度,保证系统的效率,现有的无线充电系统还需要进行改进。
发明内容
本发明要解决的技术问题是,针对现有技术存在的缺点,提供一种自动谐振的电动汽车无线充电装置。该装置能够根据接收回路的不同,自动调整发射回路的参数,以达到自动谐振的目的。
本发明的目的通过以下技术方案实现:
一种自动谐振的电动汽车无线充电装置,其结构有,交直流转换电路1,高频逆变电路2,单片机4,其特征在于,结构还有,电容补偿电路3,幅度检测电路5,模数转换电路6;所述的交直流转换电路1的输入端与市电相连,交直流转换电路1的输出端与高频逆变电路2的电源输入端相连,高频逆变电路2的取样输出端与幅度检测电路5的输入端相连,幅度检测电路5的输出端与模数转换电路6的输入端相连,模数转换电路6的输出端与单片机4相连,单片机4还分别与高频逆变电路2的控制输入端和电容补偿电路3的输入端相连,电容补偿电路3的输出端与高频逆变电路2的补偿输入端相连;
所述的电容补偿电路3的结构为,第一继电器驱动电路、第二继电器驱动电路、第三继电器驱动电路、第四继电器驱动电路、第五继电器驱动电路、第六继电器驱动电路、第七继电器驱动电路、第八继电器驱动电路的输出端分别与电容补偿网络的八个输入端相连,第一继电器驱动电路、第二继电器驱动电路、第三继电器驱动电路、第四继电器驱动电路、第五继电器驱动电路、第六继电器驱动电路、第七继电器驱动的电路、第八节继电器驱动电路的输入端分别与单片机4八个不同的I/O口相连,电容补偿网络的输出端与高频逆变电路2的补偿输入端相连;
所述的高频逆变电路2的结构为,二极管D1的阳极与+12V的电源相连,二极管D1的阴极与电阻R1的一端、三极管Q1的发射极以及电容C1的一端相连,电阻R1的另一端与三极管Q1的基极及三极管Q2的集电极相连,三极管Q2的基极与电阻R2的一端相连,电阻R2的另一端+5V直流电源相连,三极管Q2的发射极与电阻R3的一端相连,电阻R3的另一端作为高频逆变电路2的第一个控制输入端,记为端口MCU-in1,与单片机4相连,三极管Q1的集电极与二极管D2的阳极、三极管Q3的基极及电阻R4的一端相连,电阻R4的另一端与电容C1的另一端、三极管Q3的集电极、稳压二极管D3的阳极、场效应管Q8的漏极、电感L的一端及场效应管Q4的源极相连,三极管Q3的发射极与二极管D2的阴极、稳压二极管D3的阴极及场效应管Q4的栅极相连,场效应管Q4的漏极与场效应管Q9的漏极相连,作为高频逆变电路2的电源输入端,记为端口Vs-in,与交直流转换电路1的直流电压输出端相连,场效应管Q8的栅极与电阻R8的一端及三极管Q7的集电极相连,电阻R8的另一端与三极管Q5的集电极相连,三极管Q5的发射极与电阻R5的一端及+12V直流电源相连,电阻R5的另一端与三极管Q5的基极及三极管Q6的集电极相连,三极管Q6的基极与电阻R6的一端相连,电阻R6的另一端与+5V电源相连,三极管Q6的发射极与电阻R7的一端相连,电阻R7的另一端与电阻R9的一端相连,作为高频逆变电路2的第二个控制输入端,记为端口MCU-in2,与单片机4相连,电阻R9的另一端与三极管Q7的基极相连,三极管Q7的发射极与场效应管Q8的源极、Q13的源极、Q14的发射极相连,作为高频逆变电路2的取样输出端,记为Rs-out,与幅度检测电路5的端口Rs-in相连,电感L的另一端与电容Cs的一端相连,作为高频逆变电路2的一个补偿输入端,记为端口Cadj-in1,与电容补偿电路3的端口Cadj-out1相连,电容Cs的另一端与与场效应管Q13的漏极、场效应管Q9的源极、稳压二极管D4的阳极、三极管Q10的集电极、电阻R10的一端及电容C2的一端相连,作为高频逆变电路2的另一个补偿输入端,记为端口Cadj-in2,该端口与电容补偿电路3的端口Cadj-out2相连,场效应管Q9的栅极与稳压二极管D4的阴极、三极管Q10的发射极及二极管D5的阴极相连,三极管Q10的基极与电阻R10的另一端、二极管D5的阳极及三极管Q11的集电极相连,三极管Q11的发射极与电容C2的另一端、电阻R11的一端及二极管D6的阴极相连,二极管D6的阳极与+12V直流电源相连,三极管Q11的基极与电阻R11的另一端及三极管Q12的集电极相连,三极管Q12的基极与电阻R12的一端相连,电阻R12的另一端与+5V直流电源相连,三极管Q12的发射极与电阻R13的一端相连,电阻R13的另一端作为高频逆变电路2的第三个控制输入端,记为端口MCU-in3,与单片机4相连;场效应管Q13的栅极与电阻R14的一端及三极管Q14的集电极相连,三极管Q14的基极与电阻R15的一端相连,电阻R15的另一端与电阻R17的一端相连,作为高频逆变电路2的第四个控制输入端,记为端口MCU-in4,与单片机4相连,电阻R14的另一端与三极管Q15的集电极相连,三极管Q15的发射极与电阻R16的一端及+12V直流电源相连,三极管Q15的基极与电阻R16的另一端及三极管Q16的集电极相连,三极管Q16的发射极与电阻R17的另一端相连,三极管Q16的基极与电阻R18的一端相连,电阻R18的另一端与+5V直流电源相连;
所述的幅度检测电路5的结构为,电阻Rs的一端与运放U1的同相输入端相连,并作为幅度检测电路5的一个输入端,记为端口Rs-in1,与高频逆变电路2的端口Rs-out1相连;电阻Rs的另一端与运放U2的同相输入端及电阻R19相连并接地;运放U2正电源输入端与+5V直流电源相连,运放U1的负电源输入端与-5V直流电源相连,运放U2的反相输入端与电阻R19的另一端、电阻R20的一端及电阻R21的一端相连,运放U2的输出端与电阻R20的另一端及电阻R22的一端相连;运放U1的反相输入端与电阻R22的另一端、电阻R21的另一端和电阻R23的一端相连,运放U1的负电源输入端与-5V直流电源相连,运放U1的正电源输入端与+5V直流电源相连,运放U1的输出端与电阻R23的另一端及二极管D7的阳极相连;二极管D7的阴极与电容C3的一端和电阻R28的一端相连,作为幅度检测电路5的输出端,记为端口Amp-out,与模数转换电路6的模拟信号输入端相连,电阻R28的另一端和电容C3的另一端接地;
所述的电容补偿网络的结构为,继电器K1、K2、K3、K4、K5、K6、K7、K8的线圈的一端均接地,另一端作为电容补偿网络的八个输入端,依次记为端口Rin1、Rin2、Rin3、Rin4、Rin5、Rin6、Rin7、Rin8,各与一个继电器驱动电路的输出端相连,电容C5、C6、C7、C8的一端相连,还与继电器K8的静触点相连,电容C5、C6、C7、C8的另一端依次与继电器K1、K2、K3、K4的动触点相连,电容C4的一端与继电器K1、K2、K3、K4的静触点均相连,作为电容补偿网络的一个输出端,记为端口Cadj-out1,与高频逆变电路2的端口Cadj-in1相连,电容C4的另一端与电容C9的一端及继电器K5的动触点相连,电容C9的另一端与电容C10的一端、继电器K5的静触点及继电器K6的动触点相连,电容C10的另一端与电容C11的一端、继电器K6的静触点及继电器K7的动触点相连,电容C11的另一端与电容C12的一端、继电器K7的静触点及继电器K8的动触点相连,电容C12的另一端与继电器K8的静触点相连,作为电容补偿网络的另一个输出端,记为端口Cadj-out2,与高频逆变电路2的端口Rs-out1相连;
所述的继电器驱动电路的结构为,电阻R25的一端与+5V直流电源相连,另一端与光耦U3中发光二极管的阳极相连,光耦U3中发光二极管的阴极作为继电器驱动电路的输入端,记为端口MCU-in,与单片机4相连;光耦U4中光电三极管的发射极接地,集电极与电阻R26的一端及电阻R27的一端相连,电阻R26的另一端接+12V电源,电阻R27的另一端与三极管Q17的基极相连,三极管Q17的发射极接+12V电源,集电极与二极管D8的阴极相连,作为继电器驱动电路的输出端,记为端口Rout,二极管D8的阳极接地。
在高频逆变电路2中,电感L的取值优选285uH,耐压400V,电容Cs的取值优选30nF,耐压400V。
在幅度检测电路5中取样电阻Rs的阻值优选0.1欧姆。
在电容补偿网络中,各电容的取值优选为,电容C4~电容C6:1nF,电容C7:2nF,电容C8:5nF,电容C9:250pF,电容C10:680pF,电容C11:1.5nF,电容C12:4nF。
所述的交直流转换电路1是现有技术,可以是任意能将220V市电转换成直流电压输出的电路,优选输出直流电压为200V。
所述模数转换电路6为现有技术,是能将模拟信号转换为数字信号的电路。
本发明一种自动谐振的电动汽车无线充电装置有益效果:
1、本发明通过幅度检测判断系统对负载的谐振程度,进而选择最佳的补偿电抗,使系统给不同负载充电时均能保持最佳的谐振状态,大大提高了系统的工作效率以及对负载的适应范围。
2、本发明在高频逆变电路中对功率管采用了特殊的驱动设计,减小了转换过程中的能量损失,可提高整个系统的功率和效率。
3、本发明在电容补偿电路中,巧妙设计了电容补偿网络,用少量的元器件实现了多种不同电容值的选择。
4、本发明设计的幅度检测电路输入阻抗非常高,对主回路的影响小,检测精度高。
5、本发明在继电器驱动电路中,采用光耦对单片机和主回路进行隔离,使得系统的信号电和功率电互不影响,提高了系统的稳定性和可靠性。
附图说明
图1是本发明的总体结构框图。
图2是电容补偿电路3的原理框图。
图3是高频逆变电路2的原理电路图。
图4是幅度检测电路5的原理电路图。
图5是电容补偿网络的原理电路图。
图6是继电器的原理电路图。
具体实施方式
下面结合附图通过具体实施例对本发明的工作原理作进一步说明,附图中所标示的元器件参数是各实施例的优选参数,但不是对本发明实施的限制。
实施例1本发明的整体结构
本发明的整体结构如图1所示,包括交直流转换电路1,高频逆变电路2,,电容补偿电路3,单片机4,幅度检测电路5,模数转换电路6;所述的交直流转换电路1的输入端与市电相连,交直流转换电路1的输出端与高频逆变电路2的电源输入端相连,高频逆变电路2的取样输出端与幅度检测电路5的输入端相连,幅度检测电路5的输出端与模数转换电路6的输入端相连,模数转换电路6的输出端与单片机4相连,单片机4还分别与高频逆变电路2的控制输入端和电容补偿电路3的输入端相连,电容补偿电路3的输出端与高频逆变电路2的补偿输入端相连。
实施例2本发明的高频逆变电路
所述的高频逆变电路2的结构为,二极管D1的阳极与+12V的电源相连,二极管D1的阴极与电阻R1的一端、三极管Q1的发射极以及电容C1的一端相连,电阻R1的另一端与三极管Q1的基极及三极管Q2的集电极相连,三极管Q2的基极与电阻R2的一端相连,电阻R2的另一端+5V直流电源相连,三极管Q2的发射极与电阻R3的一端相连,电阻R3的另一端作为高频逆变电路2的第一个控制输入端,记为端口MCU-in1,与单片机4相连,三极管Q1的集电极与二极管D2的阳极、三极管Q3的基极及电阻R4的一端相连,电阻R4的另一端与电容C1的另一端、三极管Q3的集电极、稳压二极管D3的阳极、场效应管Q8的漏极、电感L的一端及场效应管Q4的源极相连,三极管Q3的发射极与二极管D2的阴极、稳压二极管D3的阴极及场效应管Q4的栅极相连,场效应管Q4的漏极与场效应管Q9的漏极相连,作为高频逆变电路2的电源输入端,记为端口Vs-in,与交直流转换电路1的直流电压输出端相连,场效应管Q8的栅极与电阻R8的一端及三极管Q7的集电极相连,电阻R8的另一端与三极管Q5的集电极相连,三极管Q5的发射极与电阻R5的一端及+12V直流电源相连,电阻R5的另一端与三极管Q5的基极及三极管Q6的集电极相连,三极管Q6的基极与电阻R6的一端相连,电阻R6的另一端与+5V电源相连,三极管Q6的发射极与电阻R7的一端相连,电阻R7的另一端与电阻R9的一端相连,作为高频逆变电路2的第二个控制输入端,记为端口MCU-in2,与单片机4相连,电阻R9的另一端与三极管Q7的基极相连,三极管Q7的发射极与场效应管Q8的源极、Q13的源极、Q14的发射极相连,作为高频逆变电路2的取样输出端,记为Rs-out,与幅度检测电路5的端口Rs-in相连,电感L的另一端与电容Cs的一端相连,作为高频逆变电路2的一个补偿输入端,记为端口Cadj-in1,与电容补偿电路3的端口Cadj-out1相连,电容Cs的另一端与与场效应管Q13的漏极、场效应管Q9的源极、稳压二极管D4的阳极、三极管Q10的集电极、电阻R10的一端及电容C2的一端相连,作为高频逆变电路2的另一个补偿输入端,记为端口Cadj-in2,该端口与电容补偿电路3的端口Cadj-out2相连,场效应管Q9的栅极与稳压二极管D4的阴极、三极管Q10的发射极及二极管D5的阴极相连,三极管Q10的基极与电阻R10的另一端、二极管D5的阳极及三极管Q11的集电极相连,三极管Q11的发射极与电容C2的另一端、电阻R11的一端及二极管D6的阴极相连,二极管D6的阳极与+12V直流电源相连,三极管Q11的基极与电阻R11的另一端及三极管Q12的集电极相连,三极管Q12的基极与电阻R12的一端相连,电阻R12的另一端与+5V直流电源相连,三极管Q12的发射极与电阻R13的一端相连,电阻R13的另一端作为高频逆变电路2的第三个控制输入端,记为端口MCU-in3,与单片机4相连;场效应管Q13的栅极与电阻R14的一端及三极管Q14的集电极相连,三极管Q14的基极与电阻R15的一端相连,电阻R15的另一端与电阻R17的一端相连,作为高频逆变电路2的第四个控制输入端,记为端口MCU-in4,与单片机4相连,电阻R14的另一端与三极管Q15的集电极相连,三极管Q15的发射极与电阻R16的一端及+12V直流电源相连,三极管Q15的基极与电阻R16的另一端及三极管Q16的集电极相连,三极管Q16的发射极与电阻R17的另一端相连,三极管Q16的基极与电阻R18的一端相连,电阻R18的另一端与+5V直流电源相连。
该结构中,4个场效应管Q4、Q8、Q9、Q13构成逆变电桥,用来将交直流转换电路1输出的直流信号逆变成高频交流信号,用于为发射线圈(即图中的电感L)提供能量,每个场效应管的栅极还采用了特殊设计的驱动电路,可减小转换过程中的能量衰减,保证系统可以达到很高的输出功率和效率。工作时,发射线圈(电感L)将电能转换成磁能,并通过磁耦共振的方式传送给接收线圈(位于要充电的汽车中,图中未画出),接收线圈将接收到的能量通过后级相应的电路转换成所需要的电能,为电动汽车的蓄电池进行充电。
实施例3本发明的电容补偿电路
本发明所采用的电容补偿电路3的结构框图如图2所示,第一继电器驱动电路、第二继电器驱动电路、第三继电器驱动电路、第四继电器驱动电路、第五继电器驱动电路、第六继电器驱动电路、第七继电器驱动电路、第八继电器驱动电路的输出端分别与电容补偿网络的八个输入端相连,第一继电器驱动电路、第二继电器驱动电路、第三继电器驱动电路、第四继电器驱动电路、第五继电器驱动电路、第六继电器驱动电路、第七继电器驱动的电路、第八节继电器驱动电路的输入端分别与单片机4八个不同的I/O口相连,电容补偿网络的输出端与高频逆变电路2的补偿输入端相连;
其中,所述的电容补偿网络的结构如图5所示,继电器K1、K2、K3、K4、K5、K6、K7、K8的线圈的一端均接地,另一端作为电容补偿网络的八个输入端,依次记为端口Rin1、Rin2、Rin3、Rin4、Rin5、Rin6、Rin7、Rin8,各与一个继电器驱动电路的输出端相连,电容C5、C6、C7、C8的一端相连,还与继电器K8的静触点相连,电容C5、C6、C7、C8的另一端依次与继电器K1、K2、K3、K4的动触点相连,电容C4的一端与继电器K1、K2、K3、K4的静触点均相连,作为电容补偿网络的一个输出端,记为端口Cadj-out1,与高频逆变电路2的端口Cadj-in1相连,电容C4的另一端与电容C9的一端及继电器K5的动触点相连,电容C9的另一端与电容C10的一端、继电器K5的静触点及继电器K6的动触点相连,电容C10的另一端与电容C11的一端、继电器K6的静触点及继电器K7的动触点相连,电容C11的另一端与电容C12的一端、继电器K7的静触点及继电器K8的动触点相连,电容C12的另一端与继电器K8的静触点相连,作为电容补偿网络的另一个输出端,记为端口Cadj-out2,与高频逆变电路2的端口Rs-out1相连;该网络通过对不同电容的选择接入,实现了总电容值以0.2nF为间隔,从0.2nF~10nF的变化,以少量的元器件为高频逆变电路2提供50个可选的补偿电容。大大拓宽了本发明的负载适应范围。
所有继电器驱动电路的结构相同,如图6所示,电阻R25的一端与+5V直流电源相连,另一端与光耦U3中发光二极管的阳极相连,光耦U3中发光二极管的阴极作为继电器驱动电路的输入端,记为端口MCU-in,与单片机4相连;光耦U4中光电三极管的发射极接地,集电极与电阻R326的一端及电阻R27的一端相连,电阻R26的另一端接+12V电源,电阻R27的另一端与三极管Q17的基极相连,三极管Q17的发射极接+12V电源,集电极与二极管D8的阴极相连,作为继电器驱动电路的输出端,记为端口Rout,二极管D8的阳极接地。该驱动电路在单片机4与继电器之间采用了光耦进行隔离,有效防止了继电器线圈或高频逆变电路2中的大电流对单片机4的影响。
实施例4本发明的幅度检测电路
所述的幅度检测电路5的结构为,电阻Rs的一端与运放U1的同相输入端相连,并作为幅度检测电路5的一个输入端,记为端口Rs-in1,与高频逆变电路2的端口Rs-out1相连;电阻Rs的另一端与运放U2的同相输入端及电阻R19相连并接地;运放U2正电源输入端与+5V直流电源相连,运放U1的负电源输入端与-5V直流电源相连,运放U2的反相输入端与电阻R19的另一端、电阻R20的一端及电阻R21的一端相连,运放U2的输出端与电阻R20的另一端及电阻R22的一端相连;运放U1的反相输入端与电阻R22的另一端、电阻R21的另一端和电阻R23的一端相连,运放U1的负电源输入端与-5V直流电源相连,运放U1的正电源输入端与+5V直流电源相连,运放U1的输出端与电阻R23的另一端及二极管D7的阳极相连;二极管D7的阴极与电容C3的一端和电阻R28的一端相连,作为幅度检测电路5的输出端,记为端口Amp-out,与模数转换电路6的模拟信号输入端相连,电阻R28的另一端和电容C3的另一端接地。
该检测电路用来检测取样电阻Rs两端交流电压的振幅,检测结果由后级的模数转换电路6再转换成数字信号后送入单片机4存储。取样电阻Rs是一个大功率、小阻值的精密电阻,可以保证在取样的过程不会消耗过多能量。该电路在输入端还采取了高阻抗差分的处理,使Rs两端的信号更便于幅度检测,且最大程度减小了幅度检测电路5对高频逆变电路2中主电桥的影响。
实施例5本发明的工作原理
结合附图1~6对本发明的工作原理及工作过程进一步说明如下:在本发明的系统对电动汽车进行充电之前,首先会进行一个初始化过程,由单片机4控制电容补偿网络,选取一个补偿电容接入主电路,该补偿电容与高频逆变电路2中的电容Cs进行叠加形成总电容,尝试使回路达到谐振,幅度检测电路5检测取样电阻Rs两端的交流电压振幅并由模数转换电路6转换成数字信号送入单片机4进行存储,然后单片机4控制电容补偿网络改变补偿电容的值,再重复上述过程,如此反复,在尝试完所有不同取值的补偿电容后,单片机4对所有的幅度检测结果进行比较,选取幅度检测结果最大的补偿方案,当充电的汽车的接收回路不同时,最佳的补偿方案也会不同。初始化过程结束后,单片机4将最佳的补偿电容选出并接入主回路,对汽车进行充电。该初始化过程使系统对不同的接收回路进行充电时,均能使发射回路处于谐振状态,可以有效地保证不同负载下均能达到很高的传输功率和效率。

Claims (4)

1.一种自动谐振的电动汽车无线充电装置,其结构有,交直流转换电路(1),高频逆变电路(2),单片机(4),其特征在于,结构还有,电容补偿电路(3),幅度检测电路(5),模数转换电路(6);所述的交直流转换电路(1)的输入端与市电相连,交直流转换电路(1)的输出端与高频逆变电路(2)的电源输入端相连,高频逆变电路(2)的取样输出端与幅度检测电路(5)的输入端相连,幅度检测电路(5)的输出端与模数转换电路(6)的输入端相连,模数转换电路(6)的输出端与单片机(4)相连,单片机(4)还分别与高频逆变电路(2)的控制输入端和电容补偿电路(3)的输入端相连,电容补偿电路(3)的输出端与高频逆变电路(2)的补偿输入端相连;
所述的电容补偿电路(3)的结构为,第一继电器驱动电路、第二继电器驱动电路、第三继电器驱动电路、第四继电器驱动电路、第五继电器驱动电路、第六继电器驱动电路、第七继电器驱动电路、第八继电器驱动电路的输出端分别与电容补偿网络的八个输入端相连,第一继电器驱动电路、第二继电器驱动电路、第三继电器驱动电路、第四继电器驱动电路、第五继电器驱动电路、第六继电器驱动电路、第七继电器驱动的电路、第八节继电器驱动电路的输入端分别与单片机(4)八个不同的I/O口相连,电容补偿网络的输出端与高频逆变电路(2)的补偿输入端相连;
所述的高频逆变电路(2)的结构为,二极管D1的阳极与+12V的电源相连,二极管D1的阴极与电阻R1的一端、三极管Q1的发射极以及电容C1的一端相连,电阻R1的另一端与三极管Q1的基极及三极管Q2的集电极相连,三极管Q2的基极与电阻R2的一端相连,电阻R2的另一端+5V直流电源相连,三极管Q2的发射极与电阻R3的一端相连,电阻R3的另一端作为高频逆变电路(2)的第一个控制输入端,记为端口MCU-in1,与单片机(4)相连,三极管Q1的集电极与二极管D2的阳极、三极管Q3的基极及电阻R4的一端相连,电阻R4的另一端与电容C1的另一端、三极管Q3的集电极、稳压二极管D3的阳极、场效应管Q8的漏极、电感L的一端及场效应管Q4的源极相连,三极管Q3的发射极与二极管D2的阴极、稳压二极管D3的阴极及场效应管Q4的栅极相连,场效应管Q4的漏极与场效应管Q9的漏极相连,作为高频逆变电路(2)的电源输入端,记为端口Vs-in,与交直流转换电路1的直流电压输出端相连,场效应管Q8的栅极与电阻R8的一端及三极管Q7的集电极相连,电阻R8的另一端与三极管Q5的集电极相连,三极管Q5的发射极与电阻R5的一端及+12V直流电源相连,电阻R5的另一端与三极管Q5的基极及三极管Q6的集电极相连,三极管Q6的基极与电阻R6的一端相连,电阻R6的另一端与+5V电源相连,三极管Q6的发射极与电阻R7的一端相连,电阻R7的另一端与电阻R9的一端相连,作为高频逆变电路(2)的第二个控制输入端,记为端口MCU-in2,与单片机(4)相连,电阻R9的另一端与三极管Q7的基极相连,三极管Q7的发射极与场效应管Q8的源极、Q13的源极、Q14的发射极相连,作为高频逆变电路(2)的取样输出端,记为Rs-out,与幅度检测电路(5)的端口Rs-in相连,电感L的另一端与电容Cs的一端相连,作为高频逆变电路(2)的一个补偿输入端,记为端口Cadj-in1,与电容补偿电路(3)的端口Cadj-out1相连,电容Cs的另一端与与场效应管Q13的漏极、场效应管Q9的源极、稳压二极管D4的阳极、三极管Q10的集电极、电阻R10的一端及电容C2的一端相连,作为高频逆变电路(2)的另一个补偿输入端,记为端口Cadj-in2,该端口与电容补偿电路(3)的端口Cadj-out2相连,场效应管Q9的栅极与稳压二极管D4的阴极、三极管Q10的发射极及二极管D5的阴极相连,三极管Q10的基极与电阻R10的另一端、二极管D5的阳极及三极管Q11的集电极相连,三极管Q11的发射极与电容C2的另一端、电阻R11的一端及二极管D6的阴极相连,二极管D6的阳极与+12V直流电源相连,三极管Q11的基极与电阻R11的另一端及三极管Q12的集电极相连,三极管Q12的基极与电阻R12的一端相连,电阻R12的另一端与+5V直流电源相连,三极管Q12的发射极与电阻R13的一端相连,电阻R13的另一端作为高频逆变电路(2)的第三个控制输入端,记为端口MCU-in3,与单片机(4)相连;场效应管Q13的栅极与电阻R14的一端及三极管Q14的集电极相连,三极管Q14的基极与电阻R15的一端相连,电阻R15的另一端与电阻R17的一端相连,作为高频逆变电路(2)的第四个控制输入端,记为端口MCU-in4,与单片机(4)相连,电阻R14的另一端与三极管Q15的集电极相连,三极管Q15的发射极与电阻R16的一端及+12V直流电源相连,三极管Q15的基极与电阻R16的另一端及三极管Q16的集电极相连,三极管Q16的发射极与电阻R17的另一端相连,三极管Q16的基极与电阻R18的一端相连,电阻R18的另一端与+5V直流电源相连;
所述的幅度检测电路(5)的结构为,电阻Rs的一端与运放U1的同相输入端相连,并作为幅度检测电路(5)的一个输入端,记为端口Rs-in1,与高频逆变电路(2)的端口Rs-out1相连;电阻Rs的另一端与运放U2的同相输入端及电阻R19相连并接地;运放U2正电源输入端与+5V直流电源相连,运放U1的负电源输入端与-5V直流电源相连,运放U2的反相输入端与电阻R19的另一端、电阻R20的一端及电阻R21的一端相连,运放U2的输出端与电阻R20的另一端及电阻R22的一端相连;运放U1的反相输入端与电阻R22的另一端、电阻R21的另一端和电阻R23的一端相连,运放U1的负电源输入端与-5V直流电源相连,运放U1的正电源输入端与+5V直流电源相连,运放U1的输出端与电阻R23的另一端及二极管D7的阳极相连;二极管D7的阴极与电容C3的一端和电阻R28的一端相连,作为幅度检测电路(5)的输出端,记为端口Amp-out,与模数转换电路(6)的模拟信号输入端相连,电阻R28的另一端和电容C3的另一端接地;
所述的电容补偿网络的结构为,继电器K1、K2、K3、K4、K5、K6、K7、K8的线圈的一端均接地,另一端作为电容补偿网络的八个输入端,依次记为端口Rin1、Rin2、Rin3、Rin4、Rin5、Rin6、Rin7、Rin8,各与一个继电器驱动电路的输出端相连,电容C5、C6、C7、C8的一端相连,还与继电器K8的静触点相连,电容C5、C6、C7、C8的另一端依次与继电器K1、K2、K3、K4的动触点相连,电容C4的一端与继电器K1、K2、K3、K4的静触点均相连,作为电容补偿网络的一个输出端,记为端口Cadj-out1,与高频逆变电路(2)的端口Cadj-in1相连,电容C4的另一端与电容C9的一端及继电器K5的动触点相连,电容C9的另一端与电容C10的一端、继电器K5的静触点及继电器K6的动触点相连,电容C10的另一端与电容C11的一端、继电器K6的静触点及继电器K7的动触点相连,电容C11的另一端与电容C12的一端、继电器K7的静触点及继电器K8的动触点相连,电容C12的另一端与继电器K8的静触点相连,作为电容补偿网络的另一个输出端,记为端口Cadj-out2,与高频逆变电路(2)的端口Rs-out1相连;
所述的继电器驱动电路的结构为,电阻R25的一端与+5V直流电源相连,另一端与光耦U3中发光二极管的阳极相连,光耦U3中发光二极管的阴极作为继电器驱动电路的输入端,记为端口MCU-in,与单片机(4)相连;光耦U4中光电三极管的发射极接地,集电极与电阻R26的一端及电阻R27的一端相连,电阻R26的另一端接+12V电源,电阻R27的另一端与三极管Q17的基极相连,三极管Q17的发射极接+12V电源,集电极与二极管D8的阴极相连,作为继电器驱动电路的输出端,记为端口Rout,二极管D8的阳极接地。
2.根据权利要求1所述的一种自动谐振的电动汽车无线充电装置,其特征在于,在高频逆变电路(2)中,电感L的取值为285uH,耐压400V,电容Cs的取值为30nF,耐压400V。
3.根据权利要求1所述的一种自动谐振的电动汽车无线充电装置,其特征在于,在幅度检测电路(5)中取样电阻Rs的阻值为0.1欧姆。
4.根据权利要求1~3任一所述的一种自动谐振的电动汽车无线充电装置,其特征在于,在电容补偿网络中,各电容的取值为为,电容C4~电容C6:1nF,电容C7:2nF,电容C8:5nF,电容C9:250pF,电容C10:680pF,电容C11:1.5nF,电容C12:4nF。
CN201810888845.7A 2018-08-07 2018-08-07 一种自动谐振的电动汽车无线充电装置 Expired - Fee Related CN108819790B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810888845.7A CN108819790B (zh) 2018-08-07 2018-08-07 一种自动谐振的电动汽车无线充电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810888845.7A CN108819790B (zh) 2018-08-07 2018-08-07 一种自动谐振的电动汽车无线充电装置

Publications (2)

Publication Number Publication Date
CN108819790A true CN108819790A (zh) 2018-11-16
CN108819790B CN108819790B (zh) 2020-05-05

Family

ID=64152816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810888845.7A Expired - Fee Related CN108819790B (zh) 2018-08-07 2018-08-07 一种自动谐振的电动汽车无线充电装置

Country Status (1)

Country Link
CN (1) CN108819790B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111361436A (zh) * 2020-04-16 2020-07-03 吉林大学 一种电动汽车全自动无线充电系统
WO2022252949A1 (zh) * 2021-05-31 2022-12-08 华为技术有限公司 无线充电接收设备、电子设备和无线充电系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130154385A1 (en) * 2011-12-16 2013-06-20 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and power feeding system
CN104092316A (zh) * 2014-07-25 2014-10-08 东南大学 恒流输出型感应式无线电能传输变换器及其参数选取方法
WO2016124577A1 (en) * 2015-02-02 2016-08-11 Drayson Technologies (Europe) Limited Inverter for inductive power transfer
JP2016185011A (ja) * 2015-03-26 2016-10-20 Tdk株式会社 非接触給電装置
CN106059116A (zh) * 2016-07-04 2016-10-26 吉林大学 适用于低功耗无线传感器网络节点设备的无线充电系统
CN206117319U (zh) * 2016-10-12 2017-04-19 许继电源有限公司 电动汽车移动式无线充电发射传输电路
CN206135560U (zh) * 2016-09-05 2017-04-26 青岛鲁渝能源科技有限公司 无线电能传输系统
WO2018077204A1 (zh) * 2015-10-30 2018-05-03 成都市易冲无线科技有限公司 用于无线电能传输的自适应调谐的系统,装置和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130154385A1 (en) * 2011-12-16 2013-06-20 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and power feeding system
CN104092316A (zh) * 2014-07-25 2014-10-08 东南大学 恒流输出型感应式无线电能传输变换器及其参数选取方法
WO2016124577A1 (en) * 2015-02-02 2016-08-11 Drayson Technologies (Europe) Limited Inverter for inductive power transfer
JP2016185011A (ja) * 2015-03-26 2016-10-20 Tdk株式会社 非接触給電装置
WO2018077204A1 (zh) * 2015-10-30 2018-05-03 成都市易冲无线科技有限公司 用于无线电能传输的自适应调谐的系统,装置和方法
CN106059116A (zh) * 2016-07-04 2016-10-26 吉林大学 适用于低功耗无线传感器网络节点设备的无线充电系统
CN206135560U (zh) * 2016-09-05 2017-04-26 青岛鲁渝能源科技有限公司 无线电能传输系统
CN206117319U (zh) * 2016-10-12 2017-04-19 许继电源有限公司 电动汽车移动式无线充电发射传输电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111361436A (zh) * 2020-04-16 2020-07-03 吉林大学 一种电动汽车全自动无线充电系统
CN111361436B (zh) * 2020-04-16 2023-04-07 吉林大学 一种电动汽车全自动无线充电系统
WO2022252949A1 (zh) * 2021-05-31 2022-12-08 华为技术有限公司 无线充电接收设备、电子设备和无线充电系统

Also Published As

Publication number Publication date
CN108819790B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
CN109038855A (zh) 基于磁耦合共振式电动汽车无线充电系统
CN108767956B (zh) 一种动态无线电能传输系统及其无源控制方法
CN108819790A (zh) 一种自动谐振的电动汽车无线充电装置
CN109693560A (zh) 基于pt对称原理具有恒流特性的电动汽车无线充电系统
CN104597352A (zh) 一种电能质量监测系统
CN109038854A (zh) 一种基于电感补偿的自动调谐无线能量发射系统
CN109428369B (zh) 电动汽车交流充电接口导引电路
CN109038856A (zh) 一种实时谐振控制式电动汽车无线充电装置
CN108880001A (zh) 一种基于磁耦共振的无线能量发射装置
CN108879998A (zh) 一种高效率电动汽车无线充电装置
CN108880000A (zh) 一种应用于电动汽车充电的大功率无线能量发射装置
CN109067184B (zh) 一种恒流恒压无缝切换的感应电能传输系统
CN108879997A (zh) 一种基于电容补偿的自动调谐无线能量发射装置
CN207638559U (zh) 一种MBus总线可变压差调制电路
CN205679145U (zh) 一种电子雷管的通讯电路
CN205595905U (zh) 双功能可调的无线电能传输装置
CN109038853A (zh) 一种自适应负载的无线能量传输装置
CN108923551A (zh) 一种基于相位判断的主动调谐无线能量传输装置
CN108879999A (zh) 一种电抗自适应无线能量发射系统
CN204967696U (zh) 一种野外无线传感器嵌入式实时控制充电装置
CN206223830U (zh) 一种基于变频器的新型节能回馈型电子负载
CN206728340U (zh) 一种led驱动电源电路
CN206686100U (zh) 串联谐振电路及电源
CN208955752U (zh) 一种谐振式无线电能传输装置
CN110492567A (zh) 供电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200505

Termination date: 20210807