WO2022252949A1 - 无线充电接收设备、电子设备和无线充电系统 - Google Patents

无线充电接收设备、电子设备和无线充电系统 Download PDF

Info

Publication number
WO2022252949A1
WO2022252949A1 PCT/CN2022/092290 CN2022092290W WO2022252949A1 WO 2022252949 A1 WO2022252949 A1 WO 2022252949A1 CN 2022092290 W CN2022092290 W CN 2022092290W WO 2022252949 A1 WO2022252949 A1 WO 2022252949A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless charging
circuit
switch
coil
capacitor
Prior art date
Application number
PCT/CN2022/092290
Other languages
English (en)
French (fr)
Inventor
裴昌盛
于文超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022252949A1 publication Critical patent/WO2022252949A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage

Definitions

  • the embodiments of the present application relate to the field of circuit technology, and in particular, to a wireless charging receiving device, an electronic device, and a wireless charging system.
  • the principle of electromagnetic coupling is usually used to complete the transfer of electric energy from the coil in the charging base to the coil in the mobile device, so as to realize the charging of the mobile device.
  • the industry proposes to set up multiple sets of independent charging systems at the power transmitting end and the electric energy receiving end respectively, which leads to high cost of wireless charging equipment and difficulty in mass production. Therefore, the prior art still has not solved the problem of low output power of the charging device.
  • an embodiment of the present application provides a wireless charging receiving device, the wireless charging receiving device includes a first receiving circuit and a second receiving circuit arranged in parallel, the first receiving circuit and the second receiving circuit are used for charging the load;
  • the first receiving circuit includes a first series resonant circuit, a capacitor circuit and a first rectifier; the first output terminal and the second output terminal of the first series resonant circuit are respectively coupled to the first rectifier a first input terminal and a second input terminal;
  • the capacitive circuit includes a plurality of capacitive branches coupled in parallel between the first output terminal and the second output terminal of the first series resonant circuit , each of the plurality of capacitor branches includes at least one capacitor and at least one switch, and the at least one capacitor is coupled to the first output terminal of the first series resonant circuit through the at least one switch and the second output terminal;
  • the second receiving circuit includes a second series resonant circuit and a second rectifier; the first output terminal and the second output terminal of the second series resonant circuit are
  • the first receiving circuit and the second receiving circuit described in the embodiment of the present application can be, for example, the receiving circuit 022 and the receiving circuit 021 as shown in FIG. 4; the first series resonant circuit, capacitor The circuit and the first rectifier, for example, can be respectively the series resonant circuit LC2, the capacitor circuit 4 and the rectifier R2 described in FIG. 4; the second series resonant circuit and the second rectifier described in the embodiment of the application, for example, can be Series resonant circuit LC1 and rectifier R1.
  • the wireless charging receiving device shown in this embodiment may not change the existing structure of the transmitting end or only add a small amount of coils at the transmitting end, and only need to set a small amount of capacitors and switches in the first receiving circuit to realize the output current. Compared with the traditional wireless charging technology, it can simplify the circuit design and reduce the production cost of the wireless charging system.
  • each of the multiple capacitor branches includes a first capacitor and a first switch; the first end of the first capacitor is coupled to the first output terminal of the first series resonant circuit, the second terminal of the first capacitor is coupled to the first terminal of the first switch, and the second terminal of the first switch is coupled to the first series resonant circuit the second output terminal of .
  • the first rectifier is a half-wave rectifier.
  • each of the multiple capacitor branches includes a first capacitor, a second capacitor, a first switch, and a second switch; the first The first terminal of the capacitor is coupled to the first output terminal of the first series resonant circuit, the second terminal of the first capacitor is coupled to the first terminal of the first switch, and the second terminal of the first switch coupled to the common ground; the first end of the second capacitor is coupled to the second output end of the first series resonant circuit, the second end of the second capacitor is coupled to the first end of the second switch, The second end of the second switch is coupled to the common ground.
  • the first rectifier is a full-wave rectifier.
  • the first series resonant circuit includes a first coil and a third capacitor; the first end of the first coil is coupled to the first coil through the third capacitor a first input end of a rectifier; the second end of the first coil is coupled to the second input end of the first rectifier.
  • the second series resonant circuit includes a second coil and a fourth capacitor; the first end of the second coil is coupled to the first terminal through the fourth capacitor The first input end of the second rectifier; the second end of the second coil is coupled to the second input end of the second rectifier.
  • the wireless charging device further includes a receiving end controller; the receiving end controller is configured to obtain output terminals of the first receiving circuit and the second receiving circuit An electrical parameter, based on the electrical parameter, controls the switch in the capacitive circuit to be turned on or off; the electrical parameter includes at least one of the following: voltage, current and power.
  • the receiving end controller by using the receiving end controller to control the on or off of the switch in the capacitor circuit, the magnitude of the current output by the first receiving circuit can be controlled by the controller, so that the first receiving circuit and the wireless charging system
  • the communication between the transmitters is decoupled, and the change of the output power of the first receiving circuit does not require the control of the transmitter.
  • the load power consumption is too large and the voltage at the output terminal drops, it can respond quickly to output current to the output terminal, improving the electronic equipment. reliability.
  • the receiving-end controller is configured to: detect the current power of the electronic device, and when the current power of the electronic device is lower than a first preset threshold, control the The switch is turned off.
  • the receiving-end controller is further configured to: detect that the second Whether the current output by the second receiving circuit reaches a preset current value; when the current output by the second receiving circuit reaches a preset current value, at least part of the switches in the capacitor circuit are controlled to be turned on.
  • the receiver controller is further configured to: when the current power of the electronic device is greater than or equal to a second preset threshold, control the switch in the capacitor circuit to turn off.
  • the receiving-end controller is further configured to: in response to detecting the first instruction sent by the user, control the second receiving circuit to transmit the first The electromagnetic induction signal, the first instruction is used to indicate charging in the fast charging mode, and the first electromagnetic induction signal is used to indicate charging in the fast charging mode.
  • the second receiving circuit is controlled to transmit a second electromagnetic induction signal to the wireless charging transmitting device, the second instruction is used to indicate charging in a slow charging mode, and the second battery The magnetic induction signal is used to indicate charging in slow charging mode.
  • the receiver controller is further configured to: when the current output by the second receiver circuit does not reach a preset current value, control the second receiver circuit to The wireless charging transmitting device transmits a third electromagnetic induction signal, and the third electromagnetic induction signal is used to instruct the wireless charging transmitting device to increase the induced current or decrease the induced current.
  • the first receiving circuit further includes a first DC-DC conversion circuit; the first DC-DC conversion circuit is used to output the first rectifier The first voltage is converted to generate a second voltage which is supplied to the output terminal of the first receiving circuit.
  • the second receiving circuit further includes a second DC-DC conversion circuit; The three voltages are converted to generate a fourth voltage which is supplied to the output terminal of the second receiving circuit.
  • the DC-DC conversion circuit may include but not limited to: a voltage conversion circuit such as a Buck circuit, a Boost circuit or a Boost-Buck circuit.
  • a voltage conversion circuit such as a Buck circuit, a Boost circuit or a Boost-Buck circuit.
  • the voltage output by the first rectifier and the second rectifier can be further boosted to improve the stability of the power supply, thereby facilitating the stable operation of the load.
  • the embodiment of the present application provides an electronic device, the electronic device includes a load and the wireless charging receiving device as described in the first aspect; the first receiving circuit and the second receiving circuit in the wireless charging receiving device The output terminal is coupled to the load; the first receiving circuit and the second receiving circuit are used to charge the load.
  • the embodiment of the present application provides a wireless charging system
  • the wireless charging system includes a wireless charging transmitting device and a wireless charging receiving device as described in the first aspect; the wireless charging transmitting device is used to charge the wireless charging The receiving device outputs the induced current.
  • the wireless charging transmitting device includes at least one coil; the at least one coil is coupled to the first coil and the second coil in the wireless charging receiving device.
  • the wireless charging transmitting device further includes an inverter circuit, the wireless charging transmitting device includes a third coil and a fourth coil, and the third coil and the fourth coil It is arranged in parallel at the output end of the inverter circuit.
  • the wireless charging transmitting device further includes a third switch and a fourth switch; the third coil is coupled to the output of the inverter circuit through the third switch end; the fourth coil is coupled to the output end of the inverter circuit through the fourth switch; the wireless charging transmitter device also includes a transmitter controller, and the transmitter controller is used to detect the third coil and the electrical parameters of the fourth coil, controlling the third switch and the fourth switch to be turned on or off according to the electrical parameters of the third coil and the fourth coil;
  • the electrical parameters of the third coil and the fourth coil include at least one of the following: voltage, current or power.
  • the transmitter controller is configured to: periodically control the third switch to be turned on or off; when the third switch is turned on, in response to the slave
  • the third coil detects the induced current and keeps the third switch in a conducting state.
  • the transmitter controller is configured to: periodically control the fourth switch to be turned on or off; when the fourth switch is turned on, in response to the slave
  • the fourth coil detects the induced current, and keeps the fourth switch in a conducting state.
  • the transmitter controller is further configured to: receive a first electromagnetic induction signal from the wireless charging receiving device, and the first electromagnetic induction signal is used to indicate the use of fast Charging in charging mode: controlling the third switch and the fourth switch to be closed based on the first electromagnetic induction signal.
  • the transmitter controller is further configured to: receive a second electromagnetic induction signal from the wireless charging receiving device, and the second electromagnetic induction signal is used to indicate the use of slow Charging in a fast charging mode: controlling one of the third switch and the fourth switch to be closed based on the second electromagnetic induction signal.
  • FIG. 1 is a schematic diagram of an application scenario of a wireless charging system provided by an embodiment of the present application
  • FIG. 2A-FIG. 2D and FIG. 2G are another schematic diagram of the application scenario of the wireless charging system provided by the embodiment of the present application.
  • Fig. 2E-Fig. 2F, Fig. 2H are a schematic diagram of the wireless charging management interface presented in the mobile phone provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the connection between the wireless charging system provided by the embodiment of the present application and other components;
  • Fig. 4 is a schematic structural diagram of a wireless charging system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an equivalent circuit when the transmitting end and the receiving circuit 022 provided in the embodiment of the present application are coupled;
  • 6A-6C are output voltage-capacitance characteristic curves provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of the receiving circuit 022 provided by the embodiment of the present application.
  • Fig. 8 is another schematic structural diagram of the wireless charging system provided by the embodiment of the present application.
  • Fig. 9 is a waveform diagram of each port in the wireless charging system shown in Fig. 8 provided by the embodiment of the present application;
  • FIG. 10 is another schematic structural diagram of the receiving circuit 022 provided by the embodiment of the present application.
  • FIG. 11 is a control sequence for controlling the receiving circuit 022 shown in FIG. 10 and an output voltage waveform diagram and an output current waveform diagram of the output terminal o2 in various states provided by the embodiment of the present application;
  • FIG. 12A is another schematic structural diagram of the receiving circuit 022 provided by the embodiment of the present application.
  • FIG. 12B is another schematic structural diagram of the receiving circuit 022 provided by the embodiment of the present application.
  • FIG. 13 is another schematic structural diagram of the receiving end 02 provided by the embodiment of the present application.
  • FIG. 14 is another schematic structural diagram of the receiving end 02 provided by the embodiment of the present application.
  • Fig. 15 is another structural schematic diagram of the wireless charging system provided by the embodiment of the present application.
  • Fig. 16 is a flowchart of a wireless charging method provided by an embodiment of the present application.
  • the wireless charging system shown in the embodiments of the present application can be applied to electronic equipment to charge loads such as batteries and electronic components in the electronic equipment.
  • the electronic device may include, but is not limited to: a mobile phone, a wearable device, an electric toothbrush, a tablet computer, and the like.
  • the wireless charging system may include a wireless charging transmitting device and a wireless charging receiving device, wherein the wireless charging transmitting device may also be called a transmitting end, and the wireless charging receiving device may also be called a receiving end.
  • the wireless charging transmitting device is referred to as a transmitting end
  • the wireless charging receiving device is referred to as a receiving end for description.
  • the receiving end can be set in the electronic device, and the transmitting end can be set in the charging base.
  • the transmitter and receiver in the wireless charging system can be produced and sold independently. For example, the transmitter and the power adapter are sold in products such as charging bases, and the receiver is sold in electronic equipment.
  • FIG. 1 is a schematic diagram of an application scenario of a wireless charging system provided by an embodiment of the present application.
  • a mobile phone 100 and a charging base 101 are shown in FIG. 1 .
  • the wireless charging system includes a transmitter 01 and a receiver 02, the transmitter 01 is set in the charging base 101, the receiver 02 is set in the mobile phone 100, the transmitter 01 includes a coil L11 and a coil L12, and the receiver 02 includes a coil L21 and a coil L22.
  • the coil L11 and the coil L12 are arranged in parallel on the same plane of the charging base 101 , and the coil L21 and the coil L22 are arranged in parallel on the same plane of the mobile phone 100 .
  • the transmitting terminal 01 provides an induced current to the receiving terminal 02 through at least one of the coil L11 and the coil L12, and the receiving terminal 02 supplies the mobile phone with the induced current based on at least one of the coil L21 and the coil L22.
  • the load in the power supply is based on the principle of electromagnetic induction.
  • multiple charging modes may be used to charge the mobile phone, such as a fast charging mode and a slow charging mode.
  • Embodiments of the present application provide multiple modes for switching between the fast charging mode and the slow charging mode. The method of switching between the fast charging mode and the slow charging mode will be described below.
  • the fast charging mode and the slow charging mode can be switched by adjusting the relative positional relationship between the coil in the transmitting end 01 and the coil in the receiving end 02 .
  • the user can adjust the relative positions of the coil in the transmitting end 01 and the coil in the receiving end 02 by adjusting the relative positions of the mobile phone 100 and the charging base 101 .
  • the fast charging mode is used to charge the mobile phone at this time . In the scenario shown in FIG.
  • the coil L11 in the charging base 101 is coupled to the coil L21 in the mobile phone, and the coil L12 in the charging base 101 is coupled to the coil L22 in the mobile phone, as shown in FIG. 2B .
  • coil L11 and coil L12 provide induced current to coil L21 and coil L22 respectively, and the receiver 02 charges the load in the mobile phone based on the induced current in coil L21 and coil L22 .
  • the slow charging mode is used to charge the mobile phone at this time .
  • the coil L12 in the charging base 101 is correspondingly coupled to the coil L21 in the mobile phone, as shown in FIG. 2D .
  • the coil L12 provides an induced current to the coil L21
  • the receiver 02 charges the load in the mobile phone based on the induced current in the coil L21 .
  • the number of coils used for transmitting current in the transmitter 01 can be adjusted to switch between the fast charging mode and the slow charging mode.
  • the mobile phone 100 can be placed vertically on the charging base 101, that is, the relative position between the mobile phone 100 and the charging base 101 The relationship is shown in Figure 2A.
  • an application for wireless charging management may also be installed in the mobile phone 100 .
  • the application for wireless charging management can provide two charging modes, fast charging mode and slow charging mode, for users to choose, as shown in Figure 2E, which schematically shows the interaction presented by the application for wireless charging management interface.
  • the user can select the wireless charging mode through the interactive interface presented by the application for wireless charging management in the mobile phone 100 .
  • both the coil L11 and the coil L12 in the transmitting end 01 are connected to the current transmission path, and the relative positional relationship between the coil in the transmitting end 01 and the coil in the receiving end 02 is shown in Figure 2B shown, the details will not be repeated here.
  • the coil L11 or the coil L12 in the transmitter 01 is connected to the current transmission path. Specifically which coil is connected to the current transmission path may be preset before leaving the factory, and may also be selected by the user.
  • the application for wireless charging management can further present options for selecting coil L11 or coil L12 to transmit current
  • the interactive interface is as shown in FIG. 2F. Assuming that the user chooses to connect the coil L12 to the current transmission path, at this time, the relationship between the coil L12 used to transmit the induced current in the transmitter 01 and the coil L21 and coil L22 used to receive the induced current in the receiver 02 As shown in Figure 2G.
  • the charging mode can be set by using the above-mentioned first possible implementation mode, or the above-mentioned second possible implementation mode can be used to set the charging mode, or the above two possible setting charging modes can be combined. way to provide users with options.
  • the application for wireless charging management may also present an interactive page as shown in FIG. 2H before presenting the page as shown in FIG. 2E .
  • the interactive page shown in FIG. 2H there are options of “adjusting the relative position of the transmitting end and the receiving end to change the charging mode” to set the charging mode and “adjusting the number of coils used to transmit current in the transmitting end” to set the charging mode. options, the two options respectively correspond to the first possible implementation and the second possible implementation above.
  • the wireless charging system 10 includes two parts: a transmitter 01 and a receiver 02 .
  • the transmitting end 01 can be coupled with a power source 20 .
  • the power supply 20 may be a voltage source providing direct current.
  • the power supply 20 may include a home network and a voltage conversion circuit (such as a power adapter), and the transmitter 01 is coupled to the home network through the voltage conversion circuit.
  • the voltage conversion circuit converts the alternating current provided by the home network into direct current and supplies it to the transmitting terminal 01 to provide power for the transmitting terminal 01.
  • the power supply 20 may also include a battery, and the battery may also directly provide DC power to the transmitter 01 .
  • the receiving end 02 includes a receiving circuit 021 and a receiving circuit 022 .
  • the receiving circuit 021 and the receiving circuit 022 are arranged in parallel, and the output terminal o1 of the receiving circuit 021 and the output terminal o2 of the receiving circuit 022 are both coupled to the load 30 .
  • the coil L21 shown in FIG. 1 is provided in the receiving circuit 021
  • the coil L22 shown in FIG. 1 is provided in the receiving circuit 022 .
  • the receiving circuit 021 can charge the load 30 independently, and can also charge the load 30 together with the receiving circuit 022 .
  • the load 30 may include, but is not limited to: batteries, various processors or other types of devices that drive electronic equipment, such as image processors (Graphics Processing Unit, GPU), central processing units (Central Processing Unit, CPU), computing accelerators Or various digital circuits and analog circuits, etc.; the load 30 can also be various integrated circuit chips, including but not limited to artificial intelligence chips, image processing chips, etc.
  • two sets of independent current transmission channels are usually set up at the transmitter and receiver of the wireless charging system. That is to say, the transmitting end of the wireless charging system is provided with two sets of independent inverter circuits, and each set of inverter circuits is equipped with an inverter and a coil; correspondingly, the receiving end of the wireless charging system is provided with two sets of independent inverter circuits.
  • Each set of receiving paths is provided with a coil and a rectifier, and each set of rectifiers is also provided with an isolating switch between the load.
  • a bluetooth controller and an antenna are respectively arranged at the transmitting end and the receiving end, and the communication between the transmitting end and the receiving end is carried out through the bluetooth controller and the antenna. Therefore, the structure of the wireless charging system in the conventional technology is complicated, and the implementation cost is high.
  • the wireless charging system shown in this embodiment can adjust the output current without changing the existing structure of the transmitting end or only adding a small amount of coils at the transmitting end, and only needing to set a small amount of capacitors and switches in the receiving circuit 022
  • the output of large current compared with the traditional wireless charging technology, can simplify the design of the circuit and reduce the production cost of the wireless charging system.
  • the change of the output power of the receiving circuit 022 does not require the control of the transmitting terminal 01.
  • the load power consumption is too large and the voltage at the output terminal drops , can respond quickly to output current to the output terminal, improving the reliability of electronic equipment.
  • the transmitter 01 includes an inverter I, a coil L11 and a coil L12.
  • the coil L11 and the coil L12 are respectively coupled to the output end of the inverter I, that is, the coil L11 and the coil L12 are arranged on the output end of the inverter I in parallel.
  • the coil L11 and the coil L12 can be independent coils; in the second possible implementation, the coil L11 and the coil L12 can be two sets of coils formed by drawing multiple taps from the same coil , which is not specifically limited in this embodiment of the present application.
  • the coil L11 can also be coupled to the output end of the inverter I through the switch k11, and the coil L12 can also be coupled to the output end of the inverter I through the switch k12.
  • the switch k11 and the switch k12 By setting the switch k11 and the switch k12, the number of turns of the coil coupled to the output terminal of the inverter 1 can be changed to change the output power, thereby changing the charging speed of the mobile phone 100.
  • the transmitter 01 when using the fast charging mode (corresponding to the scene shown in Figure 2B) to charge the mobile phone, the transmitter 01 outputs higher power, and both the switch k11 and the switch k12 can be closed, and the coil L11 and the coil L12 are both coupled to the inverter The output terminal of device I; when adopting the first kind of slow charging mode (corresponding to the scene shown in Figure 2D) to charge the mobile phone, the transmitter 01 outputs a lower power, and the switch k11 can be turned off and the switch k12 can be closed.
  • the first kind of slow charging mode corresponding to the scene shown in Figure 2D
  • the transmitter 01 outputs a lower power, based on the One of the switch k11 and the switch k12 can be turned on and the other can be turned off, that is, a coil in the transmitting end 01 is used to provide an induced current to the receiving end 02.
  • the transmitting terminal 01 also includes a capacitor C1, which is connected in series between the output terminal of the inverter I and the coil L11. It can also be said that the capacitor C1 is connected in series between the output terminal of the inverter I and the coil L12.
  • Capacitor C1 and coil L11 form a series resonant circuit, and likewise, capacitor C1 and coil L12 also form a series resonant circuit.
  • the transmitter 01 also includes other devices, such as a transmitter controller 04 and a capacitor C5 coupled to the input terminal of the inverter 1, etc.
  • the transmitter controller 04 includes a control terminal CL4 and a control terminal CL5, and the control terminal CL4 is coupled to the switch k11 , is used to control the switch k11 to be turned on or off, and the control terminal CL5 is coupled to the switch k12, and is used to control the switch k12 to be turned on or off.
  • the transmitter controller 04 can periodically control the switch k11 to be turned on or off; similarly, it can also periodically control the switch k12 to be turned on or off broken.
  • the switch k11 and the switch k12 can be turned on and off at the same period, or different. For example, in the period T1, the switch k11 is turned on and the switch k12 is turned off; in the period T2, the switch k11 is turned off and the switch k12 is turned on.
  • the transmitter controller 04 can detect whether there is an induced current on the coil L11; similarly, when the switch k12 is turned on, the transmitter controller 04 can also detect whether there is an induced current on the coil L12.
  • the charging mode can be switched by adjusting the relative positional relationship between the coil in the transmitting end 01 and the coil in the receiving end 02 .
  • the mobile phone 100 After the mobile phone 100 is placed vertically on the charging base 101 as shown in FIG. 2A , it can be charged in the fast charging mode.
  • the coil L11 is coupled to the coil L21, and when the switch k11 is turned on, there is an induced current on the coil L11, and the transmitter controller 04 keeps the switch k11 in the turned-on state after detecting the induced current.
  • the coil L12 is coupled to the coil L22. When the switch k12 is turned on, there is an induced current on the coil L12. After the transmitter controller 04 detects the induced current, the switch k12 is kept in the turned-on state.
  • the mobile phone 100 After the mobile phone 100 is placed horizontally on the charging base 101 as shown in FIG. 2C , it can be charged in the slow charging mode.
  • the coil L12 is coupled to the coil L21.
  • the switch k12 When the switch k12 is turned on, there is an induced current on the coil L12.
  • the transmitter controller 04 After the transmitter controller 04 detects the induced current from the coil L11, it keeps the switch k12 in the turned-on state. At this time, since there is no coupling between the coil and the coil L11 in the mobile phone 100, the transmitter controller 04 cannot detect the induced current from the coil L11. Therefore, the transmitter controller 04 controls the switch k11 to be turned off.
  • the charging mode can also be switched by adjusting the relative positional relationship between the coil in the transmitter 01 and the coil in the receiver 02 .
  • the coil L11 and the coil L21 are coupled, when the switch k11 is turned on, there is an induced current on the coil L11, and the transmitter controller 04 detects the induction After the current flow, keep the switch k11 in the on state.
  • the coil L12 is coupled to the coil L22.
  • the switch k12 is turned on, there is an induced current on the coil L12. After the transmitter controller 04 detects the induced current, the switch k12 is kept in the turned-on state.
  • the receiver controller for controlling each device in the receiver 02 (for a specific description of the receiver controller, refer to FIG. The embodiment shown in 13) based on the instruction input by the user, the receiving circuit 021 is controlled to transmit the first electromagnetic induction signal to the transmitting terminal 01, and the first electromagnetic induction signal is used to indicate charging in the fast charging mode; the transmitting terminal controller 04 detects After the above-mentioned first electromagnetic induction signal, keep the switch k11 and the switch k12 in the conduction state.
  • the controller set in the receiving terminal 02 controls the receiving circuit 021 to transmit the second electromagnetic induction to the transmitting terminal 01 based on the instruction input by the user.
  • the second electromagnetic induction signal is used to indicate charging in the slow charging mode; after the transmitter controller 04 detects the above-mentioned second electromagnetic induction signal, it randomly selects or selects one of the switch k11 and the switch k12 based on the factory settings to close, Another disconnected.
  • the above-mentioned second electromagnetic induction signal is used to indicate that the coil L12 is used to transmit the induced current to the receiving end O2; the transmitting end After the controller 04 detects the second electromagnetic induction signal, the control switch k12 is turned on and the switch k11 is turned off.
  • the control terminal 04 receives an indication signal from the receiving end 02 indicating to turn off the switch k12, and based on the indication signal, the control terminal 04 controls the switch k11 to turn off, and at this time, the transmitting end 01 transmits the induced current through the coil L11.
  • the mobile phone 100 can be charged with a large current at this time, and the control terminal 04 receives an indication signal from the receiving terminal 02 indicating that the switch k12 is turned on, Based on the indication signal, the control terminal 04 controls the switch k11 to close, and at this time, the transmitting terminal 01 outputs an induced current to the receiving terminal 02 through the coil L11 and the coil L12.
  • the control terminal 04 When the power of the mobile phone 100 is greater than or equal to the second preset threshold, the control terminal 04 receives an indication signal indicating to turn off the switch k12 from the receiving end 02, and the control terminal 04 controls the switch k11 to turn off based on the indication signal, and at this time transmits Terminal 01 transmits the induced current through the coil L11.
  • each switch in the transmitting end 01 can also be dynamically adjusted based on the feedback signal from the receiving circuit 021, and the feedback signal is used to indicate the increase or decrease of the induced current. For example, when the feedback signal indicates to increase the induced current, both the switch k11 and the switch k12 are closed; when the feedback signal indicates to decrease the induced current, the switch k12 is opened.
  • FIGS. 1-4 show that two coils L11 and L12 connected in parallel are arranged in the transmitting end 01 .
  • only one coil may be set in the transmitting end 01 shown in FIGS.
  • the transmitter 01 may not be provided with the switch k11 and the switch k12.
  • the transmitting end 01 can simultaneously provide the induced current to the coil L21 and the coil L22 through the one coil.
  • the receiving circuit 021 shown in FIG. 4 includes a series resonant circuit LC1 and a rectifier R1
  • the receiving circuit 022 includes a series resonant circuit LC2 and a rectifier R2
  • the series resonant circuit LC1 includes a coil L21
  • the series resonant circuit LC2 includes a coil L22.
  • the coil L21 and the coil L22 are independent coils; in the second possible implementation, the coil L21 and the coil L22 can be two groups formed by drawing multiple taps from the same coil The coil is not specifically limited in this embodiment of the present application.
  • the series resonant circuit LC1 also includes a capacitor C2, the first end of the capacitor C2 is coupled to the first end of the coil L21, the second end of the capacitor C2 is coupled to the input terminal a1 of the rectifier R1, and the second end of the coil L21 is coupled to the input of the rectifier R2 terminal a2 coupling.
  • the series resonant circuit LC2 also includes a capacitor C3, the first end of the capacitor C3 is coupled to the first end of the coil L22, the second end of the capacitor C3 is coupled to the input end a3 of the rectifier R2, and the second end of the coil L22 is coupled to the input of the rectifier R2 terminal a4 coupling.
  • the output terminal of the rectifier R1 is coupled to the output terminal out of the receiving terminal 02 as the output terminal o1 of the receiving circuit 021; the output terminal of the rectifier R2 is coupled to the output terminal out of the receiving terminal 02 as the output terminal o2 of the receiving circuit 022 , the output terminal out of the receiving terminal 02 is coupled with the load 30 .
  • the current may be output to the load 30 only through the rectifier R1, or the current may be output to the load 30 through the rectifier R1 and the rectifier R2.
  • the receiving end 02 also includes other components, such as a capacitor C6 coupled between the output terminal o1 of the rectifier R1 and the common ground Gnd, a capacitor C7 coupled between the output terminal o2 of the rectifier R2 and the common ground Gnd, and the like.
  • the receiving circuit 022 also includes a capacitor circuit 4 in addition to the above components.
  • Capacitive circuit 4 is coupled between series resonant circuit LC2 and rectifier R2.
  • the capacitor circuit 4 includes n capacitor branches, and each capacitor branch is connected in parallel between the output terminal olc1 and the output terminal olc2 of the series resonant circuit LC2 (it can also be said that each capacitor branch is connected in parallel with the input terminal a3 of the rectifier R2 and input terminal a4), n is an integer greater than or equal to 2.
  • Three capacitive branches S1 , S2 and S3 are schematically shown in FIG. 4 .
  • Each capacitor branch includes at least one capacitor, and FIG. 4 schematically shows the situation that each capacitor branch includes a capacitor.
  • capacitor branches S1 , S2 , S3 include capacitors C41 , C42 , C43 , respectively.
  • the capacitors C41, C42, and C43 are all connected in parallel between the output terminal olc1 and the output terminal olc2 of the series resonant circuit LC2 (it can also be said that the capacitors C41, C42, and C43 are all connected in parallel between the input terminal a3 and the input terminal a4 of the rectifier R2 ).
  • the first end of the capacitor C41, the first end of the capacitor C42, and the first end of the capacitor C43 are all coupled to the second end of the capacitor C3 and the input end a3 of the rectifier R2, the second end of the capacitor C41, the capacitor C42 Both the second end of the capacitor C43 and the second end of the capacitor C43 are coupled to the second end of the coil L22 and the input end a4 of the rectifier R2.
  • the coil L22 and multiple parallel capacitors in the capacitor circuit 4 form a parallel resonant circuit.
  • a switch is also provided in each of the plurality of capacitor branches, as shown in FIG.
  • the first end of the capacitor C41, the first end of the capacitor C42, and the first end of the capacitor C43 are respectively coupled to the input of the rectifier R2 through the switch k41, the switch k42, and the switch k43. terminal a3; in the second possible implementation manner, the second terminal of the capacitor C41, the second terminal of the capacitor C42, and the second terminal of the capacitor C43 are respectively coupled to the input terminal of the rectifier R2 through the switch k41, the switch k42, and the switch k43 a4.
  • the adjustment of the output power of the output terminal o2 of the receiving circuit 022 is realized by adjusting the number of capacitors in the capacitor circuit 4 coupled to both ends of the series resonant circuit LC2.
  • the number of capacitors coupled at both ends of the series resonant circuit LC2 can be increased; when the receiving circuit 022 When the required output power is low, reduce the number of capacitors coupled across the series resonant circuit LC2.
  • the receiving circuit 02 described in the embodiment of the present application further includes a transmitter controller, which is configured to control the switch k41, the switch k42, and the switch k43 to be turned on or off.
  • a transmitter controller which is configured to control the switch k41, the switch k42, and the switch k43 to be turned on or off.
  • the communication between the transmitting end 01 and the receiving circuit 021 can be based on the regulations of the Qi protocol introduced by the low-frequency wireless power transmission standard organization (WPC, wireless power consortium), and the communication includes but is not limited to: the transmitting end 01 and the receiving circuit 021 perform authentication before the induction current transmission, the receiving circuit 021 transmits an indication signal to the transmitting terminal 01 to indicate the fast charging mode or slow charging mode charging, and the receiving circuit 021 provides a feedback signal to the transmitting terminal 01 to indicate The transmitter 01 increases the induced current or decreases the induced current, etc.
  • WPC wireless power transmission standard organization
  • the above-mentioned communication is not performed between the receiving circuit 022 and the transmitting end 01.
  • the working principle of the wireless charging system 10 will be further described below by taking the fast charging mode (that is, both the switch k11 and the switch k12 are closed) as an example.
  • the inverter I obtains direct current from the power supply, inverts the direct current and converts it into alternating current for output.
  • the series resonant circuit formed by the coil L11 and the capacitor C1, and the series resonant circuit formed by the coil L12 and the capacitor C1 respectively obtain alternating current from the inverter I, and based on the principle of electromagnetic induction, the coil L11 and the coil L12 respectively provide the induced current to the receiving circuit 021 and receiving circuit 022.
  • the series resonant circuit LC1 composed of the coil L21 and the capacitor C2 in the receiving circuit 021 provides the induced current to the rectifier R1, and the rectifier R1 rectifies the received current and outputs a DC suitable for the load voltage to charge the load.
  • the receiving circuit 022 because the switches k41, k42, and k43 in the receiving circuit 022 are all disconnected, the receiving circuit 022 generates a weak current, the voltage output by the rectifier R2 is lower than the voltage output by the rectifier R1, and the voltage at the output terminal o2 of the receiving circuit 022 is clamped.
  • the receiving circuit 022 has no current output.
  • the receiving circuit 022 transmits a feedback signal to the transmitter 01 based on the in-band carrier communication, and the feedback signal is used to instruct the transmitter 01 to increase the induced current.
  • the transmitter 01 increases the induced current output by the transmitter 01 by changing the switching frequency of each switching tube in the inverter 1 .
  • the receiving circuit 021 provides the obtained induced current to the rectifier R1.
  • the rectifier R1 rectifies the received current and then outputs the first direct current to the output terminal out of the receiving terminal O2.
  • the coil L22 and the capacitance in the capacitance circuit 4 form a parallel resonant circuit to generate a high induced current and input it to the rectifier R2, and the rectifier R2 rectifies the received current and outputs a second direct current to the output terminal out of the receiving terminal O2.
  • the direct current output to the load is the sum of the first direct current and the second direct current. Compared with only the receiving circuit 021, the output power to the load is greatly increased, thereby increasing the charging speed of the electronic equipment.
  • the size of the capacitance connected to the two ends of the series resonant circuit LC2 can be controlled by controlling the number of conductions of the switch k41, the switch k42, and the switch k43, thereby controlling the current and voltage output by the rectifier R2, that is, controlling the output The size of the power.
  • the embodiment of the present application sets the receiving circuit 022 and the capacitor circuit 4 in the receiving circuit 022, so that the communication between the transmitting circuit and the receiving circuit stipulated in the original protocol can be changed.
  • the power output to the load is changed by changing the number of capacitors connected to the receiving circuit 022, so as to improve the flexibility of charging the charging device.
  • the total capacity of the capacitors in the capacitor circuit 4 may be determined based on the output voltage-capacitance characteristic curves of the variable parameters in the receiving circuit 022 .
  • the method for determining the capacitance of the capacitor circuit 4 in the embodiment of the present application will be described through the specific examples shown in FIGS. 5-6C .
  • FIG. 5 is an equivalent circuit diagram of power transmission between the transmitting end 01 shown in FIG. 4 and the receiving circuit 022 when the coil L12 is connected.
  • FIG. 5 is an equivalent circuit diagram of power transmission between the transmitting end 01 shown in FIG. 4 and the receiving circuit 022 when the coil L12 is connected.
  • Lk is the equivalent leakage inductance of the magnetic coupling system, the size of the equivalent leakage inductance Lk and the relative positional relationship between the coil L12 in the transmitter 01 and the coil L22 in the receiver circuit 022, the coil L12
  • the number of turns is related to the number of turns of the coil L22, where Lk can be equivalent to the transmitting end 01, can also be equivalent to the receiving circuit 022, or can be equivalent to the circuits on both sides, schematically shown in the figure
  • the equivalent leakage inductance Lk is equivalent to the receiving circuit 022 side;
  • Rp is the equivalent resistance in the transmitter 01 circuit;
  • Rs is the equivalent resistance in the receiving circuit 022;
  • Cd is the equivalent capacitance of the sum of all capacitances in the capacitance circuit 4 ;
  • RL is the load; the rest of the components are the same as those shown in Figure 4.
  • the variable parameters in the circuit shown in FIG. 5 include the switching frequency of the inverter I in the transmitter 01, the equivalent leakage inductance Lk and the load RL.
  • the characteristic curve between the output voltage V of the receiving circuit 022 and the capacitance value Cd of the receiving circuit 022 under different values of the variable parameter can be obtained.
  • Fig. 6A-Fig. 6C Fig. 6A is the multiple obtained when the value of the equivalent leakage inductance Lk is 7uH and the value of the load RL is 10 ⁇ , and the switching frequency of the inverter I is selected as 140KHz, 145KHz and 150KHz respectively.
  • the characteristic curve between the output voltage V-capacitance value Cd; Figure 6B is obtained when the switching frequency of the inverter I is kept at 145KHz and the value of the load RL is fixed at 10 ⁇ , and the equivalent leakage inductance Lk is selected as 3uH, 5uH and 7uH respectively
  • the characteristic curves between multiple output voltages V-capacitance Cd; Figure 6C is when the switching frequency of the inverter I is 145KHz and the value of the equivalent leakage inductance Lk is 7uH fixed, and the load RL is selected to be 10 ⁇ , 15 ⁇ and 20 ⁇ respectively
  • a plurality of characteristic curves between output voltage V and capacitance value Cd are obtained. It can be seen from Fig. 6A-Fig.
  • the output voltage V does not always rise with the increase of the capacitance Cd.
  • the capacitance Cd increases to a certain extent, the output voltage V reaches the maximum value.
  • the capacitance Cd continues to increase, The output voltage V gradually decreases.
  • the capacitance value that makes the voltage reach the maximum value first is taken as the total capacity of the capacitor in the capacitor circuit 4 .
  • the capacity of the capacitors can gradually increase, for example, the capacity of the capacitor C42 is
  • the capacity of the capacitor C41 is twice that of the capacitor C43
  • the capacity of the capacitor C43 is twice that of the capacitor C42.
  • the adjustable range of the capacitance in the capacitance circuit 4 is 0-70nF
  • the capacity of the capacitor C41 can be 10nF
  • the capacity of the capacitor C42 can be 20nF
  • the capacity of the capacitor C43 can be 40nF.
  • the capacitance coupled to the output terminal of the series resonant circuit LC2 is 0; when the switch k41, switch k42 and switch k43 shown in Figure 4 are all turned on At this time, the capacitance coupled to the output terminal of the series resonant circuit LC2 is 70nF.
  • the size of the capacitor in the capacitor branch circuit can be as long as the total capacity of the capacitor coupled to the output terminal of the series resonant circuit LC2 is 70nF when the switch is fully closed. For example, when the output power needs to be adjusted more finely, more capacitor branches can be set to make the adjustment of the capacitor capacity finer; when the adjustment of the output power does not need to be too fine, fewer capacitor branches can be set.
  • the output voltage-capacitance characteristic curves shown in Figure 6A- Figure 6C are only schematic, according to the needs of the application scenario, the size of the load in actual use, the size of the equivalent leakage inductance of the magnetic coupling system, and The switching frequency of the inverter 1 is measured, and multiple output voltage-capacitance characteristic curves are generated based on the measurement results, and finally the maximum capacitance in the capacitor circuit 4 is selected based on the multiple output voltage-capacitance characteristic curves. It should also be noted that the method for determining the maximum capacity of the capacitor circuit 4, the number of capacitors used by the capacitor circuit 4, and the size of each capacitor can be preset before leaving the factory. When the wireless charging system of the present invention charges electronic equipment, the number of capacitors in the capacitor circuit 4 and the size of each capacitor usually cannot be changed.
  • each capacitor branch in the capacitor circuit 4 shown in FIG. 4 is provided with a capacitor and a switch
  • the receiving circuit 022 shown in FIG. 4 can realize half-wave rectification.
  • the rectifier R2 in the receiving circuit 022 is a half-wave rectifier.
  • FIG. 7 is a specific structural schematic diagram of the receiving circuit 022 shown in FIG. 4 provided by the embodiment of the present application. In FIG.
  • the rectifier R2 can realize half-wave rectification.
  • Rectifier R2 includes transistor M5 and transistor M6. The first pole of the transistor M5 is coupled to the output terminal o2 of the receiving circuit 022 , and the second pole of the transistor M5 is coupled to the first pole of the transistor M6 . The second pole of the transistor M6 is coupled to the common ground Gnd.
  • the second pole of the transistor M5 (or the first pole of the transistor M6) is the input terminal a3 of the rectifier R2.
  • the second pole of the transistor M6 is the input terminal a4 of the rectifier R2.
  • the gates of transistor M5 and transistor M6 are coupled to the controller.
  • the transistor M5 and the transistor M6 shown in FIG. 7 may be Nmos type field effect transistors or Pmos type field effect transistors, which is not limited in this embodiment of the present application.
  • the above-mentioned first pole can be a drain, and the second pole can be a source; when the transistor M5 and the transistor M6 are Pmos transistors, the above-mentioned first pole can be a source, and the second pole can be a source. Pole can be drain.
  • the receiving circuit 022 shown in FIG. 4 and FIG. 7 can realize half-wave rectification.
  • the receiving circuit 022 may also implement full-wave rectification.
  • each branch in the capacitor circuit 4 can be provided with multiple capacitors, and some of the multiple capacitors are capacitively coupled between the output terminal olc1 of the series resonant circuit LC2 and the common ground Gnd The rest of the capacitors are coupled between the output terminal olc2 of the series resonant circuit LC2 and the common ground Gnd.
  • the capacitance coupled between the output terminal olc1 of the series resonant circuit LC2 and the common ground Gnd is the same as the capacitance coupled between the output terminal olc2 of the series resonant circuit LC2 and the common ground Gnd.
  • the same here may include but not limited to: capacitance
  • the number is the same, and the capacitance is the same. Taking the capacitive circuit 4 including three capacitive branches and each capacitive branch is provided with two capacitors as an example, the structure of the capacitive circuit 4 in this possible implementation will be described in conjunction with FIG. 8 .
  • Fig. 8 shows another schematic structural diagram of the wireless charging system 10 provided by the embodiment of the present application.
  • the wireless charging system 10 includes a transmitting end 01 and a receiving end 02
  • the receiving end 02 includes a receiving circuit 021 and a receiving circuit 022, wherein the specific structure of the transmitting end 01 and the receiving circuit 021, the connection relationship between various components and The working principle is the same as that of the transmitting end 01 and the receiving circuit 021 in the wireless charging system 10 shown in FIG. 4 .
  • the capacitor circuit 4 in the receiving circuit 022 includes three capacitor branches S1, S2, and S3.
  • the capacitor branch S1 includes capacitors C411 and C412, and the capacitor branch S2 includes capacitors C421 and C422.
  • Branch S3 includes capacitors C431 and C432.
  • the first terminals of capacitor C411, capacitor C421 and capacitor C431 are all coupled to the output terminal olc1 of the series resonant circuit LC2, and the second terminals of capacitor C411, capacitor C421 and capacitor C431 are all coupled to the common ground Gnd; capacitor C412, capacitor C422, capacitor
  • the first terminals of C432 are all coupled to the output terminal olc2 of the series resonant circuit LC2, and the second terminals of the capacitor C412, the capacitor C422 and the capacitor C432 are all coupled to the common ground Gnd.
  • the capacitor C411 is the same as the capacitor C412, the capacitor C421 is the same as the capacitor C422, and the capacitor C431 is the same as the capacitor C432.
  • Each capacitor branch in the capacitor branch S1, S2, S3 also includes two switches, one of which is used to control one of the capacitors in the capacitor branch to connect or disconnect the connection with the common ground Gnd, and the other switch It is used to control another capacitor in the capacitor branch to be connected to or disconnected from the common ground Gnd.
  • the capacitor branch S1 further includes a switch k411 and a switch k412, the switch k411 is coupled between the second end of the capacitor C411 and the common ground Gnd, and the switch k412 is coupled between the second end of the capacitor C412 and the common ground Gnd
  • the capacitor branch S2 also includes a switch k421 and a switch k422, the switch k421 is coupled between the second end of the capacitor C421 and the common ground Gnd, and the switch k422 is coupled between the second end of the capacitor C422 and the common ground Gnd;
  • the capacitor branch The circuit S3 further includes a switch k431 and a switch k432, the switch k431 is coupled between the second end of the capacitor C431 and the common ground Gnd, and the switch k432 is coupled between the second end of the capacitor C432 and the common ground Gnd.
  • the receiving circuit 022 shown in FIG. 8 also includes a coil L22, a capacitor C3, a rectifier R2, and a capacitor C7, and the structure of the coil L22, capacitor C3, rectifier R2, and capacitor C7, as well as the relationship with other components.
  • the connection relationship is the same as the coil L22, the capacitor C3, the rectifier R2 and the capacitor C7 shown in FIG. 4 .
  • refer to the relevant description in the embodiment shown in FIG. 4 which will not be repeated here.
  • the coil L22 receives a weak induction current, and the capacitor connected in parallel at both ends of the coil L22 forms a current loop with the coil L22, so that the output current of the output terminal of the capacitor circuit 4 i3 rises instantaneously, due to the existence of the series resonant circuit LC2, the rise of the current i3 makes the voltage V2 at the input end of the rectifier R2 rise rapidly to the maximum value, and also makes the input end of the capacitor circuit 4 produce a sine wave as shown in Figure 5
  • the current i2 the sine wave current i2 makes the voltage V2 maintain the maximum value until the current i3 reverses, and the reversed current i3 makes the voltage V2 reach the reverse maximum value, and so on.
  • the boosted voltage can turn on the transistor or diode in the rectifier R2 to output current.
  • a closed current loop cannot be formed in the receiving circuit 02, and the voltage V2 at the input terminal of the rectifier R2 cannot reach the maximum value, and thus the rectifier R2 cannot be triggered to work, that is, the receiving circuit 02 cannot output current .
  • the switch provided in each of the capacitor branches S1, S2, and S3 can be implemented by a field effect transistor.
  • the field effect transistor may be a Pmos transistor or an Nmos transistor.
  • FIG. 10 schematically shows a case where a switch included in each of the multiple capacitor branches is an Nmos transistor.
  • the drain of the transistor k411 is coupled to the second end of the capacitor C411
  • the source of the transistor k411 is coupled to the common ground Gnd
  • the drain of the transistor k412 is coupled to the second end of the capacitor C412
  • the source of the transistor k412 is coupled to To public ground Gnd.
  • the gate of the transistor k411 and the gate of the transistor k412 are coupled to the control terminal of the controller.
  • the controller refer to the related description of the embodiment shown in FIG. 15 below.
  • the connection relationship between transistors k421, k431 and other components is similar to that between transistor k411 and other components, and the connection relationship between transistors k422, k432 and other components is similar to that between transistor k412 and other components, and will not be repeated here.
  • the control signal CL1 is used to control the transistor k411 and the transistor k412 to turn on or off
  • the control signal CL2 is used to control the transistor k421 and the transistor k422 to turn on or off
  • the control signal CL3 is used to control the transistor k431 and the transistor k432 on or off.
  • control signals CL1 , CL2 and CL3 may be output from the output terminals CL1 , CL2 and CL3 of the receiver controller 03 as shown in FIG. 13 .
  • each transistor shown in FIG. 10 is an Nmos transistor, the transistor is turned on when a high-level signal is applied to the gate of each transistor, and the transistor is turned off when a low-level signal is applied to the gate of each transistor.
  • a preset voltage (8V is shown in FIG. 11 ) is applied to the output terminal o2 of the receiving circuit 022 and the voltage is kept constant.
  • the transistors k411 ⁇ transistor k432 are all cut off, and the output current is close to 0;
  • the control signal CL1 is a high-level signal, the control signals CL2 and CL3 are all low-level signal, the transistor k411 and the transistor k412 are turned on, and the other transistors are turned off, the capacitor C411 and the capacitor C412 are coupled to the input terminal of the rectifier R2, and the output current is increased to 0.1A at this time;
  • the control signal CL2 is a high level signal, the control signal CL1
  • transistor k421 and transistor k422 are turned on, and other transistors are turned off.
  • Capacitor C421 and capacitor C422 are coupled to the input terminal of rectifier R2, and the output current increases to 0.2A at this time. It can be seen from Fig. 11 that with the increase of the capacitance coupled in parallel at the input terminal of the rectifier R2, the output current of the output terminal o2 of the receiving circuit 022 gradually increases. Since the voltage of the output terminal o2 remains unchanged, the output current of the receiving circuit 022 The power is gradually increased.
  • the control signals CL1, CL2 and CL3 output high-level signals so that the transistors k411 ⁇ transistors k432 are all turned on, the capacitance coupled to both ends of the rectifier R2 reaches the maximum value, and at this time the current output by the output terminal o2 of the receiving circuit 022 reaches the maximum value.
  • the output power of the receiving circuit 022 reaches the maximum value. It can be seen from FIG. 11 that in the embodiment of the present application, the output power of the receiving circuit 022 can be changed by changing the capacitance coupled in parallel to the input terminal of the rectifier R2.
  • the rectifier R2 may be a full-wave rectifier, and the full-wave rectifier may be implemented in various ways.
  • the bridge arm of the rectifier R2 is a transistor, as shown in FIG. 12A .
  • the rectifier R2 includes a transistor M5, a transistor M6, a transistor M7 and a transistor M8.
  • the first pole of the transistor M5 and the first pole of the transistor M6 are coupled to the output terminal o2 of the rectifier R2, the second pole of the transistor M5 and the first pole of the transistor M7 are coupled to the input terminal a3 of the rectifier R2, and the first pole of the transistor M6
  • the diode and the first pole of the transistor M8 are coupled to the input terminal a4 of the rectifier R2, and the second poles of the transistor M7 and the second pole of the transistor M8 are coupled to the common ground Gnd.
  • the transistor M5 , the transistor M6 , the transistor M7 and the transistor M8 may be Nmos type field effect transistors or Pmos type field effect transistors, which is not limited in this embodiment of the present application.
  • the above-mentioned first pole can be a drain, and the second pole can be a source; when the above-mentioned transistors are Pmos transistors, the above-mentioned first pole can be a source, and the second pole can be a drain pole.
  • the bridge arm of the rectifier R2 may be a diode, as shown in FIG. 12B .
  • the rectifier R2 includes a diode D1, a diode D2, a diode D3 and a diode D4.
  • the anode of the diode D1 and the cathode of the diode D2 are coupled to the input terminal a3 of the rectifier R2, the anode of the diode D3 and the cathode of the diode D4 are coupled to the input terminal a4 of the rectifier R2, the cathode of the diode D1 and the cathode of the diode D3 are coupled to the input terminal a4 of the rectifier R2
  • the output terminal o2, the anode of the diode D2 and the anode of the diode D4 are coupled to the common ground Gnd.
  • the receiving end 02 further includes a receiving end controller 03, as shown in FIG. 13 .
  • the receiving end controller 03 is used to configure the electrical parameters output by the receiving circuit 021 , the electrical parameters output by the receiving circuit 022 and the electrical parameters output to the load.
  • the electrical parameters may include, but are not limited to: voltage, current and power.
  • the receiver controller 03 is also configured to control the receiver circuit 021 to provide feedback information to the transmitter 01 to instruct the transmitter 01 to increase or decrease the induced current.
  • the transmitter controller 03 is also configured to output control signals to the switches in the capacitor circuit 4 in the receiving circuit 022 based on the electrical parameters at the output terminal of the receiving circuit 021, the electrical parameters at the output terminal of the receiving circuit 022, and the electrical parameters provided to the load. To control a switch to turn on or off.
  • the receiver controller 03 described in the embodiment of the present application can be an integrated controller.
  • the controller 104 can be various digital logic devices or circuits, including but not limited to: central processing unit, microcontroller, A microprocessor or a digital signal processor (DSP, Digital Signal Processor), etc.
  • the receiver controller 03 can be coupled with the rectifier R1, the rectifier R2 and the output terminal out of the receiver circuit 02 through the I 2 C bus to obtain the above electrical parameters.
  • the transmitter controller also includes a plurality of output terminals, which are respectively connected with the plurality of capacitor branches included in the receiving circuit 022 shown in Figure 4, Figure 7, Figure 8, Figure 10, and Figure 12A- Figure 12B
  • the switch corresponds to the coupling.
  • the receiver controller 03 includes output terminals CL1 , CL2 and CL3 , and the control terminals CL1 , CL2 and CL3 in the receiver controller 03 can respectively output control signals CL1 , CL2 and CL3 as shown in FIG. 10 .
  • the output terminal CL1 is coupled with the control terminal of the switch k41
  • the output terminal CL2 is coupled with the control terminal of the switch k42
  • the output terminal CL3 is coupled with the control terminal of the switch k43.
  • Control terminal coupling when the capacitance branch in the capacitance circuit 4 is the structure of the capacitance branch shown in Figure 8, the output terminal CL1 is coupled to the control terminals of the switch k411 and the switch k412, and the output terminal CL2 is coupled to the switch k421 and the switch k422 , the output terminal CL3 is coupled with the switch k431 and the switch k432; when each switch in the capacitor circuit 4 is a transistor as shown in FIG.
  • the control terminal CL2 is coupled to the gates of the transistor k421 and the transistor k422, and the control terminal CL3 is coupled to the gates of the transistor k431 and the transistor k432.
  • the receiver controller 03 is also coupled to the gates of the transistors included in the rectifier R2 to control each transistor to turn on or shutdown for rectification.
  • Fig. 13 schematically shows when the receiving circuit 022 has the structure shown in Fig. 8 and the receiving circuit 021 has the structure shown in Fig. 4, the coupling relationship between the receiving end controller 03 and the components in each receiving circuit schematic diagram.
  • FIG. 13 also schematically shows the circuit structure of the transmitting end 01, which is the same as the circuit structure of the transmitting end 01 shown in FIG. 4 and will not be repeated here.
  • the circuit structure included in the receiving terminal 02 shown in any of the above embodiments On the basis of , at least one of the output terminals of the rectifier R1 and the output terminal of the rectifier R2 and the load is provided with a DC-DC (Direct current-Direct current, DC-DC) conversion circuit.
  • DC-DC Direct current-Direct current, DC-DC
  • a DC-DC conversion circuit is provided between the output terminal o1 of the rectifier R1 and the load 30; or a DC-DC conversion circuit is provided between the output terminal o2 of the rectifier R2 and the load 30; or between the output terminal o1 of the rectifier R1 and the load 30
  • a DC-DC conversion circuit is provided between the loads 30 and between the output terminal o2 of the rectifier R2 and the load 30 .
  • FIG. 14 shows a situation where a DC-DC conversion circuit 1 is provided between the output terminal o1 of the rectifier R1 and the load 30 , and a DC-DC conversion circuit 2 is provided between the output terminal o2 of the rectifier R2 and the load 30 .
  • the DC-DC conversion circuit may include but not limited to: a buck circuit, a boost (Boost) circuit or a boost-buck (Boost-Buck) circuit and other voltage conversion circuits.
  • the DC conversion circuit is not specifically limited. Based on the structure of the receiving end 02 shown in Figure 14, for example, in a specific scenario, the induced current provided by the transmitting end 01 is reduced by reducing the output voltage of the rectifier R1 and the rectifier R2 to reduce the power loss, and the rectifier R1 and the rectifier The voltage output by R2 may lead to insufficient voltage supplied to the load 30 and cause the load 30 to work abnormally.
  • the voltage output by the rectifier R1 and the rectifier R2 can be further boosted to improve the stability of the power supply, which is beneficial Load 30 stable work.
  • the receiving end 02 includes a receiving circuit 021 and a receiving circuit 022 , which are two receiving circuits.
  • the receiving end 02 may further include more receiving circuits, for example, 3 or 4 receiving circuits, and the number of receiving circuits is not specifically limited in this embodiment of the present application. Taking the receiving end 02 including three circuits as an example below, the situation that the receiving end 02 includes more receiving circuits will be further described in conjunction with FIG. 15 .
  • the receiving circuit 02 includes a receiving circuit 021 , a receiving circuit 022 , and a receiving circuit 023 .
  • the receiving circuit 021 can serve as the main receiving circuit to provide feedback signals to the transmitting end 01 based on the provisions of the Qi protocol.
  • Any one of the receiving circuits in the receiving circuit 022 and the receiving circuit 023 includes a series resonant circuit, a capacitor unit and a rectifier respectively.
  • the structure of the receiving circuit 022 described in any embodiment of Fig. 12A-Fig. 14 is the same, specifically refer to Fig. description and will not be repeated here.
  • the charging of electronic devices by the wireless charging system 10 may include multiple charging stages such as trickle charging and constant current charging. Taking the user’s selection of the fast charging mode as an example below, combined with the circuit shown in FIG. 13 and the flow shown in FIG. 02 to describe how it works. Wherein, the flow shown in FIG. 16 is applied to the receiver controller 03 shown in FIG. 13 .
  • both the switch k11 and the switch k12 in the transmitter 01 are closed, and the switches k411 ⁇ k432 in the capacitor circuit 4 are all turned off. open.
  • Step 1601 control the receiving circuit 021 and the transmitting terminal 01 to perform authentication before the induction current transmission. After the receiving circuit 021 and the transmitting end 01 pass the authentication and establish a connection, step 1602 is executed.
  • Step 1602 detect the current power of the electronic device, determine whether the current power is lower than the first preset threshold, when it is detected that the current power is lower than the first preset threshold, use trickle charging, and execute step 1603; when it is detected When the current electric quantity is greater than or equal to the first preset threshold, constant current charging is adopted, and step 1604 is executed.
  • Step 1603 the switches k411-k432 in the control capacitor circuit 4 are all turned off. At this time, the receiving end 02 charges the load through the receiving circuit 021 . In the trickle charge mode, the receiver controller 03 continuously detects the power of the electronic device. When it is detected that the electric quantity of the electronic device is greater than or equal to the first preset threshold, constant current charging is adopted, and step 1604 is executed.
  • Step 1604 detecting whether the current output by the output terminal o1 of the receiving circuit 021 reaches a first preset current value. When the first preset current value is not reached, step 1605 is performed; when the first preset current value is reached, step 1606 is performed.
  • the receiver controller 03 may pre-store the total current output by the output terminal out of the receiver 02 in the constant current charging scenario, and the distribution relationship between the output currents of the receiver circuit 021 and the receiver circuit 022 . For example, assuming that the total current output by the output terminal out of the receiving terminal 02 in the constant current charging scenario is 1A, and the current distribution relationship between the receiving circuit 021 and the receiving circuit 022 is 1:1, the current output by the receiving circuit 021 is 0.5A , the current output by the receiving circuit 022 is 0.5A. At this time, the above-mentioned first preset current value is 0.5A, and the receiver controller 03 detects whether the current output by the receiver circuit 021 reaches 0.5A. When the output current of the receiving circuit 021 does not reach 0.5A, execute step 1605; when the output current of the receiving circuit 021 reaches 0.5A, execute step 1606.
  • Step 1605 keep the switches k411 - k432 in the off state, and control the receiving circuit 021 to feed back a signal indicating to increase the induced current to the transmitting end 01 .
  • Step 1604 and step 1605 are repeatedly executed until it is detected that the current output by the output terminal o1 of the receiving circuit 021 reaches the first preset current value, and then step 1606 is executed.
  • Step 1606 based on the relationship between the switch state and the output current of the output terminal o2 of the receiving circuit 022 as shown in FIG.
  • Step 1607 after the current output from the output terminal o1 of the receiving circuit 021 stabilizes, detect whether the current output from the output terminal o2 of the receiving circuit 022 reaches the second preset current value. When it is detected that the current output by the output terminal o2 does not reach the preset current value, repeat step 1606 and step 1607 until the current output by the output terminal o2 reaches the second preset current value; when it is detected that the current output by the output terminal o2 reaches the second preset current value To preset the current value, go to step 1608.
  • the stable output current of the output terminal o1 mentioned in step 1607 means that the output current of the output terminal o1 is stable at the first preset current value. Usually, every time the on-off state of each of the switches k411-k432 is adjusted in step 1606, the current output by the output terminal o1 of the receiving circuit 021 will be affected.
  • the receiver controller 03 detects that the current output by the output terminal o1 is lower than the first preset current value, it controls the receiver circuit 021 to feed back a signal indicating to increase the induced current to the transmitter 01 .
  • the receiver controller 03 After the induced current transmitted by the transmitter 01 increases, the current output by the output terminal o1 of the receiver 021 increases. After the receiver controller 03 detects that the current output by the output terminal o1 reaches the first preset current value and keeps the first preset current value unchanged for a preset period of time, it can further detect the output terminal o2 of the receiver circuit 022 Whether the output current reaches the second preset current value.
  • Step 1606 and step 1607 will be described in more detail below through specific examples.
  • the receiver controller 03 controls the switch k21 and the switch k22 to be turned on, and the other switches are turned off. Comparing the relationship between the on-off state of the switch and the output current of the output terminal o2 shown in FIG. 11 , the current output by the output terminal o2 is 0.2A, which is less than 0.5A.
  • the receiver controller 03 controls the switch k11 , the switch k12 , the switch 21 and the switch 22 to be turned on, and the other switches are turned off.
  • the receiver controller 03 detects the current output from the output terminal o1.
  • the receiver controller 03 After the current output from the output terminal o1 stabilizes (for example, it does not change within a preset time interval), the receiver controller 03 detects the current output from the output terminal o2. The relationship between the on-off state of the switch and the output current of the output terminal o2 is shown. At this time, the output current of the output terminal o2 is 0.5A, which has reached the preset current value.
  • the receiving end 02 charges the load jointly through the receiving circuit 021 and the receiving circuit 022 .
  • Step 1608 detecting the power of the electronic device.
  • Step 1609 judging whether the power of the electronic device is greater than a second preset threshold.
  • step 1610 is performed; when the power of the electronic device is less than or equal to the second preset threshold, step 1608 is performed.
  • Step 1610 the switches k411-k432 in the control capacitor circuit 4 are all turned off.
  • the second preset threshold for example, the power is 80%
  • the battery in the electronic device is charged with a large current, it may cause overcharging and damage the battery.
  • the receiving end 02 sends load charging. Therefore, the switches k411-k432 in the control capacitance circuit 4 are all turned off.
  • Step 1611 detecting that the power of the electronic device reaches the maximum value, and controlling the receiving circuit 021 to feed back a signal to stop charging to the transmitting terminal 01 .
  • a charging method of the wireless charging system 10 provided by the embodiment of the present application has been introduced above.
  • the receiving-end controller 03 detects that the temperature of the electronic device is abnormal (for example, the temperature sensor detects that the coil L21, coil L22 or battery temperature is too high).
  • the controller 103 can control all k411-k432 to be turned off, and control the receiving circuit 021 to feed back a signal indicating to reduce the induced current to the transmitting terminal 01.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供了一种无线充电接收设备、电子设备和无线充电系统,无线充电接收设备包括:并联设置的第一接收电路和第二接收电路,第一接收电路和第二接收电路用于向负载充电;第一接收电路包括第一串联谐振电路、电容电路和第一整流器;第一串联谐振电路的第一输出端和第二输出端分别耦合至第一整流器的第一输入端和第二输入端;电容电路包括多个电容支路,多个电容支路并联耦合在第一串联谐振电路的第一输出端和第二输出端之间,多个电容支路中的每一个电容支路均包括至少一个电容和至少一个开关,本申请提供的无线充电接收设备可以采用较少的器件实现大功率电能的输出。

Description

无线充电接收设备、电子设备和无线充电系统
本申请要求于2021年5月31日提交中国专利局、申请号为202110605519.2、申请名称为“无线充电接收设备、电子设备和无线充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电路技术领域,尤其涉及一种无线充电接收设备、电子设备和无线充电系统。
背景技术
随着电子技术的发展,移动设备的性能得到了日益提升。越来越多的用户喜爱利用移动设备完成各种事情,这就导致移动设备的电量消耗过高,需要及时充电。为了提高移动设备充电的便利性,应用于移动设备的无线充电技术应运而生且得到广泛的应用。当采用无线充电技术为移动设备充电时,可以不需要通过导线将移动设备与电源适配器连接,直接将移动设备放置在充电基座上即可完成充电。
无线充电技术中,通常采用电磁耦合原理完成电能由充电基座中的线圈向移动设备中的线圈的转移,实现对移动设备的充电。为了实现大功率电能的输出,业界提出在电能发射端和电能接收端分别设置多套独立的充电系统,这就导致无线充电设备的成本高昂,难以量产。由此,现有技术仍未解决充电设备输出功率较低的问题。
发明内容
通过采用本申请所示的无线充电接收设备、电子设备和无线充电系统,可以采用较少的器件实现大功率电能的输出。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种无线充电接收设备,该无线充电接收设备包括并联设置的第一接收电路和第二接收电路,所述第一接收电路和所述第二接收电路用于向负载充电;所述第一接收电路包括第一串联谐振电路、电容电路和第一整流器;所述第一串联谐振电路的第一输出端和第二输出端分别耦合至所述第一整流器的第一输入端和第二输入端;所述电容电路包括多个电容支路,所述多个电容支路并联耦合在所述第一串联谐振电路的第一输出端和第二输出端之间,所述多个电容支路中的每一个电容支路均包括至少一个电容和至少一个开关,所述至少一个电容通过所述至少一个开关耦合在所述第一串联谐振电路的第一输出端和第二输出端之间;所述第二接收电路包括第二串联谐振电路和第二整流器;所述第二串联谐振电路的第一输出端和第二输出端分别耦合至所述第二整流器的第一输入端和第二输入端。
本申请实施例中所述的第一接收电路和第二接收电路,例如可以为如图4所示的接收电路022和接收电路021;本申请实施例中所述的第一串联谐振电路、电容电路和第一整流器,例如可以分别为图4中所述的串联谐振电路LC2、电容电路4和整流器R2;本申 请实施例中所述的第二串联谐振电路和第二整流器,例如可以分别为串联谐振电路LC1和整流器R1。
本请实施例所示的无线充电接收设备,可以不改变发射端现有的结构或者仅在发射端增加少量的线圈、在第一接收电路中仅需要设置少量的电容与开关即可实现输出电流的调节以及大电流的输出,与传统无线充电技术相比,可以简化电路的设计,降低无线充电系统的生产成本。
基于第一方面,在一种可能的实现方式中,所述多个电容支路中的每一个电容支路包括第一电容和第一开关;所述第一电容的第一端耦合至所述第一串联谐振电路的第一输出端,所述第一电容的第二端耦合至所述第一开关的第一端,所述第一开关的第二端耦合至所述第一串联谐振电路的第二输出端。在该可能的实现方式中,所述第一整流器为半波整流器。
基于第一方面,在一种可能的实现方式中,所述多个电容支路中的每一个电容支路均包括第一电容、第二电容、第一开关和第二开关;所述第一电容的第一端耦合至所述第一串联谐振电路的第一输出端,所述第一电容的第二端耦合至所述第一开关的第一端,所述第一开关的第二端耦合至公共地;所述第二电容的第一端耦合至所述第一串联谐振电路的第二输出端,所述第二电容的第二端耦合至所述第二开关的第一端,所述第二开关的第二端耦合至公共地。在该可能的实现方式中,所述第一整流器为全波整流器。
基于第一方面,在一种可能的实现方式中,所述第一串联谐振电路包括第一线圈和第三电容;所述第一线圈的第一端通过所述第三电容耦合至所述第一整流器的第一输入端;所述第一线圈的第二端耦合至所述第一整流器的第二输入端。
基于第一方面,在一种可能的实现方式中,所述第二串联谐振电路包括第二线圈和第四电容;所述第二线圈的第一端通过所述第四电容耦合至所述第二整流器的第一输入端;所述第二线圈的第二端耦合至所述第二整流器的第二输入端。
基于第一方面,在一种可能的实现方式中,所述无线充电设备还包括接收端控制器;所述接收端控制器用于获取所述第一接收电路和所述第二接收电路的输出端电参数,基于所述电参数,控制所述电容电路中的开关导通或者关断;所述电参数包括以下至少一项:电压、电流和功率。
本申请实施例通过采用接收端控制器控制电容电路中开关的导通或者关断,可以使得第一接收电路输出的电流的大小由控制器控制,从而使得第一接收电路与无线充电系统中的发射端之间通信解耦,第一接收电路输出功率的改变不需要发射端的控制,当负载功耗过大导致输出端电压下降时,可以快速做出响应以向输出端输出电流,提高电子设备的可靠性。
基于第一方面,在一种可能的实现方式中,所述接收端控制器用于:检测电子设备当前的电量,在电子设备当前的电量低于第一预设阈值时,控制所述电容电路中的开关关断。
基于第一方面,在一种可能的实现方式中,所述接收端控制器还用于:在电子设备当前的电量大于等于第一预设阈值、小于第二预设阈值时,检测所述第二接收电路输出的电流是否达到预设电流值;在所述第二接收电路输出的电流达到预设电流值时,控制所述电容电路中的至少部分开关导通。
基于第一方面,在一种可能的实现方式中,所述接收端控制器还用于:在电子设备当 前的电量大于等于第二预设阈值时,控制所述电容电路中的开关关断。
基于第一方面,在一种可能的实现方式中,所述接收端控制器还用于:响应于检测到用户发送的第一指令,控制所述第二接收电路向无线充电发射设备传输第一电磁感应信号,所述第一指令用于指示采用快速充电模式充电,所述第一电磁感应信号用于指示采用快速充电模式充电。响应于检测到用户发送的第二指令,控制所述第二接收电路向无线充电发射设备传输第二电磁感应信号,所述第二指令用于指示采用慢速充电模式充电,所述第二电磁感应信号用于指示采用慢速充电模式充电。
基于第一方面,在一种可能的实现方式中,所述接收端控制器还用于:在所述第二接收电路输出的电流未达到预设电流值时,控制所述第二接收电路向无线充电发射设备传输第三电磁感应信号,所述第三电磁感应信号用于指示所述无线充电发射设备增大感应电流或者减小感应电流。
基于第一方面,在一种可能的实现方式中,所述第一接收电路还包括第一直流-直流转换电路;所述第一直流-直流转换电路用于对所述第一整流器输出的第一电压进行转换,生成第二电压提供至所述第一接收电路的输出端。
基于第一方面,在一种可能的实现方式中,所述第二接收电路还包括第二直流-直流转换电路;所述第二直流-直流转换电路用于对所述第二整流器输出的第三电压进行转换,生成第四电压提供至所述第二接收电路的输出端。
通过设置直流-直流转换电路,可以使得无线充电接收设备的输出端输出的电压更加稳定以及灵活可调。其中,直流-直流转换电路可以包括但不限于:降压(Buck)电路、升压(Boost)电路或者升压-降压(Boost-Buck)电路等电压转换电路。例如在一个具体场景中,通过降低第一整流器和第二整流器输出的电压来降低发射端提供的感应电流达到降低功率损耗的目的,降低第一整流器和第二整流器输出的电压有可能导致提供至负载的电压不足导致负载工作异常,通过设置直流-直流转换电路可以对第一整流器和第二整流器输出的电压进行进一步升压,提高供电稳定性,从而有利于负载稳定的工作。
第二方面,本申请实施例提供一种电子设备,该电子设备包括负载以及如第一方面所述的无线充电接收设备;无线充电接收设备中的第一接收电路和所述第二接收电路的输出端耦合至所述负载;所述第一接收电路和所述第二接收电路用于向所述负载充电。
第三方面,本申请实施例提供一种无线充电系统,该无线充电系统包括无线充电发射设备以及如第一方面所述的无线充电接收设备;所述无线充电发射设备用于向所述无线充电接收设备输出感应电流。
基于第三方面,在一种可能的实现方式中,所述无线充电发射设备包括至少一个线圈;所述至少一个线圈与所述无线充电接收设备中的第一线圈和第二线圈耦合。
基于第三方面,在一种可能的实现方式中,所述无线充电发射设备还包括逆变电路,所述无线充电发射设备包括第三线圈和第四线圈,所述第三线圈和第四线圈并联设置于所述逆变电路的输出端。
基于第三方面,在一种可能的实现方式中,所述无线充电发射设备还包括第三开关和第四开关;所述第三线圈通过所述第三开关耦合至所述逆变电路的输出端;所述第四线圈通过所述第四开关耦合至所述逆变电路的输出端;所述无线充电发射设备还包括发射端控制器,所述发射端控制器用于检测所述第三线圈和所述第四线圈的电参数,根据所述第三 线圈和所述第四线圈的电参数,控制所述第三开关和所述第四开关导通或者关断;
所述第三线圈和所述第四线圈的电参数包括以下至少一项:电压、电流或功率。
基于第三方面,在一种可能的实现方式中,所述发射端控制器用于:周期性的控制所述第三开关导通或者关断;在所述第三开关导通时,响应于从所述第三线圈检测到感应电流,保持所述第三开关处于导通状态。
基于第三方面,在一种可能的实现方式中,所述发射端控制器用于:周期性的控制所述第四开关导通或者关断;在所述第四开关导通时,响应于从所述第四线圈检测到感应电流,保持所述第四开关处于导通状态。
基于第三方面,在一种可能的实现方式中,所述发射端控制器还用于:从所述无线充电接收设备接收第一电磁感应信号,所述第一电磁感应信号用于指示采用快速充电模式充电;基于所述第一电磁感应信号,控制所述第三开关和所述第四开关闭合。
基于第三方面,在一种可能的实现方式中,所述发射端控制器还用于:从所述无线充电接收设备接收第二电磁感应信号,所述第二电磁感应信号用于指示采用慢速充电模式充电;基于所述第二电磁感应信号,控制所述第三开关和所述第四开关中的一个开关闭合。
应当理解的是,本申请的第二至三方面与本申请的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的无线充电系统的应用场景示意图;
图2A-图2D、图2G是本申请实施例提供的无线充电系统的应用场景的又一个示意图;
图2E-图2F、图2H是本申请实施例提供的手机中呈现的无线充电管理界面的一个示意图;
图3是本申请实施例提供的无线充电系统与其他部件连接的一个示意图;
图4是本申请实施例提供的无线充电系统的一个结构示意图;
图5是本申请实施例提供的发射端和接收电路022相耦合时的等效电路示意图;
图6A-图6C是本申请实施例提供的输出电压-电容容值特性曲线图;
图7是本申请实施例提供的接收电路022的一个结构示意图;
图8是本申请实施例提供的无线充电系统的又一个结构示意图;
图9是本申请实施例提供的如图8所示的无线充电系统中各端口的波形图;
图10是本申请实施例提供的接收电路022的又一个结构示意图;
图11是本申请实施例提供的用于控制如图10所示的接收电路022的控制时序以及在各种状态下输出端o2的输出电压波形图和输出电流波形图;
图12A是本申请实施例提供的接收电路022的又一个结构示意图;
图12B是本申请实施例提供的接收电路022的又一个结构示意图;
图13是本申请实施例提供的接收端02的又一个结构示意图;
图14是本申请实施例提供的接收端02的又一个结构示意图;
图15是本申请实施例提供的无线充电系统的又一个结构示意图;
图16是本申请实施例提供的无线充电方法的一个流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文所提及的"第一"、"第二"以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,"一个"或者"一"等类似词语也不表示数量限制,而是表示存在至少一个。"连接"或者"耦合"等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的,等同于广义上的联通。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个电容支路是指两个或两个以上的电容支路。
本申请实施例所示的无线充电系统可以应用于电子设备以为电子设备中的电池、电子部件等负载充电。该电子设备可以包括但不限于:手机、可穿戴设备、电动牙刷、平板电脑等。无线充电系统可以包括无线充电发射设备和无线充电接收设备,其中无线充电发射设备也可以称为发射端,无线充电接收设备也可以称为接收端。本申请实施例中均以无线充电发射设备称为发射端、无线充电接收设备称为接收端进行描述。接收端可以设置于电子设备中,发射端可以设置于充电基座中。无线充电系统中的发射端和接收端可以分别独立生产和销售。例如,发射端与电源适配器设置于充电基座等产品中销售,接收端设置于电子设备中销售。
下面以电子设备为手机为例,对本申请实施例所述的无线充电系统的应用场景进行说明。请参考图1,图1为本本申请实施例提供的无线充电系统的一个应用场景示意图。在图1中示出了手机100和充电基座101。无线充电系统包括发射端01和接收端02,发射端01设置于充电基座101中,接收端02设置于手机100中,发射端01包括线圈L11和线圈L12,接收端02包括线圈L21和线圈L22。优选的,线圈L11和线圈L12并联设置于充电基座101的同一平面中,线圈L21和线圈L22并联设置于手机100的同一平面中。工作中,基于电磁感应原理,发射端01通过线圈L11和线圈L12中的至少一个向接收端02提供感应电流,接收端02基于线圈L21和线圈L22中的至少一个所接收到的感应电流向手机中的负载供电。
基于图1所示的场景,本申请实施例中,可以采用多种充电模式对手机进行充电,例如快速充电模式和慢速充电模式。本申请实施例提供多种用于切换快速充电模式和慢速充电模式的方式。下面对切换快速充电模式和慢速充电模式的方式进行说明。
在第一种可能的实现方式中,可以通过调整发射端01中的线圈和接收端02中的线圈的相对位置关系来切换快速充电模式和慢速充电模式。实践中,用户可以通过调整手机100与充电基座101的相对位置来调整发射端01中的线圈和接收端02中的线圈的相对位置。当用户将手机100竖直放置在充电基座101上时,也即手机100的长边与充电基座101的长边沿同一方向延伸,如图2A所示,此时采用快速充电模式向手机充电。在如图2A所示的场景中,充电基座101中的线圈L11与手机中的线圈L21对应耦合,充电基座101中的线圈L12与手机中的线圈L22对应耦合,如图2B所示。在图2B中,线圈L11和线圈L12分别向线圈L21和线圈L22提供感应电流,接收端02基于线圈L21和线圈L22中的感应电流向手机中的负载充电。
当用户将手机100横向放置在充电基座101上时,也即手机100的短边与充电基座101的长边沿同一方向延伸,如图2C所示,此时采用慢速充电模式向手机充电。在如图2C所示的场景中,充电基座101中的线圈L12与手机中的线圈L21对应耦合,如图2D所示。在图2D中,线圈L12向线圈L21提供感应电流,接收端02基于线圈L21中的感应电流向手机中的负载充电。
在第二种可能的实现方式中,可以调整发射端01中用于传输电流的线圈的数目来切换快速充电模式和慢速充电模式。在该种可能的实现方式中,用户无论选择快速充电模式还是慢速充电模式,手机100均可以竖直放置在充电基座101上,也即,手机100与充电基座101之间的相对位置关系如图2A所示。进一步的,手机100中还可以安装有用于无线充电管理的应用。用于无线充电管理的应用可以提供快速充电模式和慢速充电模式两种充电模式供用户选择,如图2E所示,图2E示意性的示出了用于无线充电管理的应用所呈现的交互界面。用户可以通过手机100中用于无线充电管理的应用所呈现的交互界面,对无线充电模式进行选择。当用户通过交互界面选择采用快速充电模式时,发射端01中的线圈L11和线圈L12均接入电流传输通路中,发射端01中的线圈与接收端02中的线圈的相对位置关系如图2B所示,具体不再赘述。当用户通过交互界面选择采用慢速充电模式时,发射端01中的线圈L11或者线圈L12接入电流传输通路中。具体将哪一个线圈接入电流传输通路中可以是出厂前预先设置的,还可以是用户选择的。当本申请实施例提供用户自主选择采用哪一个线圈传输电流时,用户通过交互界面选择采用慢速充电模式之后,用于无线充电管理的应用可以进一步呈现用于选择线圈L11或者线圈L12传输电流的交互界面,如图2F所示。假设用户选择采用将线圈L12接入电流传输通路中,此时,发射端01中用于传输感应电流的线圈L12、与接收端02中用于接收感应电流的线圈L21和线圈L22之间的关系如图2G所示。
需要说明的是,本申请实施例既可以采用上述第一种可能的实现方式设置充电模式,也可以采用上述第二种可能的实现方式设置充电模式,还可以将上述两种可能的设置充电模式的方式提供给用户选择。将上述两种可能的实现方式提供给用户供用户选择时,用于无线充电管理的应用在呈现如图2E所示的页面之前,还可以呈现如图2H所示的交互页面。在图2H中所示的交互页面中,呈现有“调整发射端和接收端的相对位置改变充电模式”设置充电模式的选项和“调整发射端中用于传输电流的线圈的数目”设置充电模式的选项,该两个选择分别对应上述第一种可能的实现方式和第二种可能的实现方式。
基于图1-图2H所示的应用场景,下面结合图3,对图1-图2H中所示的发射端01和 接收端02与其他设备之间的连接关系进行说明。无线充电系统10包括发射端01和接收端02两部分。发射端01可以与电源20耦合。该电源20可以为提供直流电的电压源。具体应用场景中,该电源20可以包括入户网和电压转换电路(例如电源适配器),发射端01通过电压转换电路耦合至入户网。电压转换电路将入户网提供的交流电转换成直流电后提供至发射端01,为发射端01供电。此外,该电源20还可以包括电池,该电池也可以向发射端01直接提供直流电。接收端02包括接收电路021和接收电路022。接收电路021和接收电路022并联设置,接收电路021的输出端o1和接收电路022的输出端o2均与负载30耦合。图1中所示的线圈L21设置于接收电路021中,图1中所示的线圈L22设置于接收电路022中。接收电路021可以独立的向负载30充电,还可以与接收电路022一起向负载30充电。负载30可以包括但不限于:电池、驱动电子设备运行的各种处理器或其他类型的器件,例如图像处理器(Graphics Processing Unit,GPU),中央处理器(Central Processing Unit,CPU)、运算加速器或各类数字电路和模拟电路等;负载30还可以为各种集成电路芯片,该集成电路芯片包括不限于人工智能芯片、图像处理芯片等。
传统无线充电系统中,为了提高电子设备的充电速度,通常在无线充电系统的发射端和接收端分别设置两套相互独立的电流传输通道。也即是说,无线充电系统的发射端设置有两套独立的逆变电路,每一套逆变电路均设置有逆变器和线圈;相应的,无线充电系统的接收端设置有两套独立的接收通路,每一套接收通路均设置有线圈和整流器,每一套整流器与负载之间还分别设置有隔离开关。此外,在发射端和接收端还分别设置蓝牙控制器以及天线,发射端和接收端之间通过蓝牙控制器和天线进行通信。由此,传统技术中的无线充电系统结构复杂,实现成本高昂。
本请实施例所示的无线充电系统,可以不改变发射端现有的结构或者仅在发射端增加少量的线圈、在接收电路022中仅需要设置少量的电容与开关即可实现输出电流的调节以及大电流的输出,与传统无线充电技术相比,可以简化电路的设计,降低无线充电系统的生产成本。进一步的,由于本申请实施例中的接收电路022与发射端01之间通信解耦,接收电路022输出功率的改变不需要发射端01的控制,当负载功耗过大导致输出端电压下降时,可以快速做出响应以向输出端输出电流,提高电子设备的可靠性。
基于图1-图2H所示的应用场景、图3所示的无线充电系统10与其余各部件之间的连接关系,下面结合图4-图16所示的实施例,对本申请实施例中所述的无线充电系统进行详细描述。
请参考图4,图4是本申请实施例提供的无线充电系统10的一个结构示意图。如图4所示,发射端01包括逆变器I、线圈L11和线圈L12。线圈L11和线圈L12分别与逆变器I的输出端耦合,也即线圈L11和线圈L12并联设置于逆变器I的输出端。第一种可能的实现方式中,线圈L11和线圈L12可以是分别独立的线圈;第二种可能的实现方式中,线圈L11和线圈L12可以是由同一线圈引出多个抽头而形成的两组线圈,本申请实施例对此不作具体限定。此外,在一种可能的实现方式中,线圈L11还可以通过开关k11耦合至逆变器I的输出端,线圈L12还可以通过开关k12耦合至逆变器I的输出端。通过设置开关k11和开关k12,可以改变与逆变器I的输出端耦合的线圈的匝数以改变输出功率的大小,从而改变手机100的充电速度。例如,当采用快速充电模式(对应图2B所示的场景)对手机进行充电时,发射端01输出较高功率,可以将开关k11和开关k12均闭合, 线圈L11和线圈L12均耦合至逆变器I的输出端;当采用第一种慢速充电模式(对应图2D所示的场景)对手机进行充电时,发射端01输出较低功率,可以将开关k11关断、将开关k12闭合,此时仅线圈L12耦合至逆变器I的输出端;当采用第二种慢速充电模式(对应图2G所示的场景)对手机进行充电时,发射端01输出较低功率,基于出厂前的设置或者用户的选择,可以将开关k11和开关k12中的一个闭合,另外一个关断,也即采用发射端01中的一个线圈向接收端02提供感应电流。在图4中,发射端01还包括电容C1,电容C1串联在逆变器I的输出端和线圈L11之间,也可以说电容C1串联在逆变器I的输出端和线圈L12之间。电容C1与线圈L11形成串联谐振电路,同样,电容C1和线圈L12也形成串联谐振电路。此外,发射端01还包括其他器件,例如发射端控制器04以及耦合在逆变器I输入端的电容C5等,发射端控制器04包括控制端CL4和控制端CL5,控制端CL4与开关k11耦合,用于控制开关k11导通或者关断,控制端CL5与开关k12耦合,用于控制开关k12导通或者关断。
下面对发射端控制器04对开关k11和开关k12的控制进行详细描述。
在如图1所示的手机100未放置在充电基座101之前,发射端控制器04可以周期性的控制开关k11导通或者关断;同样,也可以周期性的控制开关k12导通或者关断。开关k11和开关k12导通和关断的时段可以相同,也可以不同。例如,在周期T1,开关k11导通、开关k12关断;在周期T2,开关k11关断、开关k12导通。当开关k11导通时,发射端控制器04可以检测线圈L11上是否存在感应电流;同样,当开关k12导通时,发射端控制器04也可以检测线圈L12上是否存在感应电流。
本申请实施例中,如图2A-图2H中的场景所述,可以通过调整发射端01中的线圈和接收端02中的线圈的相对位置关系来切换充电模式。
当如图2A所示的手机100竖直放置在充电基座101上之后,可以采用快速充电模式充电。此时,线圈L11和线圈L21耦合,当开关k11导通后,线圈L11上存在感应电流,发射端控制器04检测到该感应电流后,保持开关k11处于导通状态。同理,线圈L12和线圈L22耦合,当开关k12导通后,线圈L12上存在感应电流,发射端控制器04检测到该感应电流后,保持开关k12处于导通状态。
当如图2C所示的手机100横向放置在充电基座101上之后,可以采用慢速充电模式充电。线圈L12和线圈L21耦合,当开关k12导通后,线圈L12上存在感应电流,发射端控制器04从线圈L11检测到该感应电流后,保持开关k12处于导通状态。此时,由于手机100中不存在线圈与线圈L11耦合,发射端控制器04无法从线圈L11检测到感应电流。从而,发射端控制器04控制开关k11断开。
本申请实施例中,如图2A-图2H中的场景所述,还可以通过调整发射端01中的线圈和接收端02中的线圈的相对位置关系来切换充电模式。
当如图2A所示的手机100竖直放置在充电基座101上之后,线圈L11和线圈L21耦合,当开关k11导通后,线圈L11上存在感应电流,发射端控制器04检测到该感应电流后,保持开关k11处于导通状态。同理,线圈L12和线圈L22耦合,当开关k12导通后,线圈L12上存在感应电流,发射端控制器04检测到该感应电流后,保持开关k12处于导通状态。
当用户通过如图2E所示的交互界面选择采用快速充电模式对手机进行充电时,用于 对接收端02中的各器件进行控制的接收端控制器(对接收端控制器的具体描述参考图13所示的实施例)基于用户输入的指令,控制接收电路021向发射端01传输第一电磁感应信号,该第一电磁感应信号用于指示采用快速充电模式充电;发射端控制器04检测到上述第一电磁感应信号后,保持开关k11和开关k12处于导通状态。
当用户通过如图2E所示的交互界面选择采用慢速充电模式对手机进行充电时,接收端02中设置的控制器基于用户输入的指令,控制接收电路021向发射端01传输第二电磁感应信号,该第二电磁感应信号用于指示采用慢速充电模式充电;发射端控制器04检测到上述第二电磁感应信号后,随机选择或者基于出厂设置选择开关k11和开关k12中的一个闭合、另外一个断开。进一步的,当用户通过如图2F所示的交互界面选择在慢速充电模式下采用线圈L12进行充电时,上述第二电磁感应信号用于指示采用线圈L12向接收端02传输感应电流;发射端控制器04检测到第二电磁感应信号后,控制开关k12导通、控制开关k11关断。
进一步的,本申请实施例中,在采用快速充电模式充电的场景下,开关k11和开关k12均闭合后,当手机100的电量低于第一预设阈值时,此时手机100需要采用涓流充电,控制端04从接收端02接收到指示关断开关k12的指示信号,控制端04在基于该指示信号,控制开关k11关断,此时发射端01通过线圈L11传输感应电流。当手机100的电量大于等于第一预设阈值、低于第二预设阈值时,此时手机100可以采用大电流充电,控制端04从接收端02接收到指示导通开关k12的指示信号,控制端04在基于该指示信号,控制开关k11闭合,此时发射端01通过线圈L11和线圈L12向接收端02输出感应电流。当手机100的电量大于等于第二预设阈值时,控制端04从接收端02接收到指示关断开关k12的指示信号,控制端04在基于该指示信号,控制开关k11关断,此时发射端01通过线圈L11传输感应电流。
此外,发射端01中各开关的状态还可以是基于接收电路021的反馈信号动态调节的,该反馈信号用于指示增大或者减小感应电流。例如,当反馈信号指示增大感应电流时,开关k11和开关k12均闭合;当反馈信号指示减小感应电流时,开关k12断开。
需要说明的是,图1-图4示出了发射端01中设置有两个并联的线圈L11和L12。在其他可能的实现方式中,图1-图4所示的发射端01中可以仅设置一个线圈,该一个线圈与接收端02中的线圈L21和线圈L22均耦合,当发射端01中设置有一个线圈时,发射端01中可以不设置有开关k11和开关k12。此时,发射端01可以通过该一个线圈同时向线圈L21和线圈L22提供感应电流。
继续参考图4,图4所示的接收电路021包括串联谐振电路LC1和整流器R1,接收电路022包括串联谐振电路LC2和整流器R2。其中,串联谐振电路LC1包括线圈L21,串联谐振电路LC2包括线圈L22。在第一种可能的实现方式中,线圈L21和线圈L22是分别独立的线圈;在第二种可能的实现方式中,线圈L21和线圈L22可以是由同一线圈引出多个抽头而形成的两组线圈,本申请实施例对此不作具体限定。串联谐振电路LC1还包括电容C2,电容C2的第一端与线圈L21的第一端耦合,电容C2的第二端与整流器R1的输入端a1耦合,线圈L21的第二端与整流器R2的输入端a2耦合。串联谐振电路LC2还包括电容C3,电容C3的第一端与线圈L22的第一端耦合,电容C3的第二端耦合至整流器R2的输入端a3,线圈L22的第二端与整流器R2的输入端a4耦合。在图4中,整流 器R1的输出端作为接收电路021的输出端o1耦合至接收端02的输出端out;整流器R2的输出端作为接收电路022的输出端o2耦合至接收端02的输出端out,接收端02的输出端out与负载30耦合。本申请实施例中,可以仅通过整流器R1向负载30输出电流,或者通过整流器R1和整流器R2共同向负载30输出电流。接收端02还包括其他器件,例如耦合在整流器R1的输出端o1与公共地Gnd之间的电容C6、耦合在整流器R2的输出端o2与公共地Gnd之间的电容C7等。
在图4中,接收电路022除了包括上述各器件之外,还包括电容电路4。电容电路4耦合在串联谐振电路LC2和整流器R2之间。电容电路4包括n个电容支路,每一个电容支路均并联在串联谐振电路LC2的输出端olc1和输出端olc2之间(也可以说每一个电容支路均并联在整流器R2的输入端a3和输入端a4之间),n为大于等于2的整数。图4中示意性的示出了三个电容支路S1、S2和S3。每一个电容支路包括至少一个电容,图4中示意性的示出了每一个电容支路均包括一个电容的情况。在图4中,电容支路S1、S2、S3分别包括电容C41、C42、C43。电容C41、C42、C43均并联设置在串联谐振电路LC2的输出端olc1和输出端olc2之间(也可以说电容C41、C42、C43均并联设置在整流器R2的输入端a3和输入端a4之间)。具体来说,电容C41的第一端、电容C42的第一端、电容C43的第一端均耦合至电容C3的第二端以及整流器R2的输入端a3,电容C41的第二端、电容C42的第二端、电容C43的第二端均耦合至线圈L22的第二端以及整流器R2的输入端a4。接收电路022中,线圈L22和电容电路4中的多个并联电容形成并联谐振回路。此外,在本申请实施例中,多个电容支路中的每一个电容支路中还设置有开关,如图4中示出了开关k41、开关k42、开关k43,电容C41、C42、C43分别通过开关k41、开关k42、开关k43耦合在串联谐振电路LC2的输出端。具体来说,在第一种可能的实现方式中,电容C41的第一端、电容C42的第一端、电容C43的第一端分别通过开关k41、开关k42、开关k43耦合至整流器R2的输入端a3;在第二种可能的实现方式中,电容C41的第二端、电容C42的第二端、电容C43的第二端分别通过开关k41、开关k42、开关k43耦合至整流器R2的输入端a4。图4中示意性的示出了第二种可能的实现方式的情况。本申请实施例中,对接收电路022输出端o2输出的功率大小的调节,是通过调节电容电路4中耦合在串联谐振电路LC2两端的电容的数目来实现的。例如,当接收电路022需要输出的功率较高时,也即需要较大的电容耦合在串联谐振电路LC2两端,此时可以增加耦合在串联谐振电路LC2两端的电容的数目;当接收电路022需要输出的功率较低时,减少耦合在串联谐振电路LC2两端的电容的数目。通过在每一个电容支路中设置开关,可以控制该支路的电容与串联谐振电路LC2的输出端连接或者断开所述连接,以控制接入串联谐振电路LC2两端的电容的数目,从而控制接收电路022所输出的功率的大小。本申请实施例中所述的接收电路02还包括发射端控制器,该发射端控制器用于控制开关k41、开关k42、开关k43导通或者关断。其中,有关发射端控制器的详细描述参看下文中图15所示的实施例的相关描述。
以上介绍了图4所示的无线充电系统10的结构,下面对图4所示的无线充电系统10的工作原理进行介绍。本申请实施例中,发射端01和接收电路021之间可以基于低频无线电力传输的标准组织(WPC,wireless power consortium)所推出的Qi协议的规定进行通信,该通信包括但不限于:发射端01和接收电路021进行感应电流传输前的认证、接 收电路021向发射端01发射指示信号以指示采用快速充电模式或者采用慢速充电模式充电、以及接收电路021向发射端01提供反馈信号以指示发射端01增大感应电流或者减小感应电流等。接收电路022与发射端01之间不进行上述通信。下面以采用快速充电模式(也即开关k11和开关k12均闭合)为例,对无线充电系统10的工作原理进行进一步说明。
假设在初始时刻,发射端01中的开关k11和开关k12均闭合,接收电路022中的开关k41、k42、k43均断开。逆变器I从电源获得直流电,对直流电进行逆变后转换成交流电输出。线圈L11和电容C1所形成的串联谐振电路、线圈L12和电容C1所形成的串联谐振电路分别从逆变器I获得交流电,基于电磁感应原理,线圈L11和线圈L12分别将感应电流提供至接收电路021和接收电路022。接收电路021中的线圈L21和电容C2所组成的串联谐振电路LC1将感应电流提供至整流器R1,整流器R1对所接收到的电流整流后输出适用于负载电压的直流以为负载充电。此时由于接收电路022中的开关k41、k42、k43均断开,接收电路022产生微弱的电流,整流器R2输出的电压低于整流器R1输出的电压,接收电路022输出端o2的电压被钳制,接收电路022无电流输出。
假设由于负载功耗过大导致接收电路02的功率输出不足时,由于负载功耗过大,整流器R1输出端的电压下降,此时控制开关k41、开关k42、开关k43中的至少部分开关导通。接收电路022基于带内载波通讯向发射端01传输反馈信号,该反馈信号用于指示发射端01增大感应电流。发射端01通过改变逆变器I中各开关管的开关频率来增大发射端01输出的感应电流。接收电路021将所获得感应电流提供至整流器R1。整流器R1对所接收到的电流进行整流后向接收端02的输出端out输出第一直流。线圈L22与电容电路4中的电容形成并联谐振电路产生较高的感应电流输入至整流器R2,整流器R2对所接收到的电流整流后向接收端02的输出端out输出第二直流。此时,向负载输出的直流为第一直流和第二直流之和,与仅采用接收电路021向比,大大提高了向负载输出的功率,从而提高电子设备的充电速度。本申请实施中,可以通过控制开关k41、开关k42、开关k43导通的数目以控制接入串联谐振电路LC2两端的电容的大小,从而控制整流器R2输出的电流和电压的大小,也即控制输出的功率的大小。
从图4所示的电路中可以看出,本申请实施例通过设置接收电路022以及在接收电路022中设置电容电路4,可以在不改变原有协议规定的发射电路和接收电路之间的通信方式的前提下,通过改变接收电路022中接入的电容的数目来改变向负载输出的功率的大小,提高充电设备充电的灵活性。
本申请实施例中,电容电路4中电容的总容量,可以是基于接收电路022中各可变参数下的输出电压-电容容值特性曲线而确定的。下面以发射端01中接入电流传输通路的线圈为L12为例,通过图5-图6C所示的具体示例,对本申请实施例中电容电路4中电容容量的确定方法进行描述。请参考图5,图5是图4中所示的发射端01中接入线圈L12时和接收电路022进行电能传输的等效电路图。在图5中,Lk是磁耦合系统的等效漏感,该等效漏感Lk的大小与发射端01中的线圈L12和接收电路022中的线圈L22之间的相对位置关系、线圈L12的匝数以及线圈L22的匝数有关,其中Lk可以等效在发射端01,也可以等效在接收电路022中,也可以分别等效在两侧的电路中,图中示意性的示出了等效漏感Lk等效在接收电路022侧;Rp是发射端01电路中的等效电阻;Rs为接收电路 022中的等效电阻;Cd为电容电路4中所有电容之和的等效电容;RL为负载;其余部件与图4所示的部件相同。如图5所示的电路中的可变参数包括发射端01中逆变器I的开关频率、等效漏感Lk和负载RL。分别保持其中两个参数的值固定,改变其中一个参数的值,即可得到关于该可变参数在不同值下接收电路022的输出电压V-电容容值Cd之间的特性曲线。请继续参看图6A-图6C,图6A是保持等效漏感Lk的值7uH和负载RL的值10Ω不变、选取逆变器I的开关频率分别为140KHz、145KHz和150KHz时得到的多条输出电压V-电容容值Cd之间的特性曲线;图6B是保持逆变器I的开关频率145KHz和负载RL的值10Ω固定、选取等效漏感Lk分别为3uH、5uH和7uH时得到的多条输出电压V-电容容值Cd之间的特性曲线;图6C是保持逆变器I的开关频率145KHz和等效漏感Lk的值7uH固定、选取负载RL分别为10Ω、15Ω和20Ω时得到的多条输出电压V-电容容值Cd之间的特性曲线。从图6A-图6C中可以看出,输出电压V并不是随电容Cd的增大而一直上升,当电容Cd增大到一定程度后输出电压V达到最大值,当继续增大电容Cd时,输出电压V逐渐下降。基于此,本申请实施例中,将上述多条输出电压V-电容容值Cd特性曲线中,使得电压最先达到最大值的电容容值作为电容电路4中电容的总容量。对比图6A-图6C所示的多条输出电压V-电容容值Cd特性曲线可以看出,随着电容容量的增大,开关频率150KHz、磁耦合系统等效漏感Lk的值7uH、负载RL的值10Ω对应的输出电压V-电容容值Cd特性曲线中,输出电压达到最大值,此时电容容值为70nF。也即是说,开关单元4中电容的最大容量为70nF,耦合在串联谐振电路LC2输出端的电容的可调范围为0~70nF。以图4所示的开关单元4设置三个电容支路为例,该三个支路所包括的电容C41、电容C42和电容C43中,电容容量可以逐渐增大,例如,电容C42的容量为电容C41容量的二倍、电容C43的容量为电容C42容量的二倍。当电容电路4中电容的可调范围为0~70nF时,电容C41的容量可以为10nF、电容C42的容量可以为20nF、电容C43的容量可以为40nF。当如图4所示的开关k41、开关k42和开关k43全截止时、耦合在串联谐振电路LC2输出端的电容容量为0;当如图4所示的开关k41、开关k42和开关k43全导通时、耦合在串联谐振电路LC2输出端的电容容量为70nF。需要说明的是,图4所述的电容电路4所包括的电容支路的数目以及每一个电容支路中电容的大小只是示意性的,可以根据场景的需要设置电容支路的数目以及每一个电容支路中电容的大小,只要使得开关全闭合时耦合在串联谐振电路LC2输出端的电容的总容量为70nF即可。例如,当需要更精细的调节输出功率时,可以设置更多个电容支路以使得电容容量的调节更精细;当输出功率的调节不需要太精细时,可以设置更少个电容支路。
需要说明的是,图6A-图6C所示的输出电压-电容容值特性曲线只是示意性的,根据应用场景的需要以及实际使用中负载的大小、磁耦合系统的等效漏感的大小以及逆变器I的开关频率来测量,以及基于测量结果生成多个输出电压-电容容值特性曲线,最后基于该多个输出电压-电容容值特性曲线选择出电容电路4中的最大电容容量。还需要说明的是,确定电容电路4的最大容量的方法以及电容电路4所采用的电容的数目、以及每一个电容的大小可以是出厂前预先设置好的,用户在使用本申请实施例所述的无线充电系统为电子设备充电时,电容电路4中电容的数目、以及每一个电容的大小通常无法改变。
本申请实施例中,由于接收电路022中线圈L22和电容C3组成的串联谐振电路LC2输出的是交流电,图4中所示的电容电路4中每一条电容支路通过设置一个电容和一个开 关,如图4所示的接收电路022可以实现半波整流。当接收电路022实现半波整流时,接收电路022中的整流器R2为半波整流器。请参考图7,图7为本申请实施例提供的如图4所示的接收电路022的一个具体结构示意图。在图7中,接收电路022中的串联谐振电路LC2和电容电路4所包括的器件以及各器件之间的连接关系与图4所示的串联谐振电路LC2和电容电路4相同,具体参考相关描述,在此不再赘述。在图7中,整流器R2可以实现半波整流。整流器R2包括晶体管M5和晶体管M6。晶体管M5的第一极耦合至接收电路022的输出端o2,晶体管M5的第二极与晶体管M6的第一极耦合。晶体管M6的第二极耦合至公共地Gnd。晶体管M5的第二极(或者晶体管M6的第一极)为整流器R2的输入端a3。晶体管M6的第二极为整流器R2的输入端a4。晶体管M5和晶体管M6的栅极耦合至控制器。其中,控制器的相关描述具体参考下文中图15所示的接收端控制器03的相关描述。如图7所示的晶体管M5和晶体管M6可以为Nmos型场效应晶体管,也可以为Pmos型场效应晶体管,本申请实施例对此不作限定。当晶体管M5和晶体管M6为Nmos晶体管时,上述第一极可以为漏极,第二极可以为源极;当晶体管M5和晶体管M6为Pmos晶体管时,上述第一极可以为源极,第二极可以为漏极。
如图4和图7所示的接收电路022可以实现半波整流。本申请实施例中,接收电路022也可以实现全波整流。当接收电路022实现全波整流时,电容电路4中的每一条支路均可以设置有多个电容,该多个电容中的部分电容耦合在串联谐振电路LC2的输出端olc1与公共地Gnd之间,该多个电容中的其余电容耦合在串联谐振电路LC2的输出端olc2与公共地Gnd之间。耦合在串联谐振电路LC2的输出端olc1与公共地Gnd之间的电容、与耦合在串联谐振电路LC2的输出端olc2与公共地Gnd之间的电容相同,这里的相同可以包括但不限于:电容数目相同、电容容量相同。下面以电容电路4包括三条电容支路、每一条电容支路均设置有2个电容为例,结合图8,对该可能的实现方式中的电容电路4的结构进行描述。
图8示出了本申请实施例提供的无线充电系统10的又一个结构示意图。在图8中,无线充电系统10包括发射端01和接收端02,接收端02包括接收电路021和接收电路022,其中发射端01和接收电路021的具体结构、各部件之间的连接关系以及工作原理与图4所示的无线充电系统10中的发射端01和接收电路021相同,具体参考图4所示的实施例中的相关描述,不再赘述。与以上各实施例不同的是,接收电路022中的电容电路4包括三个电容支路S1、S2、S3,电容支路S1包括电容C411和C412、电容支路S2包括电容C421和C422、电容支路S3包括电容C431和C432。电容C411、电容C421、电容C431的第一端均耦合至串联谐振电路LC2的输出端olc1,电容C411、电容C421、电容C431的第二端均耦合至公共地Gnd;电容C412、电容C422、电容C432的第一端均耦合至串联谐振电路LC2的输出端olc2,电容C412、电容C422、电容C432的第二端均耦合至公共地Gnd。电容C411和电容C412相同、电容C421和电容C422相同、电容C431和电容C432相同。电容支路S1、S2、S3中的每一个电容支路还包括两个开关,其中一个开关用于控制该电容支路中的其中一个电容与公共地Gnd连接或者断开该连接,另外一个开关用于控制该电容支路中的另外一个电容与公共地Gnd连接或者断开该连接。如图8所示,电容支路S1还包括开关k411和开关k412,开关k411耦合在电容C411的第二端与公共地Gnd之间,开关k412耦合在电容C412的第二端与公共地Gnd之间;电容支路S2 还包括开关k421和开关k422,开关k421耦合在电容C421的第二端与公共地Gnd之间,开关k422耦合在电容C422的第二端与公共地Gnd之间;电容支路S3还包括开关k431和开关k432,开关k431耦合在电容C431的第二端与公共地Gnd之间,开关k432耦合在电容C432的第二端与公共地Gnd之间。如图8所示的实现方式中,设置于同一电容支路的两个开关同时导通或者同时关断。图8中所示的接收电路022除了包括电容电路4之外,还包括线圈L22、电容C3、整流器R2和电容C7,线圈L22、电容C3、整流器R2和电容C7的结构以及与其他部件之间的连接关系与图4所示的线圈L22、电容C3、整流器R2和电容C7相同,具体参考图4所示的实施例中的相关描述,在此不再赘述。
基于图8所示的结构,当电容电路4中开关闭合使得电容接入电路中后,逆变器I的输出端输出的电压V1、接收电路022中整流器R2输入端输入的电压V2、逆变器I输出的电流i1、输入至电容电路4的电流i2、以及从电容电路4输出的电流i3随时间变化的波形如图9所示。在图9中,横坐标为时间、纵坐标为幅度。从图9中可以看出,逆变器I输出电流i1后,线圈L22接收到微弱的感应电流,并联在线圈L22两端的电容与线圈L22形成电流回路,使得电容电路4的输出端输出的电流i3在瞬间升高,由于串联谐振电路LC2的存在,电流i3的升高使得整流器R2输入端的电压V2快速升高至最大值,同样也使得电容电路4的输入端产生图5所示的正弦波电流i2,该正弦波电流i2使得电压V2保持最大值直到电流i3反相,反相的电流i3使得电压V2达到反相最大值,由此往复。升高的电压可以使得整流器R2中的晶体管或者二极管导通,从而输出电流。当线圈L22两端未设置电容时,接收电路02中无法形成闭合的电流回路,也就无法使得整流器R2输入端的电压V2达到最大值,进而无法触发整流器R2工作,也即接收电路02无法输出电流。
基于图8所示的接收电路022的结构,在一种可能的实现方式中,电容支路S1、S2、S3中的每一个电容支路中所设置的开关,可以由场效应晶体管实现,该场效应晶体管可以为Pmos晶体管,也可以为Nmos晶体管,如图10所示,图10示意性的示出了多个电容支路中的每一个电容支路所包括的开关为Nmos晶体管的情况。在图10中,晶体管k411的漏极与电容C411的第二端耦合,晶体管k411的源极耦合至公共地Gnd,晶体管k412的漏极与电容C412的第二端耦合,晶体管k412的源极耦合至公共地Gnd。晶体管k411的栅极和晶体管k412的栅极耦合至控制器的控制端。控制器的具体描述参考下文中图15所示的实施例的相关描述。晶体管k421、k431和其他部件的连接关系,与晶体管k411和其他部件的连接关系相类似,晶体管k422、k432和其他部件的连接关系,与晶体管k412和其他部件的连接关系相类似,不再赘述。
下面以图10所示的接收电路022为例、电容电路4中的电容C411、C421、C431逐渐增大为例,结合图11所示的开关状态、接收电路022输出端o2输出的电流以及接收电路022输出端o2的电压,对输出端o2输出的功率进行描述。在图11中,控制信号CL1用于控制晶体管k411和晶体管k412导通或者关断,控制信号CL2用于控制晶体管k421和晶体管k422导通或者关断,控制信号CL3用于控制晶体管k431和晶体管k432导通或者关断。其中,控制信号CL1、CL2和CL3可以是如图13所示的接收端控制器03的输出端CL1、CL2和CL3输出的。由于图10中所示的各晶体管均为Nmos晶体管,各晶体管的栅极施加高电平信号时晶体管导通、各晶体管的栅极施加低电平信号时晶体管截止。在图11中,向接收电路022的输出端o2施加预设电压(图11中示出了施加8V电压)且 一直保持该电压不变。当控制信号CL1、CL2和CL3均为低电平信号时,晶体管k411~晶体管k432均截止,输出电流接近于0;当控制信号CL1为高电平信号、控制信号CL2和CL3均为低电平信号时,晶体管k411和晶体管k412导通,其余晶体管截止,电容C411和电容C412耦合在整流器R2的输入端,此时输出电流提高至0.1A;当控制信号CL2为高电平信号、控制信号CL1和CL3均为低电平信号时,晶体管k421和晶体管k422导通,其余晶体管截止,电容C421和电容C422耦合在整流器R2的输入端,此时输出电流提高至0.2A。从图11中可以看出,随着并联耦合在整流器R2输入端电容的增大,接收电路022输出端o2输出的电流逐渐增大,由于输出端o2的电压保持不变,接收电路022输出的功率逐渐增大。当控制信号CL1、CL2和CL3输出高电平信号使得晶体管k411~晶体管k432均导通时,耦合在整流器R2两端的电容达到最大值,此时接收电路022输出端o2输出的电流达到最大值,接收电路022输出的功率达到最大值。从图11中可以看出,本申请实施例通过改变并联耦合在整流器R2输入端的电容的大小即可实现接收电路022输出功率的改变。
图8和图10任意所示的接收电路022中,整流器R2可以为全波整流器,该全波整流器可以通过多种方式实现。在一种可能的实现方式中,整流器R2的桥臂为晶体管,如图12A所示。整流器R2包括晶体管M5、晶体管M6、晶体管M7和晶体管M8。其中,晶体管M5的第一极和晶体管M6的第一极耦合至整流器R2的输出端o2,晶体管M5的第二极和晶体管M7的第一极耦合至整流器R2的输入端a3,晶体管M6的第二极和晶体管M8的第一极耦合至整流器R2的输入端a4,晶体管M7的第二极和晶体管M8的第二极耦合至公共地Gnd。晶体管M5、晶体管M6、晶体管M7和晶体管M8可以为Nmos型场效应晶体管,也可以为Pmos型场效应晶体管,本申请实施例对此不作限定。当上述各晶体管为Nmos晶体管时,上述第一极可以为漏极,第二极可以为源极;当上述各晶体管为Pmos晶体管时,上述第一极可以为源极,第二极可以为漏极。在另外一种可能的实现方式中,整流器R2的桥臂可以为二极管,如图12B所示。整流器R2包括二极管D1、二极管D2、二极管D3和二极管D4。二极管D1的阳极与二极管D2的阴极耦合至整流器R2的输入端a3,二极管D3的阳极和二极管D4的阴极耦合至整流器R2的输入端a4,二极管D1的阴极和二极管D3的阴极耦合至整流器R2的输出端o2,二极管D2的阳极和二极管D4的阳极耦合至公共地Gnd。
基于图4、图7、图8、图10、图12A-图12B所示的接收端02的结构,本申请实施例中,在图4、图7、图8、图10、图12A-图12B任意实施例所示的接收端02所包括的电路结构的基础上,接收端02还包括接收端控制器03,如图13所示。接收端控制器03用于配置接收电路021输出的电参数、接收电路022输出的电参数以及向负载输出的电参数。该电参数可以包括但不限于:电压、电流和功率。接收端控制器03还用于控制接收电路021向发射端01提供反馈信息,以指示发射端01增大或者减小感应电流。此外,发射端控制器03还用于基于接收电路021输出端的电参数、接收电路022输出端的电参数以及提供至负载的电参数,向接收电路022中的电容电路4中的各开关输出控制信号以控制个开关导通或者关断。本申请实施例中所述的接收端控制器03可以是一个集成控制器,具体实现中,控制器104可以为各种数字逻辑器件或电路,包括但不限于:中央处理器、微控制器、微处理器或者数字信号处理器(DSP,Digital Signal Processor)等。接收端控 制器03可以通过I 2C总线与整流器R1、整流器R2以及接收电路02的输出端out耦合,以获得上述各电参数。发射端控制器还包括多个输出端,该多个输出端分别与图4、图7、图8、图10、图12A-图12B所示的接收电路022所包括的多个电容支路中的开关对应耦合。例如,接收端控制器03包括输出端CL1、CL2和CL3,接收端控制器03中的控制端CL1、CL2和CL3可以分别输出如图10所示的控制信号CL1、CL2和CL3。当电容电路4中的电容支路为图8所示的电容支路的结构时,输出端CL1与开关k41控制端耦合,输出端CL2与开关k42的控制端耦合,输出端CL3与开关k43的控制端耦合;当电容电路4中的电容支路为图8所示的电容支路的结构时,输出端CL1与开关k411和开关k412的控制端耦合,输出端CL2与开关k421和开关k422耦合,输出端CL3与开关k431和开关k432耦合;当电容电路4中的各开关为如图10所示的晶体管时,接收端控制器03的控制端CL1与晶体管k411和晶体管k412的栅极耦合,控制端CL2与晶体管k421和晶体管k422的栅极耦合,控制端CL3与晶体管k431和晶体管k432的栅极耦合。此外,当本申请实施例中所述的整流器R2的结构为图12A所示的结构时,接收端控制器03还与整流器R2所包括的各晶体管的栅极耦合,以控制各晶体管导通或者关断,以实现整流。图13示意性的示出了当接收电路022为如图8所示的结构、接收电路021为图4所示的结构时,接收端控制器03与各接收电路中的部件之间的耦合关系示意图。此外,在图13中还示意性的示出了发射端01的电路结构,发射端01的电路结构与图4所示的发射端01的电路结构相同,不再赘述。
本申请实施例中,为了使得接收端02的输出端out输出的电压更加稳定以及灵活可调,在一种可能的实现方式中,在以上任意实施例所示的接收端02所包括的电路结构的基础上,整流器R1的输出端和整流器R2的输出端中的至少一个输出端与负载之间设置有直流-直流(Direct current-Direct current,DC-DC)转换电路。例如,在整流器R1的输出端o1和负载30之间设置DC-DC转换电路;或者在整流器R2的输出端o2和负载30之间设置DC-DC转换电路;或者在整流器R1的输出端o1和负载30之间、以及在整流器R2的输出端o2和负载30之间均设置DC-DC转换电路。图14示出了在整流器R1的输出端o1和负载30之间设置有DC-DC转换电路1、在整流器R2的输出端o2和负载30之间均设置DC-DC转换电路2的情况。其中,DC-DC转换电路可以包括但不限于:降压(Buck)电路、升压(Boost)电路或者升压-降压(Boost-Buck)电路等电压转换电路,本申请实施例对DC-DC转换电路不作具体限定。基于图14所示的接收端02的结构,例如在一个具体场景中,通过降低整流器R1和整流器R2输出的电压来降低发射端01提供的感应电流达到降低功率损耗的目的,降低整流器R1和整流器R2输出的电压有可能导致提供至负载30的电压不足导致负载30工作异常,通过设置DC-DC转换电路可以对整流器R1和整流器R2输出的电压进行进一步升压,提高供电稳定性,从而有利于负载30稳定的工作。
如图4-图14所示的无线充电系统10中,接收端02包括接收电路021和接收电路022该两路接收电路。在本申请实施例其他可能的实现方式中,接收端02还可以包括更多路接收电路,例如包括3路、4路等,本申请实施例对接收电路的数目不做具体限定。下面以接收端02包括三路为例结合图15对接收端02包括更多路接收电路的情况进行进一步描述。在图15中,接收电路02包括接收电路021、接收电路022、接收电路023。接收电 路021可以作为主接收电路基于Qi协议的规定向发射端01提供反馈信号。接收电路022、接收电路023中任意一路接收电路分别包括串联谐振电路、电容单元和整流器,接收电路022、接收电路023中任意一路接收电路的结构与图4、图7、图8、图10、图12A-图14任意实施例中所述的接收电路022的结构相同,具体参考图4、图7、图8、图10、图12A-图14任意实施例中所示的关于接收电路022的描述,在此不再赘述。
以上通过图4-图15所示的实施例介绍了本申请实施例中所述的无线充电系统10的结构以及工作原理。本申请实施例中,无线充电系统10对电子设备的充电可以包括涓流充电和恒流充电等多个充电阶段。下面以用户选择快速充电模式为例,结合图13所示的电路以及图16所示的流程,对本申请实施例所述的接收端控制器03对电容电路4中的各开关的控制以及接收端02的工作方式进行描述。其中,图16所示的流程应用于图13所示的接收端控制器03。当用户通过电子设备将充电模式设置成快速充电模式、且电子设备放置于充电基座之上后,发射端01中的开关k11和开关k12均闭合,电容电路4中的开关k411~k432均断开。
步骤1601,控制接收电路021和发射端01进行感应电流传输前的认证。接收电路021与发射端01通过认证且建立连接后,执行步骤1602。
步骤1602,检测电子设备当前的电量,确定当前电量是否的低于第一预设阈值,当检测到当前的电量低于第一预设阈值时,采用涓流充电,执行步骤1603;当检测到当前的电量大于等于第一预设阈值时,采用恒流充电,执行步骤1604。
当电子设备当前的电量低于第一预设阈值时,说明电子设备的电压过低,为了保护电子设备中的电池、CPU等负载,此时采用涓流充电;当电子设备当前的大于等于第一预设阈值时,则可以采用恒流充电,恒流充电也可以称为大电流充电。
步骤1603,控制电容电路4中的开关k411~k432均断开。此时,接收端02通过接收电路021向负载充电。在涓流充电模式下,接收端控制器03持续检测电子设备的电量。当检测到电子设备的电量大于等于第一预设阈值时,采用恒流充电,执行步骤1604。
步骤1604,检测接收电路021的输出端o1输出的电流是否达到第一预设电流值。当未达到第一预设电流值时,执行步骤1605;当达到第一预设电流值时,执行步骤1606。
接收端控制器03中可以预先存储有恒流充电场景下接收端02的输出端out输出的总电流、以及接收电路021和接收电路022输出电流的分配关系。举例来说,假设恒流充电场景下接收端02的输出端out输出的总电流为1A,接收电路021和接收电路022的电流分配关系为1:1,则接收电路021输出的电流为0.5A,接收电路022输出的电流为0.5A。此时,上述第一预设电流值为0.5A,接收端控制器03检测接收电路021输出的电流是否达到0.5A。当接收电路021输出的电流未达到0.5A时,执行步骤1605;当接收电路021输出的电流达到0.5A时,执行步骤1606。
步骤1605,保持开关k411~k432处于断开状态,控制接收电路021向发射端01反馈指示增大感应电流的信号。
重复执行步骤1604和步骤1605,直到检测到接收电路021的输出端o1输出的电流达到第一预设电流值,执行步骤1606。
步骤1606,基于如图11所示的开关状态与接收电路022的输出端o2输出电流之间的关系,调节开关k411~k432中的各开关的通断状态。
步骤1607,待接收电路021的输出端o1输出的电流稳定后,检测接收电路022的输出端o2输出的电流是否达到第二预设电流值。当检测到输出端o2输出的电流未达到预设电流值,重复执行步骤1606和步骤1607直到输出端o2输出的电流达到第二预设电流值;当检测到输出端o2输出的电流达到第二预设电流值,执行步骤1608。
步骤1607中所述的输出端o1输出的电流稳定,是指输出端o1输出的电流稳定在第一预设电流值不变。通常,步骤1606中每调节一次开关k411~k432中的各开关的通断状态,接收电路021的输出端o1输出的电流均会受到影响。例如,通过调节开关k411~k432中的各开关的通断状态使得接收电路022的输出端o2输出的电流增大时,在发射端01传输的感应电流的大小不变的情况下,更多的电流被分到接收电路022中,导致接收端021的输出端o1输出的电流下降,也即低于第一预设电流值。接收端控制器03在检测到输出端o1输出的电流低于第一预设电流值时,控制接收电路021向发射端01反馈指示增大感应电流的信号。发射端01传输的感应电流增大后,接收端021的输出端o1输出的电流上升。待接收端控制器03检测到输出端o1输出的电流达到第一预设电流值、且在预设时段内保持第一预设电流值不变后,可以再进一步检测接收电路022的输出端o2输出的电流是否达到第二预设电流值。
下面通过具体例子,对步骤1606和步骤1607进行更为详细的说明。假设第二预设电流值为0.5A,接收端控制器03控制开关k21和开关k22导通,其余开关关闭。对照图11所示的开关的通断状态与输出端o2输出电流之间的关系,此时输出端o2输出的电流为0.2A,未达到0.5A。接收端控制器03控制开关k11、开关k12、开关21和开关22导通,其余开关关断。接收端控制器03接着检测输出端o1输出的电流,输出端o1输出的电流稳定后(例如预设时间间隔内未变化),接收端控制器03检测输出端o2输出的电流,对照图11所示的开关的通断状态与输出端o2输出电流之间的关系,此时输出端o2输出的电流为0.5A,已达到预设电流值。
经过多次执行步骤1606~步骤1607,接收端02通过接收电路021和接收电路022共同向负载充电。步骤1608,检测电子设备的电量。
步骤1609,判断电子设备的电量是否大于第二预设阈值。当电子设备的电量大于第二预设阈值时,执行步骤1610;当电子设备的电量小于等于第二预设阈值时,执行步骤1608。
步骤1610,控制电容电路4中的开关k411~k432均断开。
当电子设备的电量大于第二预设阈值时(例如电量为80%),如果采用大电流充电有可能导致电子设备中的电池过充,损坏电池,此时,接收端02通过接收电路021向负载充电。因此,控制电容电路4中的开关k411~k432均断开。
步骤1611,检测到电子设备的电量达到最大值,控制接收电路021向发射端01反馈停止充电的信号。
以上介绍了本申请实施例提供的无线充电系统10的一个充电方法。本申请实施例一种可能的实现方式中,在步骤1604~步骤1607所示的恒流充电阶段,当接收端控制器03检测到电子设备的温度异常(例如通过温度传感器检测到线圈L21、线圈L22或电池温度过高)。控制器103可以控制k411~k432均关断,控制接收电路021向发射端01反馈指示减小感应电流的信号。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (25)

  1. 一种无线充电接收设备,其特征在于,包括并联设置的第一接收电路和第二接收电路,所述第一接收电路和所述第二接收电路用于向负载充电;
    所述第一接收电路包括第一串联谐振电路、电容电路和第一整流器;
    所述第一串联谐振电路的第一输出端和第二输出端分别耦合至所述第一整流器的第一输入端和第二输入端;
    所述电容电路包括多个电容支路,所述多个电容支路并联耦合在所述第一串联谐振电路的第一输出端和第二输出端之间,所述多个电容支路中的每一个电容支路均包括至少一个电容和至少一个开关,所述至少一个电容通过所述至少一个开关耦合在所述第一串联谐振电路的第一输出端和第二输出端之间;
    所述第二接收电路包括第二串联谐振电路和第二整流器;
    所述第二串联谐振电路的第一输出端和第二输出端分别耦合至所述第二整理器的第一输入端和第二输入端。
  2. 根据权利要求1所述的无线充电接收设备,其特征在于,所述多个电容支路中的每一个电容支路包括第一电容和第一开关;
    所述第一电容的第一端耦合至所述第一串联谐振电路的第一输出端,所述第一电容的第二端耦合至所述第一开关的第一端,所述第一开关的第二端耦合至所述第一串联谐振电路的第二输出端。
  3. 根据权利要求2所述的无线充电接收设备,其特征在于,所述第一整流器为半波整流器。
  4. 根据权利要求1所述的无线充电接收设备,其特征在于,所述多个电容支路中的每一个电容支路均包括第一电容、第二电容、第一开关和第二开关;
    所述第一电容的第一端耦合至所述第一串联谐振电路的第一输出端,所述第一电容的第二端耦合至所述第一开关的第一端,所述第一开关的第二端耦合至公共地;
    所述第二电容的第一端耦合至所述第一串联谐振电路的第二输出端,所述第二电容的第二端耦合至所述第二开关的第一端,所述第二开关的第二端耦合至公共地。
  5. 根据权利要求4所述的无线充电接收设备,其特征在于,所述第一整流器为全波整流器。
  6. 根据权利要求1-5任一项所述的无线充电接收设备,其特征在于,所述第一串联谐振电路包括第一线圈和第三电容;
    所述第一线圈的第一端通过所述第三电容耦合至所述第一整流器的第一输入端;
    所述第一线圈的第二端耦合至所述第一整流器的第二输入端。
  7. 根据权利要求1所述的无线充电接收设备,其特征在于,所述第二串联谐振电路包括第二线圈和第四电容;
    所述第二线圈的第一端通过所述第四电容耦合至所述第二整流器的第一输入端;
    所述第二线圈的第二端耦合至所述第二整流器的第二输入端。
  8. 根据权利要求1-7任一项所述的无线充电接收设备,其特征在于,所述无线充电设备还包括接收端控制器;
    所述接收端控制器用于获取所述第一接收电路和第二接收电路的输出端的电参数;
    基于所述电参数,控制所述电容电路中的开关导通或者关断;
    所述电参数包括以下至少一项:电压、电流和功率。
  9. 根据权利要求8所述的无线充电接收设备,其特征在于,所述接收端控制器用于:
    检测电子设备当前的电量,在电子设备当前的电量低于第一预设阈值时,控制所述电容电路中的开关关断。
  10. 根据权利要求8或9所述的无线充电接收设备,其特征在于,所述接收端控制器还用于:
    在电子设备当前的电量大于等于第一预设阈值、小于第二预设阈值时,检测所述第二接收电路输出的电流是否达到预设电流值;
    在所述第二接收电路输出的电流达到预设电流值时,控制所述电容电路中的至少部分开关导通。
  11. 根据权利要求8-10任一项所述的无线充电接收设备,其特征在于,所述接收端控制器还用于:
    在电子设备当前的电量大于等于第二预设阈值时,控制所述电容电路中的开关关断。
  12. 根据权利要求8-11任一项所述的无线充电接收设备,其特征在于,所述接收端控制器还用于:
    响应于检测到用户发送的第一指令,控制所述第二接收电路向无线充电发射设备传输第一电磁感应信号,所述第一指令用于指示采用快速充电模式充电,所述第一电磁感应信号用于指示采用快速充电模式充电。
  13. 根据权利要求8-12任一项所述的无线充电接收设备,其特征在于,所述接收端控制器还用于:
    响应于检测到用户发送的第二指令,控制所述第二接收电路向无线充电发射设备传输第二电磁感应信号,所述第二指令用于指示采用慢速充电模式充电,所述第二电磁感应信号用于指示采用慢速充电模式充电。
  14. 根据权利要求8-13任一项所述的无线充电接收设备,其特征在于,所述接收端控制器还用于:
    若检测到的所述第二接收电路输出的电流未达到预设电流值,则控制所述第二接收电路向无线充电发射设备传输第三电磁感应信号,所述第三电磁感应信号用于指示所述无线充电发射设备增大感应电流或者减小感应电流。
  15. 根据权利要求1-14任一项所述的无线充电接收设备,其特征在于,所述第一接收电路还包括第一直流-直流转换电路;
    所述第一直流-直流转换电路用于对所述第一整流器输出的第一电压进行转换,生成第二电压提供至所述第一接收电路的输出端。
  16. 根据权利要求1-15任一项所述的无线充电接收设备,其特征在于,所述第二接收电路还包括第二直流-直流转换电路;
    所述第二直流-直流转换电路用于对所述第二整流器输出的第三电压进行转换,生成第四电压提供至所述第二接收电路的输出端。
  17. 一种电子设备,其特征在于,包括负载和如权利要求1-16任一项所述的无线充电 接收设备;
    所述第一接收电路和所述第二接收电路的输出端耦合至所述负载;
    所述第一接收电路和所述第二接收电路用于向所述负载充电。
  18. 一种无线充电系统,其特征在于,包括无线充电发射设备和如权利要求1-16任一项所述的无线充电接收设备;
    所述无线充电发射设备用于向所述无线充电接收设备输出感应电流。
  19. 根据权利要求18所述的无线充电系统,其特征在于,所述无线充电发射设备包括至少一个线圈;
    所述至少一个线圈与所述无线充电接收设备中的第一线圈和第二线圈耦合。
  20. 根据权利要求19所述的无线充电系统,其特征在于,所述无线充电发射设备包括第三线圈和第四线圈,所述无线充电发射设备还包括逆变电路,所述第三线圈和所述第四线圈并联设置于所述逆变电路的输出端。
  21. 根据权利要求20所述的无线充电系统,其特征在于,所述无线充电发射设备还包括第三开关和第四开关;
    所述第三线圈通过所述第三开关耦合至所述逆变电路的输出端;
    所述第四线圈通过所述第四开关耦合至所述逆变电路的输出端;
    所述无线充电发射设备还包括发射端控制器,所述发射端控制器用于检测所述第三线圈和所述第四线圈的电参数,根据所述第三线圈和所述第四线圈的电参数,控制所述第三开关和所述第四开关导通或者关断;
    所述第三线圈和所述第四线圈的电参数包括以下至少一项:电压、电流或功率。
  22. 根据权利要求21所述的无线充电系统,其特征在于,所述发射端控制器用于:
    周期性的控制所述第三开关导通或者关断;
    在所述第三开关导通时,响应于从所述第三线圈检测到感应电流,保持所述第三开关处于导通状态。
  23. 根据权利要求21或22所述的无线充电系统,其特征在于,所述发射端控制器用于:
    周期性的控制所述第四开关导通或者关断;
    在所述第四开关导通时,响应于从所述第四线圈检测到感应电流,保持所述第四开关处于导通状态。
  24. 根据权利要求22或23所述的无线充电系统,其特征在于,所述发射端控制器还用于:
    从所述无线充电接收设备接收第一电磁感应信号,所述第一电磁感应信号用于指示采用快速充电模式充电;
    基于所述第一电磁感应信号,控制所述第三开关和所述第四开关闭合。
  25. 根据权利要求22或23所述的无线充电系统,其特征在于,所述发射端控制器还用于:
    从所述无线充电接收设备接收第二电磁感应信号,所述第二电磁感应信号用于指示采用慢速充电模式充电;
    基于所述第二电磁感应信号,控制所述第三开关和所述第四开关中的一个闭合。
PCT/CN2022/092290 2021-05-31 2022-05-11 无线充电接收设备、电子设备和无线充电系统 WO2022252949A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110605519.2 2021-05-31
CN202110605519.2A CN115483765A (zh) 2021-05-31 2021-05-31 无线充电接收设备、电子设备和无线充电系统

Publications (1)

Publication Number Publication Date
WO2022252949A1 true WO2022252949A1 (zh) 2022-12-08

Family

ID=84323865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092290 WO2022252949A1 (zh) 2021-05-31 2022-05-11 无线充电接收设备、电子设备和无线充电系统

Country Status (2)

Country Link
CN (1) CN115483765A (zh)
WO (1) WO2022252949A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154959A (zh) * 2023-02-14 2023-12-01 荣耀终端有限公司 充电系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904757A (zh) * 2012-12-31 2014-07-02 比亚迪股份有限公司 一种电动汽车的无线充电系统
CN105006894A (zh) * 2015-06-11 2015-10-28 重庆大学 一种无线传感器网络的无线充电系统
CN106602733A (zh) * 2017-01-13 2017-04-26 上海蔚来汽车有限公司 多谐振电路并联的磁耦合共振电能发射端、接收端及系统
CN108390469A (zh) * 2018-01-10 2018-08-10 西南交通大学 一种多发送多接收的大功率感应电能传输系统
CN108819790A (zh) * 2018-08-07 2018-11-16 吉林大学 一种自动谐振的电动汽车无线充电装置
KR20200084571A (ko) * 2019-01-03 2020-07-13 엘지이노텍 주식회사 무선 전력 전송 방법 및 장치
CN111731139A (zh) * 2020-05-19 2020-10-02 华为技术有限公司 无线充电的接收端、发射端、系统、控制方法及电动汽车
CN111835095A (zh) * 2020-06-19 2020-10-27 华为技术有限公司 异物检测装置及无线充电发射端设备
CN212627333U (zh) * 2020-07-15 2021-02-26 北京有感科技有限责任公司 无线充电系统
CN112421794A (zh) * 2020-11-13 2021-02-26 澳门大学 一种无线充电电路、可充电设备及无线充电系统
CN112583138A (zh) * 2021-02-26 2021-03-30 广东希荻微电子股份有限公司 一种充电模块与无线充电系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904757A (zh) * 2012-12-31 2014-07-02 比亚迪股份有限公司 一种电动汽车的无线充电系统
CN105006894A (zh) * 2015-06-11 2015-10-28 重庆大学 一种无线传感器网络的无线充电系统
CN106602733A (zh) * 2017-01-13 2017-04-26 上海蔚来汽车有限公司 多谐振电路并联的磁耦合共振电能发射端、接收端及系统
CN108390469A (zh) * 2018-01-10 2018-08-10 西南交通大学 一种多发送多接收的大功率感应电能传输系统
CN108819790A (zh) * 2018-08-07 2018-11-16 吉林大学 一种自动谐振的电动汽车无线充电装置
KR20200084571A (ko) * 2019-01-03 2020-07-13 엘지이노텍 주식회사 무선 전력 전송 방법 및 장치
CN111731139A (zh) * 2020-05-19 2020-10-02 华为技术有限公司 无线充电的接收端、发射端、系统、控制方法及电动汽车
CN111835095A (zh) * 2020-06-19 2020-10-27 华为技术有限公司 异物检测装置及无线充电发射端设备
CN212627333U (zh) * 2020-07-15 2021-02-26 北京有感科技有限责任公司 无线充电系统
CN112421794A (zh) * 2020-11-13 2021-02-26 澳门大学 一种无线充电电路、可充电设备及无线充电系统
CN112583138A (zh) * 2021-02-26 2021-03-30 广东希荻微电子股份有限公司 一种充电模块与无线充电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154959A (zh) * 2023-02-14 2023-12-01 荣耀终端有限公司 充电系统及方法

Also Published As

Publication number Publication date
CN115483765A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
US10461549B2 (en) Mobile terminal, DC-charging power source adaptor, and charging method
US10050460B2 (en) Mobile terminal, DC-charging power source adaptor, and charging method
US10050466B2 (en) DC-charging power source adaptor and mobile terminal
TWI653803B (zh) 受電裝置及非接觸給電系統
US11316372B2 (en) Driving circuit and wireless power transmitter including the same
US9584041B2 (en) Method and apparatus for charging devices using a multiple port power supply
JP2018078795A (ja) 受電装置
JP7092885B2 (ja) 無線充電受信装置及び移動端末
KR20130023618A (ko) 무선 전력 전송 시스템 및 그의 제어방법
US12068617B2 (en) Electronic device, wireless charging receive apparatus, control method, and wireless charging system
US10164472B2 (en) Method and apparatus for wirelessly charging portable electronic devices
WO2021244086A1 (zh) 一种电子设备及其控制方法
CN113054854B (zh) 一种电源转换电路和适配器
US20240106274A1 (en) Charging control method, electronic device, and wireless charging system
CN115360831B (zh) 用于无线功率接收器的装置、控制电路及自适应控制方法
WO2022252949A1 (zh) 无线充电接收设备、电子设备和无线充电系统
CN111712991A (zh) 非接触式供电装置
US11588344B2 (en) HW and methods for improving safety protocol in wireless chargers
CN107947306B (zh) 一种无线快速充电系统与方法
CN210074886U (zh) 高集成线性充电稳压电路和用于低功率设备的充电电路
CN110582923B (zh) 非接触供电装置
US20210132121A1 (en) Current Sense Apparatus and Method
CN113422440A (zh) 无线电源系统的动态谐振
JP7256677B2 (ja) ワイヤレス受電装置のコントロール回路、電子機器
EP4231499A1 (en) Wireless charging device and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22814996

Country of ref document: EP

Kind code of ref document: A1