CN108807584A - 一种GaAs-锑烯异质结太阳电池及其制备方法 - Google Patents

一种GaAs-锑烯异质结太阳电池及其制备方法 Download PDF

Info

Publication number
CN108807584A
CN108807584A CN201810538952.7A CN201810538952A CN108807584A CN 108807584 A CN108807584 A CN 108807584A CN 201810538952 A CN201810538952 A CN 201810538952A CN 108807584 A CN108807584 A CN 108807584A
Authority
CN
China
Prior art keywords
gaas
antimony alkene
layer
antimony
solar battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810538952.7A
Other languages
English (en)
Inventor
张曙光
温雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810538952.7A priority Critical patent/CN108807584A/zh
Publication of CN108807584A publication Critical patent/CN108807584A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明属于太阳能电池的技术领域,公开了一种GaAs‑锑烯异质结太阳电池及其制备方法。所述GaAs‑锑烯异质结太阳能电池由下至上依次包括背电极、GaAs衬底、锑烯层、顶电极。本发明通过在GaAs片上通过分子束外延方式直接生长二维原子晶体材料锑烯,制备的太阳电池具有GaAs/锑烯异质结,锑烯层与GaAs之间形成良好的带隙匹配,实现太阳能电池高的光电转换效率。

Description

一种GaAs-锑烯异质结太阳电池及其制备方法
技术领域
本发明属于太阳能电池的技术领域,具体涉及一种GaAs-锑烯异质结太阳电池及其制备方法。
背景技术
石墨烯是一种由碳原子形成的蜂窝状平面薄膜,具有高电导率,高透光度,高电子迁移率,功函数可调等优点,可被用来制备高电子迁移率晶体管等光电器件。然而,以石墨烯为代表的IV族元素二维原子晶体材料带隙为零或趋近于零,极大地限制了其在光电子领域中的应用前景。石墨烯与GaAs接触可以形成肖特基接触,利用肖特基结可以制备太阳能电池。但是石墨烯-GaAs肖特基结太阳电池的光电转换率仍有待提高。硅太阳电池也是如此,其光电性能也有待改善。
发明内容
本发明的目的在于提供一种新结构的太阳电池GaAs-锑烯异质结太阳电池。本发明的GaAs-锑烯异质结太阳电池不仅工艺简单成本低,而且明显提高太阳电池的光电转换效率。
本发明的另一目的在于提供上述GaAs-锑烯异质结太阳电池的制备方法。
本发明的目的通过以下技术方案实现:
一种GaAs-锑烯异质结太阳能电池,由下至上依次包括背电极、GaAs衬底、锑烯层、顶电极。
所述锑烯层生长完后,需将生长完锑烯层的GaAs衬底进行退火处理。退火的温度为150~500℃,退火的时间为5~30分钟。
所述背电极为常规的电极材料,优选为金电极、银电极或铝电极;厚度为50~400nm。
所述顶电极为常规的电极材料,优选为导电银胶或银丝;厚度为100~3000nm。
所述GaAs衬底为GaAs外延片,优选为N型GaAs片,GaAs片的电子浓度为1×1017-9×1017cm-3
所述锑烯层的层数为1~10层。
所述GaAs-锑烯异质结太阳能电池,还包括GaAs重构层,所述GaAs重构层位于GaAs衬底和锑烯层之间。所述GaAs重构层的厚度为0.5~5μm。
所述GaAs-锑烯异质结太阳能电池的制备方法,包括以下步骤:
(1)在GaAs衬底的一面镀上背电极,将GaAs衬底中镀有背电极的一面称为下表面,另一面称为上表面;
(2)采用分子束外延法,在GaAs衬底的上表面生长GaAs重构层;
(3)采用分子束外延(MBE)法,在GaAs重构层表面生长锑烯层;
(4)在锑烯层上制备顶电极。
步骤(1)中在GaAs衬底的一面镀上背电极,具体步骤为:
(S1)镀背电极:将GaAs晶圆上蒸镀一层金属,作为背电极;所述金属为常规的电极材料;背电极的厚度为50~400nm;
(S2)切割:将镀有背电极的GaAs晶圆采用激光线切割成方片,然后去除方片表面的杂质,获得一面镀有背电极的GaAs片。
所述去除方片表面的杂质是指将切割好的GaAs片依次采用丙酮、乙醇中超声清洗,然后用超纯水清洗,再采用稀盐酸溶液处理,超纯水清洗,并吹干。
步骤(2)中所述GaAs重构层的具体制备条件为:采用分子束外延方法生长,生长温度为300-800℃,生长速率为200-600nm/h,生长过程中的Ga源束流为:1×10-7~9×10- 7torr,As源束流为:3×10-6~5×10-5torr,GaAs重构层的厚度为:0.5-5μm。
步骤(3)中所述采用分子束外延法在GaAs重构层表面生长锑烯的条件为:生长过程中MBE生长室的真空度为1×10-9~1×10-10mbar,衬底温度为300~800℃,生长过程中锑源束流为:1×10-7~1×10-6torr,生长时间为:5~30分钟,锑烯的层数为1~10层。由于GaAs(111)的晶格常数与锑烯的理论晶格常数十分接近,在GaAs的表面会生长出锑烯。
步骤(3)中所述锑烯层在生长完后需进行退火处理。
所述退火的温度为150~500℃,退火的时间为5~30分钟。
步骤(4)中所述顶电极为常规的电极材料,优选为银;所述顶电极具体是将导电银胶涂在锑烯上,烘干。所述烘干的条件于热板上40~120℃干燥3~30min。所述正电极为正方形、圆形、环形或其他形状,优选为正方形。
二维原子晶体锑烯(Antimonene),单层锑烯的禁带宽度为2.28eV,同时锑烯具有比石墨烯更高的电子迁移率,锑烯在空气中具有非常高的化学稳定性,暴露空气后不会被氧化。本发明在GaAs衬底上(或者GaAs重构层上)直接生长二维原子晶体材料锑烯,形成了GaAs/锑烯异质结,该异质结具有优异的光生伏特效应。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明通过在GaAs片上通过分子束外延方式直接生长二维原子晶体材料锑烯,并制备基于GaAs/锑烯异质结的太阳电池,由于单层锑烯是直接带隙半导体材料,具有理想的禁带宽度,单层锑烯约2.28eV,且与GaAs之间形成良好的带隙匹配,可有效的起到分离电子空穴对的作用,从而减少电子和空穴的复合,最终实现太阳能电池高的光电转换效率;
(2)本发明的制备方法简单有效,器件制备工艺成本低,电池光电转换效率明显提高。
附图说明
图1为本发明的GaAs-锑烯肖特基结太阳电池的结构示意图;
图2为实施例1的GaAs-锑烯异质结太阳电池的电流-电压关系曲线;退火前表示GaAs-锑烯异质结太阳电池中生长完锑烯层未进行退火处理,退火后表示GaAs-锑烯异质结太阳电池中生长完锑烯层进行了退火处理。
具体实施方式
下面结合实施例和附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
一种GaAs-锑烯异质结太阳能电池的结构示意图如图1所示,由下至上依次包括背电极1、GaAs衬底2、锑烯层3、顶电极4。
所述背电极为常规的电极材料,优选为金电极、银电极或铝电极;厚度为50~400nm。所述顶电极为常规的电极材料,优选为导电银胶或银丝;厚度为100~3000nm。
所述GaAs衬底为GaAs外延片,优选为N型GaAs片,GaAs片的电子浓度范围为1×1017-9×1017cm-3
所述锑烯层的层数为1~10层。
所述GaAs-锑烯异质结太阳能电池,还包括GaAs重构层,所述GaAs重构层位于GaAs衬底和锑烯层之间。所述GaAs重构层的厚度为0.5~5μm。
实施例1
本实施例的GaAs-锑烯异质结太阳电池的结构,由下至上依次包括底部金电极(背电极)、n型GaAs衬底、GaAs重构层、锑烯层和导电银胶电极(顶电极)。
本实施例的一种GaAs-锑烯异质结太阳电池的制备方法,包括以下步骤:
(1)背面电极的制备:将2英寸n型GaAs晶片衬底贴在圆盘上,GaAs晶片四周用胶带保护(一是固定n型GaAs晶片衬底在圆盘上,二是防止电极镀到圆片的边缘),将衬底放进电子束蒸发系统,蒸镀金电极;金电极的厚度为150nm;
(2)切割:将镀好金电极的n型GaAs晶片衬底采用激光线切割成约一平方厘米大小的方片;
(3)清洗n型GaAs衬底:将切割好的n型GaAs衬底依次置于丙酮和乙醇中超声清洗,各自清洗10分钟;用超纯水冲洗3遍后,放进稀盐酸处理3分钟;最后是用超纯水冲洗n型GaAs衬底表面5遍后,氮气枪吹干衬底表面待用;
(4)蒸镀GaAs重构层:将清洗干净的GaAs衬底放入分子束外延系统,GaAs衬底上表面(GaAs衬底中镀有金电极的一面称为下表面,另一面称为上表面)生长GaAs重构层,生长温度为650℃,生长速率为400纳米每小时,生长过程中的Ga源束流为:5×10-7torr,As源束流为:2×10-5torr,GaAs重构层的厚度为:600纳米;
(5)在GaAs重构层上生长锑烯层:生长前MBE生长室的真空度为1×10-10mbar,生长过程中衬底温度为450℃,生长过程中锑源束流为:2×10-7torr,生长时间为10分钟,锑烯的层数为2层;
(6)退火处理:将生长完锑烯的GaAs衬底在MBE系统中400℃原位退火15分钟,提高锑烯的晶体质量;
(7)制备顶电极:在锑烯的表面边缘贴胶带,然后在锑烯的边缘用注射器制备一层导电银胶,注意导电银胶不能碰到n型GaAs,只能在锑烯上面(贴胶带的作用就是防止导电银胶接触n型GaAs表面),导电银胶的厚度为500纳米,最后,60℃下烘烤导电银胶约10min,烘干导电银胶。
图2为GaAs-锑烯异质结太阳电池的J-V曲线,退火前表示GaAs-锑烯异质结太阳电池中生长完锑烯层未进行退火处理,退火后表示GaAs-锑烯异质结太阳电池中生长完锑烯层进行了退火处理。退火前制备出的GaAs-锑烯异质结太阳电池空白对照组的填充因子为60%,转换效率为11.12%;生长完锑烯后400℃原位退火15分钟后,该GaAs-锑烯异质结太阳能电池的填充因子提高到62%,转换效率提高到15.07%,太阳能电池的性能显著改善。
本发明的GaAs-锑烯肖特基结太阳电池通过采用MBE技术在n型GaAs表面直接生长二维原子晶体锑烯,利用GaAs-锑烯形成良好的异质结并制备太阳电池,由于锑烯具有合适的能带(2.28eV),优异的光电性能和良好的稳定性,利用GaAs-锑烯良好的异质结性能可以一方面提高对非平衡载流子的分离效率,同时锑烯具有较高的载流子迁移率,可以提高对载流子的收集效率。因此,本发明制备的基于二维原子晶体锑烯的太阳能电池,具有较高的光电转换效率。
实施例2
本实施例的GaAs-锑烯异质结太阳电池的结构,由下至上依次包括底部金电极(背电极)、n型GaAs衬底、GaAs重构层、锑烯层和导电银胶电极(顶电极)。
本实施例的一种GaAs-锑烯异质结太阳电池的制备方法,包括以下步骤:
(1)背面电极的制备:将2英寸n型GaAs晶片衬底贴在圆盘上,然后将衬底放进电子束蒸发系统,蒸镀金电极,金电极的厚度为200nm;
(2)切割:将镀好金电极的n型GaAs晶片衬底采用激光线切割成约一平方厘米大小的方片;
(3)清洗n型GaAs衬底:将切割好的n型GaAs衬底依次置于丙酮和乙醇中超声清洗,各自清洗10分钟;用超纯水冲洗3遍后,放进稀盐酸处理3分钟;最后是用超纯水冲洗n型GaAs衬底表面5遍后,氮气枪吹干衬底表面待用;
(4)蒸镀GaAs重构层:将清洗干净的GaAs衬底放入分子束外延系统,生长GaAs重构层,生长温度为600℃,生长速率为450纳米每小时,生长过程中的Ga源束流为:6×10-7torr,As源束流为:3×10-5torr,GaAs重构层的厚度为:900纳米;
(5)在GaAs重构层上生长锑烯层:生长前MBE生长室的真空度为2×10-10mbar,生长过程中衬底温度为400℃,生长过程中锑源束流为:2×10-7torr,生长时间为20分钟,锑烯的层数为4层;
(6)退火处理:将生长完锑烯的GaAs衬底在MBE系统中400℃原位退火15分钟,提高锑烯的晶体质量;
(7)制备顶电极:在锑烯的表面边缘贴胶带,然后在锑烯的边缘用注射器制备一层导电银胶,注意导电银胶不能碰到n型GaAs,只能在锑烯上面(贴胶带的作用就是防止导电银胶接触n型GaAs表面),导电银胶的厚度为800纳米,最后,70℃下烘烤导电银胶约15min,烘干导电银胶。
实施例3
本实施例的GaAs-新型二维原子晶体锑烯异质结太阳电池的制备方法,包括以下步骤:
(1)背面电极的制备:将2英寸n型GaAs晶片衬底贴在圆盘上,GaAs晶片四周用胶带保护,然后将衬底放进电子束蒸发系统,蒸镀金电极,金电极的厚度为150nm;
(2)切割:将镀好金电极的n型GaAs晶片衬底采用激光线切割成约一平方厘米大小的方片;
(3)清洗n型GaAs衬底:将切割好的n型GaAs衬底依次置于丙酮和乙醇中超声清洗,各自清洗10分钟;用超纯水冲洗5遍后,放进稀盐酸处理4分钟;最后用超纯水冲洗n型GaAs衬底表面5遍后,氮气枪吹干衬底表面待用;
(4)蒸镀GaAs重构层:将清洗干净的GaAs衬底放入分子束外延系统,生长GaAs重构层,生长温度为650℃,生长速率为350纳米每小时,生长过程中的Ga源束流为:3×10-7torr,As源束流为:2×10-5torr,GaAs重构层的厚度为:500纳米;
(5)在GaAs重构层上生长锑烯层:生长前MBE生长室的真空度为1×10-10mbar,生长过程中衬底温度为420℃,生长过程中锑源束流为:3×10-7torr,生长时间为15分钟,锑烯的层数为3层;
(6)退火处理:将生长完锑烯的GaAs衬底在MBE系统中500℃原位退火15分钟,提高锑烯的晶体质量;
(7)制备顶电极:在锑烯的表面边缘贴胶带,然后在锑烯的边缘用注射器制备一圈导电银胶,导电银胶的厚度为900纳米,为防止器件短路,制备过程中导电银胶不能碰到n型GaAs,只能覆盖在锑烯上面,最后,65℃下烘烤导电银胶约5min,烘干导电银胶。
实施例4
本实施例的GaAs-锑烯异质结太阳电池的结构,由下至上依次包括背电极(金电极)、n型GaAs衬底、锑烯层和导电银胶电极。
本实施例的一种GaAs-锑烯异质结太阳电池的制备方法,包括以下步骤:
(1)背面电极的制备:将2英寸n型GaAs晶片衬底贴在圆盘上,GaAs晶片四周用胶带保护(一是固定n型GaAs晶片衬底在圆盘上,二是防止电极镀到圆片的边缘),将衬底放进电子束蒸发系统,蒸镀金电极;
(2)切割:将镀好金电极的n型GaAs晶片衬底采用激光线切割成约一平方厘米大小的方片;
(3)清洗n型GaAs衬底:将切割好的n型GaAs衬底依次置于丙酮和乙醇中超声清洗,各自清洗10分钟;用超纯水冲洗3遍后,放进稀盐酸处理3分钟;最后是用超纯水冲洗n型GaAs衬底表面5遍后,氮气枪吹干衬底表面待用;
(4)在GaAs衬底表面生长锑烯层:生长前MBE生长室的真空度为1×10-9mbar,生长过程中衬底温度为450℃,生长过程中锑源束流为:2×10-7torr,生长时间为10分钟,锑烯的层数为2层;
(5)退火后处理:将生长完锑烯的GaAs衬底在MBE系统中400℃原位退火15分钟,提高锑烯的晶体质量;
(6)制备顶电极:在锑烯的表面边缘贴胶带,然后在锑烯的边缘用注射器制备一层导电银胶,注意导电银胶不能碰到n型GaAs,只能在锑烯上面(贴胶带的作用就是防止导电银胶接触n型GaAs表面),导电银胶的厚度为500纳米,最后,60℃下烘烤导电银胶约10min,烘干导电银胶。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种GaAs-锑烯异质结太阳能电池,其特征在于:由下至上依次包括背电极、GaAs衬底、锑烯层、顶电极。
2.根据权利要求1所述GaAs-锑烯异质结太阳能电池,其特征在于:所述GaAs衬底为N型GaAs片;GaAs片的电子浓度为1×1017-9×1017cm-3
所述锑烯层的层数为1~10层。
3.根据权利要求1所述GaAs-锑烯异质结太阳能电池,其特征在于:所述背电极为常规的电极材料;厚度为50~400nm;
所述顶电极为常规的电极材料;厚度为100~3000nm。
4.根据权利要求1所述GaAs-锑烯异质结太阳能电池,其特征在于:所述GaAs-锑烯异质结太阳能电池,还包括GaAs重构层,所述GaAs重构层位于GaAs衬底和锑烯层之间。
5.根据权利要求4所述GaAs-锑烯异质结太阳能电池,其特征在于:所述GaAs重构层的厚度为0.5~5μm。
6.根据权利要求1~5任一项所述GaAs-锑烯异质结太阳能电池的制备方法,其特征在于:包括以下步骤:
(1)在GaAs衬底的一面镀上背电极,将GaAs衬底中镀有背电极的一面称为下表面,另一面称为上表面;
(2)采用分子束外延法,在GaAs衬底的上表面生长GaAs重构层;
(3)采用分子束外延法,在GaAs重构层表面生长锑烯层;
(4)在锑烯层上制备顶电极。
7.根据权利要求6所述GaAs-锑烯异质结太阳能电池的制备方法,其特征在于:步骤(3)中所述采用分子束外延法在GaAs重构层表面生长锑烯的条件为:生长过程中MBE生长室的真空度为1×10-9~1×10-10mbar,衬底温度为300-800℃,生长过程中锑源束流为:1×10-7~1×10-6torr,生长时间为:5-30分钟,锑烯的层数为1~10层。
8.根据权利要求6所述GaAs-锑烯异质结太阳能电池的制备方法,其特征在于:步骤(3)中所述锑烯层在生长完后需进行退火处理。
9.根据权利要求8所述GaAs-锑烯异质结太阳能电池的制备方法,其特征在于:所述退火的温度为150~500℃,退火的时间为5~30分钟。
10.根据权利要求6所述GaAs-锑烯异质结太阳能电池的制备方法,其特征在于:步骤(2)中所述GaAs重构层的具体制备条件为:采用分子束外延方法生长,生长温度为300-800℃,生长速率为200-600nm/h,生长过程中的Ga源束流为:1×10-7~9×10-7torr,As源束流为:3×10-6~5×10-5torr,GaAs重构层的厚度为:0.5-5μm。
CN201810538952.7A 2018-05-30 2018-05-30 一种GaAs-锑烯异质结太阳电池及其制备方法 Pending CN108807584A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810538952.7A CN108807584A (zh) 2018-05-30 2018-05-30 一种GaAs-锑烯异质结太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810538952.7A CN108807584A (zh) 2018-05-30 2018-05-30 一种GaAs-锑烯异质结太阳电池及其制备方法

Publications (1)

Publication Number Publication Date
CN108807584A true CN108807584A (zh) 2018-11-13

Family

ID=64089342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810538952.7A Pending CN108807584A (zh) 2018-05-30 2018-05-30 一种GaAs-锑烯异质结太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN108807584A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420861A (zh) * 2020-11-18 2021-02-26 长春理工大学 二维材料异质结结构及其制备方法和应用、光电器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905217A (zh) * 2005-07-25 2007-01-31 中国科学院半导体研究所 砷化镓/锑化镓迭层聚光太阳电池的制作方法
CN101702413A (zh) * 2009-11-05 2010-05-05 云南师范大学 一种砷化镓/锑化镓太阳电池的制作方法
CN102176490A (zh) * 2011-02-16 2011-09-07 中国科学院半导体研究所 锑辅助生长的砷化铟/砷化镓量子点太阳电池的制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905217A (zh) * 2005-07-25 2007-01-31 中国科学院半导体研究所 砷化镓/锑化镓迭层聚光太阳电池的制作方法
CN101702413A (zh) * 2009-11-05 2010-05-05 云南师范大学 一种砷化镓/锑化镓太阳电池的制作方法
CN102176490A (zh) * 2011-02-16 2011-09-07 中国科学院半导体研究所 锑辅助生长的砷化铟/砷化镓量子点太阳电池的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NING WANG ET AL.: "Interface effect on electronic and optical properties of antimonene/GaAs van der Walls heterostructres", 《JOURNAL OF MATERIALS CHEMISTRY C》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420861A (zh) * 2020-11-18 2021-02-26 长春理工大学 二维材料异质结结构及其制备方法和应用、光电器件
CN112420861B (zh) * 2020-11-18 2022-05-31 长春理工大学 二维材料异质结结构及其制备方法和应用、光电器件

Similar Documents

Publication Publication Date Title
Basol High‐efficiency electroplated heterojunction solar cell
JP2008066719A (ja) シリコンベースの高効率太陽電池およびその製造方法
CN107819052A (zh) 一种高效晶硅非晶硅异质结电池结构及其制备方法
Venkatasubramanian et al. 18.2%(AM1. 5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate
CN108565343B (zh) 高性能量子点中间带石墨烯肖特基结太阳电池及制备
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
CN104638026B (zh) 一种金刚石肖特基势垒二极管及其制备方法
CN113451515A (zh) 一种GaN半导体材料作为双功能层的钙钛矿太阳能电池的制备方法
CN109309131B (zh) 石墨烯透明电极双台面碳化硅辐射探测器及其制备方法
CN108807584A (zh) 一种GaAs-锑烯异质结太阳电池及其制备方法
CN107768523B (zh) 一种同质结钙钛矿薄膜太阳能电池及其制备方法
CN109768111A (zh) 一种GaAs纳米柱-石墨烯肖特基结太阳能电池及其制备方法
CN210778633U (zh) 一种氮化物多结太阳能电池
CN207637825U (zh) 一种高效晶硅非晶硅异质结电池结构
Hashimoto et al. High efficiency CIGS solar cell on flexible stainless steel
CN101459206A (zh) 高效多结太阳能电池的制造方法
CN109786557A (zh) 一种InGaAs-graphene肖特基结太阳电池及其制备方法
CN107742650A (zh) 一种具有绒面背接触层的碲化镉太阳能电池及其制备方法
CN108538937B (zh) 一种太阳电池及其制备方法
CN111333058A (zh) 单层石墨烯的双面掺杂及多层石墨烯的双侧掺杂方法
CN110137294A (zh) 一种氮化物多结太阳能电池及其制备方法
CN101673786B (zh) 磁场下CdTe太阳电池的制备方法
US20200194700A1 (en) Heterojunction solar cell with hole transport layer and preparation method thereof
CN108807557B (zh) 提高石墨烯肖特基结太阳电池性能的复合减反膜、太阳电池及制备
CN218586000U (zh) 一种MXenes/AlN基深紫外探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181113

RJ01 Rejection of invention patent application after publication