CN108803520A - 一种基于变量非线性自相关性剔除的动态过程监测方法 - Google Patents

一种基于变量非线性自相关性剔除的动态过程监测方法 Download PDF

Info

Publication number
CN108803520A
CN108803520A CN201810658890.3A CN201810658890A CN108803520A CN 108803520 A CN108803520 A CN 108803520A CN 201810658890 A CN201810658890 A CN 201810658890A CN 108803520 A CN108803520 A CN 108803520A
Authority
CN
China
Prior art keywords
matrix
formula
vector
calculated
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810658890.3A
Other languages
English (en)
Other versions
CN108803520B (zh
Inventor
宋励嘉
童楚东
俞海珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201810658890.3A priority Critical patent/CN108803520B/zh
Publication of CN108803520A publication Critical patent/CN108803520A/zh
Application granted granted Critical
Publication of CN108803520B publication Critical patent/CN108803520B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32339Object oriented modeling, design, analysis, implementation, simulation language
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开一种基于变量非线性自相关性剔除的动态过程监测方法,旨在剔除采样数据各测量变量的非线性自相关性,并在此基础上建立非线性的动态过程监测模型。本发明方法首先利用核偏最小二乘算法建立各样本数据与其多个延时测量数据之间的非线性回归模型;然后,将模型误差作为新的被监测对象利用主成分分析算法建立过程监测模型,并实施故障监测。相比于传统方法,本发明方法将误差作为被监测对象不仅利用了误差具备的能够反映非线性自相关特征异常变化情况的能力,而且误差数据不再出现时间序列上的自相关性同样为后续基于PCA算法的过程监测模型的建立提供了便利。可以说,本发明方法更适合于动态过程监测。

Description

一种基于变量非线性自相关性剔除的动态过程监测方法
技术领域
本发明涉及一种数据驱动的过程监测方法,尤其涉及一种基于变量非线性自相关性剔除的动态过程监测方法。
背景技术
过程监测的目的在于及时而准确地发现故障,这对于保证安全生产与维持产品质量稳定是具有重要意义的。当前,过程监测的主流实施技术手段是数据驱动的方法,这主要得益于现代化工过程的大型化建设以及先进仪表与计算机技术的广泛应用,生产过程可以采集海量的数据。由于先进仪表技术的发展,采样时间间隔大为缩短,采样数据之间的时序自相关性是数据驱动的过程监测方法所必须考虑的一个问题。数据驱动的动态过程监测方法中最为典型的方法当属基于增广矩阵的动态主成分分析(Dynamic PrincipalComponent Analysis,DPCA)方法,其基本思想就是为各个训练样本数据引入延时测量值构成增广矩阵,然后对增广矩阵实施建模。使用增广矩阵可以同时将样本数据时序自相关性与变量之间的交叉相关性考虑进来,因此使用增广矩阵实施动态过程监测是最常见的技术手段。
此外,由于现代工业过程规模的复杂化,采样数据之间的自相关性使用线性模型进行描述已不再合适,理应使用非线性的自相关描述方式。近年来,核学习理论已经被广泛用于过程监测研究,比如核主成分分析(Kernel Principal Component Analysis,KPCA)与核偏最小二乘(Kernel Partial Least Squares,KPLS)等等。通过核函数的方式逼近训练数据之间的非线性关系,而不需要知道具体的非线性映射形式。虽然,可以直接的将增广矩阵应用于核主成分分析从而得到非线性动态过程监测方法,但是采用增广矩阵建立模型时通常是将自相关性与交叉相关性混淆在一起考虑。即使采用核学习这种非线性建模策略,所提取的主成分信息在采样时间上的自相关性却没有消除。在目前的科研文献与专利文件中,还鲜有考虑变量非线性自相关性问题的动态过程监测方法,如何消除这种非线性的自相关性特征急需进一步的深入研究。
发明内容
本发明所要解决的主要技术问题是:如何剔除采样数据各测量变量的非线性自相关性,并在此基础上建立非线性的动态过程监测模型。具体来讲,本发明方法首先利用非线性的KPLS算法建立各样本数据与其多个延时测量数据之间的回归模型;其次,由于回归模型的输出误差数据已不存在自相关性,可将其作为新的被监测对象利用主成分分析算法建立过程监测模型;最后,对剔除非线性自相关性特征后的在线监测样本实施过程监测。
本发明解决上述技术问题所采用的技术方案为:一种基于变量非线性自相关性剔除的动态过程监测方法,包括以下步骤:
(1)采集生产过程正常运行状态下的样本,按采样时间先后组成训练数据集X∈Rn ×m,并对矩阵.X.中每列实施标准化处理,得到均值为0、标准差为1的新数据矩阵其中n为训练样本数,m为监测对象的测量变量数,R为实数集,Rn×m表示n×m维的实数矩阵。
(2)将矩阵中的后n-d个样本数据xd+1,xd+2,…,xn组成回归模型输出矩阵Y=[xd+1,xd+2,…,xn],回归模型的输入矩阵Z如下所示:
其中,d为延时测量数据的个数,上标号T表示矩阵或向量的转置。
(3)根据如下所示公式计算核矩阵K∈R(n-d)×(n-d)中的第i行第j列元素Kij
Kij=exp(-||zi-zj||2/δ) (2)
上式中,zi与zj分别为矩阵Z中的第i行与第j行,δ为核函数参数(若没有其他手段确定该参数取值,建议设置δ=5dm)。
(4)利用核偏最小二乘算法计算非线性回归模型的回归系数矩阵B,具体的实施过程如下所示:
①设置向量u为输出矩阵中的任意一列。
②依据公式计算得分向量t,其中并用公式t=t/||t||单位化得分向量t,I表示N×N维的单位矩阵、N=n-d、矩阵EN∈RN×N中所有元素都为1。
③依据公式计算向量c。
④依据公式计算向量u,并用公式u=u/||u||实施单位化处理。
⑤重复步骤②~④直至u收敛。
⑥依据公式分别更新矩阵
⑦返回步骤②,直至得到所有的r个向量u1,u2,…,ur及其对应的得分向量t1,t2,…,tr
⑧计算回归系数矩阵其中U=[u1,u2,…,ur]、T=[t1,t2,…,tr]、
值得注意的是,得分向量个数r的选取可以是人为给定,也可通过交叉验证法确定。
(5)依据公式计算剔除非线性自相关特征后的误差F∈RN×m
(6)对矩阵F中的每列实施标准化处理,得到均值为0、标准差为1的新数据矩阵
(7)利用主成分分析(Principal Component Analysis,PCA)算法为建立相应的PCA模型:其中S∈RN×k、P∈Rm×k、和E∈RN×m分别表示主成分矩阵、投影矩阵、和模型残差矩阵,具体的实施过程如下所示:
①计算的协方差矩阵
②求解C所有特征值γ1≥γ2≥…≥γm所对应的特征向量p1,p2…,pm
③设置保留的主成分个数k为满足如下所示条件的最小值,并将对应的k个特征向量组成载荷矩阵P=[p1,p2…,pk]。
④根据公式分别计算主成分矩阵S与模型残差矩阵E,那么相应的PCA模型为:
(8)根据如下所示公式计算监测统计指标D与Q的控制上限Dlim与Qlim
上式中,F(α,k,N-d-k)表示自由度为k与N-d-k的F分布在置信度α(一般取99%)下的取值、表示自由度为h=2a2/v的卡方分布在在置信度α下的取值、加权系数g=v/(2a)、a与v分别表示Q监测指标的估计均值与估计方差。
上述步骤(1)~(8)为本发明方法的离线建模阶段,如下所示步骤(9)~(15)为本发明方法的在线动态过程监测实施过程。
(9)收集最新采样时刻的数据样本xt∈Rm×1,并找出其延时测量数据xt-1,xt-2,…,xt-d,其中下标号t表示当前最新采样时刻。
(10)对xt,xt-1,…,xt-d分别实施与步骤(1)中相同的标准化处理得到
(11)根据如下所示公式计算核向量中的第i个元素
上式中,行向量
(12)根据公式计算中心化后的核向量其中向量Et∈R1×N中所有元素都为1。
(13)依据公式计算剔除非线性自相关特征后的误差f,并对f实施与步骤(6)中相同的标准化处理得到向量
(14)依据如下所示公式计算监测统计指标D与Q的具体数值:
上式中,矩阵Λ=STS/(N-1)。
(15)根据D与Q的具体数值以及步骤(8)中计算得到的上限Dlim与Qlim决策发生故障与否,即判断是否满足条件:D≤Dlim且Q≤Qlim?若是,则当前样本为正常工况采样,返回步骤(9)继续实施对下一个样本数据的监测;若否,则当前采样数据有可能来自故障工况。
与传统方法相比,本发明方法的优势在于:
首先,本发明方法利用基于核偏最小二乘的非线性回归模型剔除了测量变量中的非线性自相关特征的影响;其次,本发明方法将误差作为被监测对象,不仅利用了误差具备的能够反映非线性自相关特征异常变化情况的能力,而且误差数据不再出现时间序列上的自相关性同样为后续基于PCA算法的过程监测模型的建立提供了便利。可以说,本发明方法更适合于动态过程建模与监测。
附图说明
图1为本发明方法的实施流程图。
图2为监测对象测量变量的自相关性示意图。
图3为误差中自相关特征剔除示意图。
图4为TE过程物料C进口温度故障的监测详情对比图。
具体实施方式
下面结合附图与具体的实施案例对本发明方法进行详细的说明。
如图l所示,本发明公开一种基于变量非线性自相关性剔除的动态过程监测方法。下面结合一个具体的工业过程的例子来说明本发明方法的具体实施过程,以及相对于现有方法的优越性。
应用对象是来自于美国田纳西-伊斯曼(TE)化工过程实验,原型是伊斯曼化工生产车间的一个实际工艺流程。目前,TE过程因其流程的复杂性,已作为一个标准实验平台被广泛用于故障检测研究。整个TE过程包括22个测量变量、12个操作变量、和19个成分测量变量。该TE过程对象可以模拟仿真多种不同的故障类型,如物料进口温度阶跃变化、冷却水故障变化等等。为了对该过程进行监测,选取如表1所示的33个过程变量。由于采样间隔时间较短,TE过程采样数据不可避免的存在序列自相关性。而且,由于TE过程的复杂特性,采样数据间的非线性特征较明显,理应实施非线性建模。接下来结合该TE过程对本发明具体实施步骤进行详细的阐述。
表1:TE过程监测变量。
序号 变量描述 序号 变量描述 序号 变量描述
1 物料A流量 12 分离器液位 23 D进料阀门位置
2 物料D流量 13 分离器压力 24 E进料阀门位置
3 物料E流量 14 分离器塔底流量 25 A进料阀门位置
4 总进料流量 15 汽提塔等级 26 A和C进料阀门位置
5 循环流量 16 汽提塔压力 27 压缩机循环阀门位置
6 反应器进料 17 汽提塔底部流量 28 排空阀门位置
7 反应器压力 18 汽提塔温度 29 分离器液相阀门位置
8 反应器等级 19 汽提塔上部蒸汽 30 汽提塔液相阀门位置
9 反应器温度 20 压缩机功率 31 汽提塔蒸汽阀门位置
10 排空速率 21 反应器冷却水出口温度 32 反应器冷凝水流量
11 分离器温度 22 分离器冷却水出口温度 33 冷凝器冷却水流量
首先,利用TE过程正常工况下的960个采样数据建立动态过程监测模型,包括以下步骤:
步骤(1):采集生产过程正常运行状态下的样本,按采样时间先后组成训练数据集X∈R960×33,并对矩阵X中每列实施标准化处理,得到均值为0、标准差为1的新数据矩阵..。
为验证训练数据中各测量变量的自相关性,特将前24个测量变量的自相关性示意图显示于图2中。从图2中可以发现,原测量变量存在较为明显的自相关性。因此,在建模的过程中需考虑自相关性特征。
步骤(2):将矩阵中的后n-d=958个样本数据x3,x4,…,x960组成回归模型输出矩阵Y=[x3,x4,…,x960],回归模型的输入矩阵Z如下所示:
步骤(3):根据公式(3)计算核矩阵K∈R958×958
步骤(4):利用核偏最小二乘算法计算非线性回归模型的回归系数矩阵B。
步骤(5):依据公式计算剔除非线性自相关特征后的误差F∈R958×33
步骤(6):对矩阵F中的每列实施标准化处理,得到均值为0、标准差为1的新数据矩阵
为验证误差中已经不再包含非线性自相关特征,特将误差矩阵中前24列向量对应的自相关示意图显示于图3中。从图3中可以发现,原训练数据的非线性自相关特征已经剔除,误差中不存在显著自相关性。
步骤(7):利用主成分分析(Principal Component Analysis,PCA)算法为建立相应的PCA模型:
步骤(8):根据公式(4)计算监测统计指标D与Q的控制上限Dlim与Qlim
其次,采集TE过程为TE过程物料C进口温度故障条件下的测试数据集,实施在线过程监测。值得指出的是,该测试数据集前160个样本数据采集自正常工况,故障工况从161个时刻起引入。
步骤(9):收集最新采样时刻的数据样本xt∈R33×1,并找出其延时测量数据xt-1,xt-2
步骤(10):对xt,xt-1,xt-2分别实施与步骤(1)中相同的标准化处理得到
步骤(11):根据公式(5)计算核向量
步骤(12):根据公式计算中心化后的核向量
步骤(13):依据公式计算剔除非线性自相关特征后的误差f,并对f实施与步骤(6)中相同的标准化处理得到向量
步骤(14):依据公式(6)计算监测统计指标D与Q的具体数值。
步骤(15):根据D与Q的具体数值以及步骤(8)中计算得到的上限Dlim与Qlim决策发生故障与否,即判断是否满足条件:D≤Dlim且Q≤Qlim?若是,则当前样本为正常工况采样,返回步骤(9)继续实施对下一个样本数据的监测;若否,则当前采样数据有可能来自故障工况。
最后,将本发明方法与传统DPCA方法的过程监测详情对比显示于图4中。从图4中可以发现,本发明方法对于该故障的监测效果要优越于传统DPCA方法,在故障发生后的故障漏报率显著低于传统DPCA方法的故障漏报率。
上述实施案例只用来解释说明本发明的具体实施,而不是对本发明进行限制。在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改,都落入本发明的保护范围。

Claims (3)

1.一种基于变量非线性自相关性剔除的动态过程监测方法,其特征在于,包括以下步骤:
离线建模阶段的实施过程如下所示:
步骤(1):采集生产过程正常运行状态下的样本,按采样时间先后组成训练数据集X∈Rn ×m,并对矩阵X中每列实施标准化处理,得到均值为0、标准差为1的新数据矩阵其中n为训练样本数,m为监测对象的测量变量数,R为实数集,Rn×m表示n×m维的实数矩阵;
步骤(2):将矩阵中的后n-d个样本数据xd+1,xd+2,…,xn组成非线性回归模型输出矩阵Y=[xd+1,xd+2,…,xn],非线性回归模型输入矩阵Z的构造方式如下所示:
其中,d为延时测量数据的个数、N=n-d、上标号T表示矩阵或向量的转置;
步骤(3):根据如下所示公式计算核矩阵K∈R(n-d)×(n-d)中的第i行第j列元素Kij
Kij=exp(-||zi-zj||2/δ) (2)
上式中,zi与zj分别为矩阵Z中的第i行与第j行的向量,δ为核函数参数;
步骤(4):利用核偏最小二乘算法计算非线性回归模型的回归系数矩阵B;
步骤(5):依据公式计算剔除非线性自相关特征后的误差F∈RN×m
步骤(6):对矩阵F中的每列实施标准化处理,得到均值为0、标准差为1的新数据矩阵
步骤(7):利用主成分分析(Principal Component Analysis,PCA)算法为建立相应的PCA模型:其中S∈RN×k、P∈Rm×k、和E∈RN×m分别表示主成分矩阵、投影矩阵、和模型残差矩阵、k为保留的主成分个数;
步骤(8):根据如下所示公式计算监测统计指标D与Q的控制上限Dlim与Qlim
上式中,F(α,k,N-d-k)表示自由度为k与N-d-k的F分布在置信度α(一般取99%)下的取值、表示自由度为h=2a2/v的卡方分布在在置信度α下的取值、加权系数g=v/(2a)、a与v分别表示Q监测指标的估计均值与估计方差;
在线过程监测的实施过程如下所示:
步骤(9):收集最新采样时刻的数据样本xt∈Rm×1,并找出其延时测量数据xt-1,xt-2,…,xt-d,其中下标号t表示当前最新采样时刻;
步骤(10):对xt,xt-1,…,xt-d分别实施与步骤(1)中相同的标准化处理得到
步骤(11):根据如下所示公式计算核向量中的第i个元素
上式中,下标号i=1,2,…,N,行向量
步骤(12):根据公式计算中心化后的核向量其中矩阵EN∈RN×N中所有元素都为1,向量Et∈R1×N中所有元素都为1;
步骤(13):依据公式计算剔除非线性自相关特征后的误差f,并对f实施与步骤(6)中相同的标准化处理得到向量
步骤(14):依据如下所示公式计算监测统计指标D与Q的具体数值:
上式中,矩阵Λ=STS/(N-1);
步骤(15):根据D与Q的具体数值以及步骤(8)中计算得到的上限Dlim与Qlim决策发生故障与否,即判断是否满足条件:D≤Dlim且Q≤Qlim?若是,则当前样本为正常工况采样,返回步骤(9)继续实施对下一个样本数据的监测;若否,则当前采样数据来自故障工况。
2.根据权利要求1所述的一种基于变量非线性自相关性剔除的动态过程监测方法,其特征在于,所述步骤(4)中计算非线性回归模型的回归系数矩阵B的具体实施过程如下所示:
①设置向量u为输出矩阵中的任意一列;
②依据公式计算得分向量t,其中并用公式t=t/||t||单位化得分向量t,I表示N×N维的单位矩阵、N=n-d、矩阵EN∈RN×N中所有元素都为1;
③依据公式计算向量c;
④依据公式计算向量u,并用公式u=u/||u||实施单位化处理;
⑤重复步骤②~④直至u收敛;
⑥依据公式分别更新矩阵
⑦返回步骤②,直至得到所有的r个向量u1,u2,…,ur及其对应的得分向量t1,t2,…,tr
⑧计算回归系数矩阵其中U=[u1,u2,…,ur]、T=[t1,t2,…,tr]、
值得注意的是,得分向量个数r需通过交叉验证法确定。
3.根据权利要求1所述的一种基于变量非线性自相关性剔除的动态过程监测方法,其特征在于,所述步骤(7)中建立相应的PCA模型的具体实施过程如下所示:
①计算的协方差矩阵
②求解C所有特征值γ1≥γ2≥…≥γm所对应的特征向量p1,p2…,pm
③设置保留的主成分个数k为满足如下所示条件的最小值,并将对应的k个特征向量组成载荷矩阵P=[p1,p2…,pk];
④根据公式分别计算主成分矩阵S与模型残差矩阵E,那么相应的PCA模型为:
CN201810658890.3A 2018-06-11 2018-06-11 一种基于变量非线性自相关性剔除的动态过程监测方法 Active CN108803520B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810658890.3A CN108803520B (zh) 2018-06-11 2018-06-11 一种基于变量非线性自相关性剔除的动态过程监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810658890.3A CN108803520B (zh) 2018-06-11 2018-06-11 一种基于变量非线性自相关性剔除的动态过程监测方法

Publications (2)

Publication Number Publication Date
CN108803520A true CN108803520A (zh) 2018-11-13
CN108803520B CN108803520B (zh) 2020-06-16

Family

ID=64084786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810658890.3A Active CN108803520B (zh) 2018-06-11 2018-06-11 一种基于变量非线性自相关性剔除的动态过程监测方法

Country Status (1)

Country Link
CN (1) CN108803520B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407640A (zh) * 2018-12-13 2019-03-01 宁波大学 一种基于动态正交成分分析的动态过程监测方法
CN109542070A (zh) * 2018-12-13 2019-03-29 宁波大学 一种基于双目标优化算法的动态过程监测方法
CN109542974A (zh) * 2018-12-13 2019-03-29 宁波大学 一种基于非线性动态成分分析的动态过程监测方法
CN109669414A (zh) * 2018-12-13 2019-04-23 宁波大学 一种基于自相关特征分解的动态过程监测方法
CN110705129A (zh) * 2019-10-31 2020-01-17 重庆科技学院 一种基于全相关动态kpls的故障诊断方法
CN111695229A (zh) * 2019-03-12 2020-09-22 宁波大学 一种基于ga-ica的新型分散式非高斯过程监测方法
CN111913415A (zh) * 2020-06-13 2020-11-10 宁波大学 一种基于时序数据分析的连续搅拌反应釜运行状态监测方法
CN112199781A (zh) * 2020-10-28 2021-01-08 震兑工业智能科技有限公司 船舶主机控制系统偶发性故障检测方法及系统
CN112610330A (zh) * 2020-12-08 2021-04-06 孚创动力控制技术(启东)有限公司 一种内燃机运行状态的监测及分析系统和方法
CN113344395A (zh) * 2021-06-14 2021-09-03 西北工业大学 一种基于动态pca-svm的加工质量监测方法
CN113486607A (zh) * 2021-07-01 2021-10-08 天津大学 多传感器信息核规范变量分析的气液两相流状态监测方法
CN114415609A (zh) * 2021-12-22 2022-04-29 华东理工大学 一种基于多子空间划分的动态过程精细化监测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103886218A (zh) * 2014-04-08 2014-06-25 北京工商大学 基于多元非平稳时间序列分析与神经网络及支持向量机补偿的湖库藻类水华预测方法
CN104656635A (zh) * 2014-12-31 2015-05-27 重庆科技学院 非高斯动态高含硫天然气净化过程异常检测与诊断方法
US9646139B1 (en) * 2014-12-08 2017-05-09 Hongjie Zhu Chemical structure-informed metabolomics data analysis
CN106803089A (zh) * 2016-12-15 2017-06-06 南京邮电大学 基于非线性主分量分析从图像序列中分离图像信息的方法
CN106940808A (zh) * 2017-04-28 2017-07-11 宁波大学 一种基于改进型主元分析模型的故障检测方法
CN107092242A (zh) * 2017-06-02 2017-08-25 宁波大学 一种基于缺失变量pca模型的工业过程监测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103886218A (zh) * 2014-04-08 2014-06-25 北京工商大学 基于多元非平稳时间序列分析与神经网络及支持向量机补偿的湖库藻类水华预测方法
US9646139B1 (en) * 2014-12-08 2017-05-09 Hongjie Zhu Chemical structure-informed metabolomics data analysis
CN104656635A (zh) * 2014-12-31 2015-05-27 重庆科技学院 非高斯动态高含硫天然气净化过程异常检测与诊断方法
CN106803089A (zh) * 2016-12-15 2017-06-06 南京邮电大学 基于非线性主分量分析从图像序列中分离图像信息的方法
CN106940808A (zh) * 2017-04-28 2017-07-11 宁波大学 一种基于改进型主元分析模型的故障检测方法
CN107092242A (zh) * 2017-06-02 2017-08-25 宁波大学 一种基于缺失变量pca模型的工业过程监测方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407640B (zh) * 2018-12-13 2021-03-09 宁波大学 一种基于动态正交成分分析的动态过程监测方法
CN109542070A (zh) * 2018-12-13 2019-03-29 宁波大学 一种基于双目标优化算法的动态过程监测方法
CN109542974A (zh) * 2018-12-13 2019-03-29 宁波大学 一种基于非线性动态成分分析的动态过程监测方法
CN109669414A (zh) * 2018-12-13 2019-04-23 宁波大学 一种基于自相关特征分解的动态过程监测方法
CN109407640A (zh) * 2018-12-13 2019-03-01 宁波大学 一种基于动态正交成分分析的动态过程监测方法
CN109542974B (zh) * 2018-12-13 2021-05-04 宁波大学 一种基于非线性动态成分分析的动态过程监测方法
CN111695229A (zh) * 2019-03-12 2020-09-22 宁波大学 一种基于ga-ica的新型分散式非高斯过程监测方法
CN111695229B (zh) * 2019-03-12 2023-10-17 宁波大学 一种基于ga-ica的新型分散式非高斯过程监测方法
CN110705129A (zh) * 2019-10-31 2020-01-17 重庆科技学院 一种基于全相关动态kpls的故障诊断方法
CN110705129B (zh) * 2019-10-31 2023-03-14 重庆科技学院 一种基于全相关动态kpls的故障诊断方法
CN111913415B (zh) * 2020-06-13 2022-03-18 宁波大学 一种基于时序数据分析的连续搅拌反应釜运行状态监测方法
CN111913415A (zh) * 2020-06-13 2020-11-10 宁波大学 一种基于时序数据分析的连续搅拌反应釜运行状态监测方法
CN112199781A (zh) * 2020-10-28 2021-01-08 震兑工业智能科技有限公司 船舶主机控制系统偶发性故障检测方法及系统
CN112610330A (zh) * 2020-12-08 2021-04-06 孚创动力控制技术(启东)有限公司 一种内燃机运行状态的监测及分析系统和方法
CN113344395A (zh) * 2021-06-14 2021-09-03 西北工业大学 一种基于动态pca-svm的加工质量监测方法
CN113344395B (zh) * 2021-06-14 2022-06-21 西北工业大学 一种基于动态pca-svm的加工质量监测方法
CN113486607A (zh) * 2021-07-01 2021-10-08 天津大学 多传感器信息核规范变量分析的气液两相流状态监测方法
CN114415609A (zh) * 2021-12-22 2022-04-29 华东理工大学 一种基于多子空间划分的动态过程精细化监测方法
CN114415609B (zh) * 2021-12-22 2024-07-05 华东理工大学 一种基于多子空间划分的动态过程精细化监测方法

Also Published As

Publication number Publication date
CN108803520B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN108803520A (zh) 一种基于变量非线性自相关性剔除的动态过程监测方法
CN108897286A (zh) 一种基于分散式非线性动态关系模型的故障检测方法
CN106092625B (zh) 基于修正型独立元分析和贝叶斯概率融合的工业过程故障检测方法
CN104699077B (zh) 一种基于嵌套迭代费舍尔判别分析的故障变量隔离方法
CN108960309A (zh) 一种基于rbf神经网络自相关性剔除的动态过程监测方法
WO2021114320A1 (zh) 一种oica和rnn融合模型的污水处理过程故障监测方法
CN106940808A (zh) 一种基于改进型主元分析模型的故障检测方法
CN108388234A (zh) 一种基于相关性划分多变量块pca模型的故障监测方法
CN108345284A (zh) 一种基于两变量块的质量相关故障检测方法
CN108919755A (zh) 一种基于多块非线性交叉关系模型的分布式故障检测方法
CN114692507B (zh) 基于堆叠泊松自编码器网络的计数数据软测量建模方法
CN108469805A (zh) 一种基于动态性最优选择的分散式动态过程监测方法
CN108508865A (zh) 一种基于分散式osc-pls回归模型的故障检测方法
CN108375965A (zh) 一种基于多变量块交叉相关性剔除的非高斯过程监测方法
CN109298633A (zh) 基于自适应分块非负矩阵分解的化工生产过程故障监测方法
CN109409425A (zh) 一种基于近邻成分分析的故障类型识别方法
CN109507972A (zh) 基于分层式非高斯监测算法的工业生产过程故障监测方法
CN108830006B (zh) 基于线性评价因子的线性-非线性工业过程故障检测方法
CN114757269A (zh) 一种基于局部子空间-邻域保持嵌入的复杂过程精细化故障检测方法
CN108445867A (zh) 一种基于分散式icr模型的非高斯过程监测方法
CN108572639A (zh) 一种基于主成分自相关性剔除的动态过程监测方法
CN108845546A (zh) 一种基于bp神经网络自回归模型的动态过程监测方法
CN107918381A (zh) 一种基于组合核函数的类均值核主元故障诊断方法
CN108427398A (zh) 一种基于分散式ar-pls模型的动态过程监测方法
CN108491878B (zh) 一种基于多个误差生成模型的故障分类诊断方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant