CN108767899A - 一种低压微电网小扰动稳定性分析方法 - Google Patents

一种低压微电网小扰动稳定性分析方法 Download PDF

Info

Publication number
CN108767899A
CN108767899A CN201810629923.1A CN201810629923A CN108767899A CN 108767899 A CN108767899 A CN 108767899A CN 201810629923 A CN201810629923 A CN 201810629923A CN 108767899 A CN108767899 A CN 108767899A
Authority
CN
China
Prior art keywords
deviation
voltage
inverter
indicate
capacitance sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810629923.1A
Other languages
English (en)
Inventor
吕艳玲
刘琪
侯仕强
白红哲
徐春婷
杜怡志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201810629923.1A priority Critical patent/CN108767899A/zh
Publication of CN108767899A publication Critical patent/CN108767899A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network

Abstract

本申请所描述的实施例一般涉及微电网的静态稳定领域。尤其是,涉及一种低压微电网小扰动稳定性分析方法;本发明为了解决低压微电网,即为用户侧的小型微网,线路阻抗主要是电阻,传统的下垂已不再适用的问题;本申请的逆变器模块采用阻性下垂曲线P‑U/Q‑f作为控制方式,P‑U下垂曲线为有功功率‑电压下垂曲线,Q‑f下垂曲线为无功功率‑频率下垂曲线;有效的解决了以传统下垂控制应用在低压微电网的电压降落较大的问题。

Description

一种低压微电网小扰动稳定性分析方法
技术领域
本申请所描述的实施例一般涉及微电网的静态稳定领域。尤其是,涉及一种低压微电网小扰动稳定性分析方法。
背景技术
近年来随着分布式电源接入配电网的数量和容量的增加,其带来的扰动对配电网的稳定运行的影响日益严重。设想一个优良的、稳固的控制装置,肯定可以提供更为良好的相对高效和可靠的产品服务。由于逆变型的分布式电源的本身惯性较小,虽然通过电力电子变换器接入电网,但受到扰动时,仍易发生振荡失稳,分析微电网系统小扰动稳定性,对电力工业有重要的意义。
小扰动法是电力系统稳定判据的依据,将非线性的动态行为转变成线性动态行为,已有较为成熟的理论。但现代的电力系统并不是简单的只有一个发电机元件需要列写状态方程,而是通过电力电子变换器接入电网,响应时间较长,网络及负荷将影响系统的稳定性。分布式电源的开关频率较高忽略分布式电源侧直流母线的动态过程,看做理想电源,以逆变器的模型替代各分布式电源。
传统下垂控制P-f/Q-U下微电网的小扰动稳定性已有价位成熟的研究。但对于低压微电网,即为用户侧的小型微网,线路阻抗主要是电阻,传统的下垂已不再适用。因此基于阻性下垂控制的低压微电网小扰动稳定性的研究是极为必要的。
发明内容
相应地,本发明的实施例提供一种低压微电网小扰动稳定性分析方法,解决了以传统下垂控制应用在低压微电网的电压降落较大的问题。
本发明的一种低压微电网小扰动稳定性分析方法,将低压微电网分为网络负荷模块和逆变器模块,分别构建网络负荷模块小扰动模型和逆变器模块小扰动模型,根据网络负荷模块小扰动模型和逆变器模块小扰动模型得到微电网小扰动模型,采用小扰动特征分析法,把描述电力系统动态行为的非线性微分方程组在平衡点做线性化处理。求解模型的状态空间的系数矩阵,通过计算一些提供的初始参数和系统参数状态下的特征值分析低压微电网系统的稳定性;
所述逆变器模块采用阻性下垂曲线P-U/Q-f作为控制方式,P-U下垂曲线为有功功率-电压下垂曲线,Q-f下垂曲线为无功功率-频率下垂曲线。
进一步的,上述P-U下垂曲线方程为U=Un-mp(P-Pn),Un为逆变器的额定的输出电压,U为逆变器输出的电压,P为逆变器输出的有功功率,Pn为逆变器输出的额定有功功率,mp为有功功率下垂系数;
Q-f下垂曲线方程为f=fn+nq(Q-Qn),f为逆变器的输出频率,fn为逆变器的额定的输出频率,Q为逆变器输出的无功功率,Qn为逆变器输出的额定无功功率。nq为无功功率下垂系数。
进一步的,所述逆变器模块的小扰动模型的构建方法包括构建控制单元小扰动模型、电压电流环小扰动模型和接口电路小扰动模型,将控制单元小扰动模型、电压电流环小扰动模型和接口电路小扰动模型联立得到逆变器模块的小扰动模型。
进一步的,所述下垂曲线方程线性化处理后得到下垂控制线性化的表达式为:
式中,分别表示电压和频率偏差的求导。分别表示逆变器有功功率和无功功率偏差的求导值。
进一步的,建立控制单元的小扰动模型,表达式为:
式中,表示控制器在旋转坐标系下的输出到电压电流环的电压参考值偏差的导数,ΔUdqref表示表示控制器输出到电压电流环的电压参考值的偏差ΔP,ΔQ分别表示逆变器有功功率和无功功率的偏差,Δil1dq表示滤波电路的电感电流偏差,ΔUcdq、Δil2dq表示输入功率计算模块的电压偏差和电流的偏差,A1,A2,A3,A4表示系数矩阵,其中
进一步的,所述电压电流环小扰动模型的表达式为:
上式中,ΔUidqref表示经过电压电流环输出到逆变单元的电压偏差,Δidq,ΔUdq分别表示正交派克变换后所得的d/q轴电流偏差和电压偏差,Δf表示系统频率偏差,A5,A6,A7,A8,A9表示系数矩阵。
进一步的,接口电路的小扰动模型为:
上式中,分别表示滤波电容的电压偏差的导数、电流偏差的导数和耦合电感的电流偏差的导数,ΔUidq为逆变器输出的电压偏差,ΔUfdq为馈线上的电压偏差,A10,A11,A12,A13表示系数矩阵,令ΔUidqref=ΔUidq
进一步的,所述逆变器模块的小扰动模型的表达式如下:
式中,ΔX为状态变量,为状态变量ΔX的导数,
其中:其中k表示逆变器的数量,ΔPk、ΔQk分别代表第k个逆变器有功功率和无功功率的偏差,Δfk表示第k个逆变器的频率偏差,ΔUkdqref表示第k个控制器在旋转坐标系下的输出到电压电流环的电压参考值偏差,Δikdq和ΔUkdq分别表示第k个控制器正交派克变换后所得的d/q轴电压和电流偏差值,ΔUckdq和Δil2kdq分别表示第k个逆变器输入功率计算模块的电压偏差和电流的偏差,Δil1kdq表示第k个逆变器的滤波电路的电感电流偏差。
ΔUfkdq表示第k个逆变器馈线上的电压偏差,下标1,2…k表示第k个逆变器与网络馈线的连接节点,A、B表示系数矩阵。
进一步的,所述网络负荷模块的小扰动模型包括:
负荷小扰动模型:
式中,状态变量ΔiLkdq为第k条负荷支路流过负荷的电流偏差,ΔUfdq为馈线电压的偏差,An,Bn1,Bn2表示系数矩阵;
网络小扰动模型:
ΔUfdq=Cn1×ΔiLdq+Cn2×ΔiLinedq
式中,ΔiLdq为负荷支路流过负荷的电流偏差,ΔiLinedq为分布式电源之间的电流偏差,Cn1,Cn2表示系数矩阵。
进一步的,将负荷小扰动模型、网络小扰动模型和逆变器模块小扰动模型综合,得到低压微电网小扰动模型,表达式为:
式中,Am为系统状态矩阵;
计算状态矩阵Am的特征值,根据特征值的分布对微电网稳定性进行分析,具体分析方法包括:
如果特征值的实部均为负,表明微网在小扰动下呈现衰减振荡,能保持小扰动下的稳定;
若有特征值的实部为正,则系统不稳定,对于不稳定的特征根,对其进行灵敏度分析;通过改变相应的参数,再次计算特征根分析系统的稳定性。
本发明所述逆变模块包括P-U/Q-f下垂控制器、电压电流环控制器、逆变单元、LC滤波器和耦合电抗。
本发明针对线路阻感较大的低压微电网,逆变模块的控制系统采用阻性下垂控制P-U/Q-f的控制方法,即有功功率调节逆变器输出电压的幅值,无功功率调节逆变器输出电压的频率,解决了以传统下垂控制应用在低压微电网的电压降落较大的问题,通过有功-电压/无功-频率下垂曲线来调节电压和频率。通过电力电子变换器接入电网,响应时间较长,网络及负荷将影响系统的稳定性。通过建立P-U/Q-f控制下的微电网的小扰动数学模型,通过正交派克变换和线性化处理得系统的状态矩阵,求解特征值,观察特征值的分布来分析系统的稳定性,对于不稳定的特征根,对其进行灵敏度分析,通过改变相应的参数,再次计算特征根分析系统的稳定性,为低压微电网的控制提供依据。
附图说明
图1示出了根据本发明的实施例的逆变器模块控制系统结构示意图;
图2示出了根据本发明的实施例的逆变型分布式电源功率传输等效模型。
具体实施方式
分布式电源的开关频率较高忽略分布式电源侧直流母线的动态过程,看作理想电源,以逆变器的模型替代各分布式电源,因此该发明中逆变器的小扰动模型即为分布式电源的小扰动模型,本实施例的基于阻性下垂控制的低压微电网小扰动稳定性分析方法,其基本原理是将低压微电网分为网络负荷模块和逆变器模块,分别构建网络负荷模块小扰动模型和逆变器模块小扰动模型,根据网络负荷模块小扰动模型和逆变器模块小扰动模型得到微电网小扰动模型,通过微电网小扰动模型得到状态特征值,根据特征值分布确定系统的稳定性;
表一 不同电压等级线路阻抗参数
以单个逆变器与微电网交流母线相连为例,U为逆变电源输出的电压幅值,E为微电网公共交流母线电压幅值,Z为线路阻抗的幅值,θ为线路阻抗的相角,δ是以微电网公共交流母线电压矢量作为参考时逆变电源输出电压矢量的相角。
由图2可得下列公式:
(10)代入(11)可得逆变器输出的有功功率和无功功率:
传统的下垂控制,以高压线路为主,忽略了R,则Z=X,θ=90°,并联运行时,δ很小,sinδ=δ,cosδ=1。
则有对(14)、(15)进行微分运算得 ω=2πf,可得传统的下垂控制数学表达式为:f=fn-kp(P-Pn)和U=Un-kq(Q-Qn);
同理,低压线路下,由表一可以发现阻抗比为7.7,因此新型的下垂控制忽略X,Z=R,θ=0°,则有
对(16)、(17)进行微分运算得
ω=2πf,可得传统的下垂控制数学表达式为
U=Un-mp(P-Pn)和f=fn+nq(Q-Qn);
本实施例具体包括以下步骤:
步骤1、确定微电网的线路参数以及逆变器的元件参数,包括:线路参数,负荷参数,各个逆变器的控制器和接口电路的参数,滤波电容和耦合电感的值L1、C、L2、有功功率下垂系数mp、无功功率下垂系数nq、电流和电压环的比例和积分系数,初始稳态运行的参数,电网的额定电压,额定频率,逆变器本地坐标与参考坐标的夹角、各个馈线的电压、逆变器的输出电压和输出电流、耦合电感电流。
步骤2、对负荷建立小扰动模型,即:
式中,状态变量ΔiLkdq为第k条负荷支路流过负荷的电流偏差,ΔUfdq为馈线电压的偏差,An,Bn1,Bn2表示系数矩阵。
步骤3、对网络建立小扰动模型,即:
ΔUfdq=Cn1×ΔiLdq+Cn2×ΔiLinedq (2)
式中,ΔiLdq为负荷支路流过负荷的电流偏差,ΔiLinedq为分布式电源之间的电流偏差,Cn1,Cn2表示系数矩阵。
步骤4、逆变器模块的控制系统采用基于阻性的下垂控制,功角或频率通过无功功率来进行调节,逆变器的电压通过调节有功功率来进行调节;
P-U下垂曲线即有功功率—电压下垂曲线,方程如下:
U=Un-mp(P-Pn);
其中,U为逆变器输出的电压,Un为逆变器的额定的输出电压,P为逆变器输出的有功功率,Pn为逆变器输出的额定有功功率,mp为有功功率下垂系数。
Q-f下垂曲线即无功功率—频率下垂曲线,方程如下:
f=fn+nq(Q-Qn);
其中,f为逆变器的输出频率,fn为逆变器的额定的输出频率,Q为逆变器输出的无功功率,Qn为逆变器输出的额定无功功率,nq为无功功率下垂系数,当系统阻抗呈现为阻性时,无功功率和有功功率可以实现解耦。传统的下垂控制,得到有功功率和无功功率的表达式,取其微分形式,改变频率对有功产生较大影响,改变电压对无功产生较大影响;本实施例的新型下垂控制,可以通过逆变器向母线注入的有功和无功的表达式可以发现,取其微分形式,可以发现改变频率对无功功率产生影响,改变电压对有功功率产生影响,这种改变一个量只对一个量产生影响,实现解耦过程。
本实施例的逆变器模块的控制系统包括P-U/Q-f下垂控制器、电压电流环控制环节及接口电路的LC滤波器和耦合电抗;
步骤5、通过Park变换将三相静止坐标系转化为dq两相同步旋转坐标系,将各模块在各自的坐标系上建立小扰动模型,选择参考坐标系,再通过坐标变换,得到逆变器完整的小扰动模型,包括:
控制单元的小扰动模型为:
其中,下垂控制线性化的表达式为:
其中,分别表示电压和频率偏差的求导,分别表示逆变器有功功率和无功功率偏差的求导值。
步骤6、建立下垂控制器的小扰动模型,表达式为:
式中,表示控制器在旋转坐标系下的输出到电压电流环的电压参考值偏差的导数,ΔUdqref表示表示控制器输出到电压电流环的电压参考值的偏差,ΔP,ΔQ分别表示逆变器有功功率的偏差和无功功率的偏差,Δil1dq表示滤波电路的电感电流偏差,ΔUcdq、Δil2dq表示输入功率计算模块的电压偏差和电流的偏差,A1,A2,A3,A4表示系数矩阵,其中下文下标为dq的量均表示类似列向量。
步骤7、构建电压电流环的小扰动模型为:
式中,ΔUidqref表示经过电压电流环输出到逆变单元的电压偏差,Δidq,ΔUdq分别表示正交派克变换后所得的d/q轴电压偏差和电流偏差,Δf表示系统频率偏差。A5,A6,A7,A8,A9表示系数矩阵。
步骤8、构建接口电路的小扰动模型为:
式中,分别表示滤波电容的电压偏差的导数、电流偏差的导数和耦合电感的电流偏差的导数,ΔUidq为逆变器输出的电压偏差。ΔUfdq为馈线上的电压偏差,A10,A11,A12,A13表示系数矩阵。令ΔUidqref=ΔUidq,模型(6)可化简。
步骤9、联立模型(3)、(4)、(5)、(6)可得逆变器的整体小扰动模型,即为:
式中,ΔX为状态变量,代表状态变量ΔX的导数
其中
其中k表示逆变器的数量,ΔPk、ΔQk分别代表第k个逆变器有功功率和无功功率的偏差,Δfk表示第k个逆变器的频率偏差,ΔUkdqref表示第k个控制器在旋转坐标系下的输出到电压电流环的电压参考值偏差,Δikdq和ΔUkdq分别表示第k个控制器正交派克变换后所得的d/q轴电压和电流偏差值,ΔUckdq和Δil2kdq分别表示第k个逆变器输入功率计算模块的电压和电流的偏差,Δil1kdq表示第k个逆变器的滤波电路的电感电流偏差。ΔUfkdq表示第k个逆变器馈线上的电压偏差,下标1,2…k表示第k个逆变器与网络馈线的连接节点,A、B表示系数矩阵。
步骤10、综合网络及负荷的小扰动模型(1)、(2)和低压下垂控制的逆变器的小扰动数学模型(7),可得微电网的整体小扰动数学模型,为:
式中,Am为系统状态矩阵。
状态矩阵Am特征值对矩阵元素的灵敏度可表示为:
对于特征值的灵敏度抽取典型分析对系统的影响。
步骤11、根据所提出的微电网的小扰动数学模型,计算一些提供的初始参数和系统参数状态下状态矩阵Am的特征值,根据系统的状态特征值分布;
如果特征值的实部均为负,表明微网在小扰动下呈现衰减振荡,能保持小扰动下的稳定;
若有特征值的实部为正,则系统不稳定,对于不稳定的特征根,对其进行灵敏度分析。
特征值的灵敏度可以反映参数变化引起相应特征值变化的大小,从而反映参数变化对系统扰动相应特性的影响程度,通过计算特征根灵敏度,得出电压电流环的比例系数对系统小扰动的稳定性的影响较大,积分系数影响较小,其结果与特征值分析一致。通过特征值灵敏度的分析结果可为控制器参数的优化提供依据,通过改变相对应的参数大小,再次计算特征根分析系统的稳定性。
本发明的实施例的上述描述是为了示例和说明的目的而给出的。它们并不是穷举性,也不意于将本发明限制于这些精确描述的内容,在上述教导的指引下,还可以有许多改动和变化。这些实施例被选中和描述仅是为了最好解释本发明的原理以及它们的实际应用,从而使得本领域技术人员能够更好地在各种实施例中并且使用适合于预期的特定使用的各种改动来应用本发明。因此,应当理解的是,本发明意欲覆盖在下面权利要求范围内的所有改动和等同。

Claims (10)

1.一种低压微电网小扰动稳定性分析方法,将低压微电网分为网络负荷模块和逆变器模块,其特征在于:所述逆变器模块采用阻性下垂曲线P-U/Q-f作为控制方式,P-U下垂曲线为有功功率-电压下垂曲线,Q-f下垂曲线为无功功率-频率下垂曲线。
2.根据权利要求1所述一种低压微电网小扰动稳定性分析方法,其特征在于:上述P-U下垂曲线方程为U=Un-mp(P-Pn),U为逆变器输出的电压,Un为逆变器的额定的输出电压,P为逆变器输出的有功功率,Pn为逆变器输出的额定有功功率,mp为有功功率下垂系数;
Q-f下垂曲线方程为f=fn+nq(Q-Qn),f为逆变器的输出频率,fn为逆变器的额定的输出频率,Q为逆变器输出的无功功率,Qn为逆变器输出的额定无功功率,nq为无功功率下垂系数。
3.根据权利要求2所述一种低压微电网小扰动稳定性分析方法,其特征在于:所述逆变器模块的小扰动模型的构建方法包括构建控制单元小扰动模型、电压电流环小扰动模型和接口电路小扰动模型,将控制单元小扰动模型、电压电流环小扰动模型和接口电路小扰动模型联立得到逆变器模块的小扰动模型。
4.根据权利要求3所述一种低压微电网小扰动稳定性分析方法,其特征在于:所述下垂曲线方程线性化处理后得到下垂控制线性化的表达式为:
式中,分别表示电压偏差的求导和频率偏差的求导,分别表示逆变器有功功率和无功功率偏差的求导值。
5.根据权利要求3所述一种低压微电网小扰动稳定性分析方法,其特征在于:建立下垂控制单元小扰动模型,表达式为:
式中,表示控制器在旋转坐标系下的输出到电压电流环的电压参考值偏差的导数,ΔUdqref表示表示控制器输出到电压电流环的电压参考值的偏差,ΔP,ΔQ分别表示逆变器有功功率和无功功率的偏差,Δil1dq表示滤波电路的电感电流偏差,ΔUcdq、Δil2dq表示输入功率计算模块的电压偏差和电流的偏差,A1,A2,A3,A4表示系数矩阵,其中
6.根据权利要求3所述一种低压微电网小扰动稳定性分析方法,其特征在于:所述电压电流环小扰动模型的表达式为:
上式中,ΔUidqref表示经过电压电流环输出到逆变单元的电压偏差,Δidq,ΔUdq分别表示正交派克变换后所得的d/q轴电流偏差和电压偏差,Δf表示系统频率偏差,A5,A6,A7,A8,A9表示系数矩阵。
7.根据权利要求3所述一种低压微电网小扰动稳定性分析方法,其特征在于:接口电路的小扰动模型为:
上式中,分别表示滤波电容的电压偏差的导数、电流偏差的导数和耦合电感的电流偏差的导数,ΔUidq为逆变器输出的电压偏差,ΔUfdq为馈线上的电压偏差,A10,A11,A12,A13表示系数矩阵,令ΔUidqref=ΔUidq
8.根据权利要求3所述一种低压微电网小扰动稳定性分析方法,其特征在于:所述逆变器模块的小扰动模型的表达式如下:
式中,ΔX为状态变量,代表状态变量ΔX的导数,其中:
式中,k表示逆变器的数量,ΔPk、ΔQk分别代表第k个逆变器有功功率和无功功率的偏差,Δfk表示第k个逆变器的频率偏差,ΔUkdqref表示第k个控制器在旋转坐标系下的输出到电压电流环的电压参考值偏差,Δikdq和ΔUkdq分别表示第k个控制器正交派克变换后所得的d/q轴电压偏差值和电流偏差值,ΔUckdq和Δil2kdq分别表示第k个逆变器输入功率计算模块的电压的偏差和电流的偏差,Δil1kdq表示第k个逆变器的滤波电路的电感电流偏差;
ΔUfkdq表示第k个逆变器馈线上的电压偏差,下标1,2…k表示第k个逆变器与网络馈线的连接节点;
A、B表示系数矩阵。
9.根据权利要求3所述一种低压微电网小扰动稳定性分析方法,其特征在于:所述网络负荷模块的小扰动模型包括:
负荷小扰动模型:
式中,为状态变量ΔiLdq的导数,状态变量ΔiLkdq为第k条负荷支路流过负荷的电流偏差,ΔUfdq为馈线电压的偏差;An,Bn1,Bn2表示系数矩阵;
网络小扰动模型:
ΔUfdq=Cn1×ΔiLdq+Cn2×ΔiLinedq
式中,ΔiLdq为负荷支路流过负荷的电流偏差,ΔiLinedq为分布式电源之间的电流偏差,Cn1,Cn2表示系数矩阵。
10.根据权利要求9所述一种低压微电网小扰动稳定性分析方法,其特征在于:将负荷小扰动模型、网络小扰动模型和逆变器模块小扰动模型综合,得到低压微电网小扰动模型,表达式为:
式中,Am为系统状态矩阵;
计算状态矩阵Am的特征值,根据特征值的分布对微电网稳定性进行分析,具体分析方法包括:
如果特征值的实部均为负,表明微网在小扰动下呈现衰减振荡,能保持小扰动下的稳定;
若有特征值的实部为正,则系统不稳定,对于不稳定的特征根,对其进行灵敏度分析,通过改变相应的参数,再次计算特征根分析系统的稳定性。
CN201810629923.1A 2018-06-19 2018-06-19 一种低压微电网小扰动稳定性分析方法 Pending CN108767899A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810629923.1A CN108767899A (zh) 2018-06-19 2018-06-19 一种低压微电网小扰动稳定性分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810629923.1A CN108767899A (zh) 2018-06-19 2018-06-19 一种低压微电网小扰动稳定性分析方法

Publications (1)

Publication Number Publication Date
CN108767899A true CN108767899A (zh) 2018-11-06

Family

ID=63979018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810629923.1A Pending CN108767899A (zh) 2018-06-19 2018-06-19 一种低压微电网小扰动稳定性分析方法

Country Status (1)

Country Link
CN (1) CN108767899A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617127A (zh) * 2019-01-17 2019-04-12 国网山东省电力公司莱芜供电公司 新型微网系统及其逆变器控制策略和小信号建模方法
CN111293721A (zh) * 2020-03-19 2020-06-16 上海交通大学 系统参数不确定下的并网逆变器振荡风险判定方法及系统
CN112165125A (zh) * 2020-10-09 2021-01-01 国电南瑞科技股份有限公司 一种惯量反下垂控制方法及系统
CN113419588A (zh) * 2021-07-01 2021-09-21 湘潭大学 一种基于阻抗特性的两级级联变换器系统稳定性分析方法
CN114614470A (zh) * 2022-01-10 2022-06-10 国网内蒙古东部电力有限公司检修分公司 基于参数识别的特高压交直流电网运行控制方法
CN116345430A (zh) * 2022-11-24 2023-06-27 兰州理工大学 一种微电网的同步振荡有限时间函数投影控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004623A (ja) * 2008-06-18 2010-01-07 Mitsubishi Electric Corp 系統連系インバータ装置
CN102354974A (zh) * 2011-10-13 2012-02-15 山东大学 微电网多目标优化运行控制方法
CN105914783A (zh) * 2016-05-10 2016-08-31 西安交通大学 一种孤岛型微电网小干扰稳定性分析方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004623A (ja) * 2008-06-18 2010-01-07 Mitsubishi Electric Corp 系統連系インバータ装置
CN102354974A (zh) * 2011-10-13 2012-02-15 山东大学 微电网多目标优化运行控制方法
CN105914783A (zh) * 2016-05-10 2016-08-31 西安交通大学 一种孤岛型微电网小干扰稳定性分析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张建华 等: "逆变型分布式电源微网小信号稳定性动态建模分析", 《电力系统自动化》 *
纪明伟 等: "基于电压源逆变器的微电网控制策略", 《合肥工业大学学报(自然科学版)》 *
许吉强 等: "低压微电网逆变器的自调节下垂系数控制策略", 《电机与控制应用》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617127A (zh) * 2019-01-17 2019-04-12 国网山东省电力公司莱芜供电公司 新型微网系统及其逆变器控制策略和小信号建模方法
CN109617127B (zh) * 2019-01-17 2023-03-24 国网山东省电力公司莱芜供电公司 新型微网系统及其逆变器控制策略和小信号建模方法
CN111293721A (zh) * 2020-03-19 2020-06-16 上海交通大学 系统参数不确定下的并网逆变器振荡风险判定方法及系统
CN111293721B (zh) * 2020-03-19 2023-06-06 上海交通大学 系统参数不确定下的并网逆变器振荡风险判定方法及系统
CN112165125A (zh) * 2020-10-09 2021-01-01 国电南瑞科技股份有限公司 一种惯量反下垂控制方法及系统
CN113419588A (zh) * 2021-07-01 2021-09-21 湘潭大学 一种基于阻抗特性的两级级联变换器系统稳定性分析方法
CN114614470A (zh) * 2022-01-10 2022-06-10 国网内蒙古东部电力有限公司检修分公司 基于参数识别的特高压交直流电网运行控制方法
CN116345430A (zh) * 2022-11-24 2023-06-27 兰州理工大学 一种微电网的同步振荡有限时间函数投影控制方法
CN116345430B (zh) * 2022-11-24 2023-10-10 兰州理工大学 一种微电网的同步振荡有限时间函数投影控制方法

Similar Documents

Publication Publication Date Title
CN108767899A (zh) 一种低压微电网小扰动稳定性分析方法
CN111541274B (zh) 一种基于虚拟同步发电机特性的孤岛微电网控制方法
Iov et al. Wind turbine blockset in Matlab/Simulink-general overview and description of the models
CN108280271B (zh) 基于开关周期平均原理的统一潮流控制器等效建模方法
CN104377697B (zh) 模拟同步发电机动态特性的电压源换流站的控制方法
CN108880300B (zh) 一种基于双闭环控制的双馈风机整流器阻抗计算方法
CN105914783A (zh) 一种孤岛型微电网小干扰稳定性分析方法
CN109921421B (zh) 双馈风电机组输出谐波电流模型建立方法
CN111239491B (zh) 采用实物控制器扰动注入的广义阻抗实时实验测量方法
CN104993494B (zh) 一种基于四象限电力电子变流器的电机模拟装置及方法
CN106953317A (zh) 电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法
CN109256803A (zh) 虚拟同步机孤岛运行小信号建模及参数灵敏度计算方法
CN108923463A (zh) 考虑锁相环的单相lcl型并网逆变器的频率耦合建模方法
CN113131521A (zh) 虚拟同步机多机并联稳定控制及其惯量匹配方法
Adzic et al. PLL synchronization in grid-connected converters
CN109066784A (zh) 一种基于分岔理论的微电网稳定性控制方法
CN107154650A (zh) 一种混合微网中交直流断面多换流器的协调控制方法
Zong et al. Accurate aggregated modelling of wind farm systems in modified sequence domain for stability analysis
CN111917132A (zh) 提高多逆变器并联低压微电网下垂控制系统鲁棒性的方法
CN108574276A (zh) 一种基于频率注入的直流微电网功率均分控制方法及系统
CN116054190A (zh) 一种双馈风电场控制参数对次同步振荡影响的分析方法
CN103928935B (zh) 一种静止同步补偿电路及其解耦控制方法
CN111157798A (zh) 一种基于实时仿真机和实物控制器的阻抗测量系统
Chen et al. Control induced explicit time-scale separation to attain dc voltage stability for a vsc-hvdc terminal
Leon et al. Modeling, control, and reduced-order representation of modular multilevel converters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181106

WD01 Invention patent application deemed withdrawn after publication