CN108714423A - 一种水处理用复合磁性纳米催化材料及其制备和应用 - Google Patents

一种水处理用复合磁性纳米催化材料及其制备和应用 Download PDF

Info

Publication number
CN108714423A
CN108714423A CN201810430244.1A CN201810430244A CN108714423A CN 108714423 A CN108714423 A CN 108714423A CN 201810430244 A CN201810430244 A CN 201810430244A CN 108714423 A CN108714423 A CN 108714423A
Authority
CN
China
Prior art keywords
magnetic
nano
composite
preparation
water process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810430244.1A
Other languages
English (en)
Other versions
CN108714423B (zh
Inventor
吕剑
武君
孙琪
张宇轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Institute of Coastal Zone Research of CAS
Original Assignee
Yantai Institute of Coastal Zone Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Institute of Coastal Zone Research of CAS filed Critical Yantai Institute of Coastal Zone Research of CAS
Priority to CN201810430244.1A priority Critical patent/CN108714423B/zh
Publication of CN108714423A publication Critical patent/CN108714423A/zh
Application granted granted Critical
Publication of CN108714423B publication Critical patent/CN108714423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及环保技术及功能材料技术领域,具体说是一种水处理用复合磁性纳米催化材料的制备及其在催化氧化处理废水中的应用。首先,采用二价铁盐和三价铁盐按一定比例混合,添加聚乙二醇、葡萄糖酸钠、柠檬酸铵等作为合成助剂,在碱性条件下制备磁性Fe3O4纳米颗粒;随后,将Fe3O4纳米颗粒经稀酸及十六烷基三甲基溴化铵(CTAB)溶液处理后与镁离子混合,在碱液调节下制备磁性Mg(OH)2@Fe3O4复合纳米颗粒;最后,将制得的复合磁性纳米材料浸于活性金属离子溶液中,促进形成晶格缺陷活性位点,进一步强化催化氧化效果。所得磁性复合纳米催化材料性质稳定,制备工艺简易,原料廉价易得,为多用途的环境友好性材料。

Description

一种水处理用复合磁性纳米催化材料及其制备和应用
技术领域
本发明涉及环保技术及功能材料技术领域,具体说是一种水处理用复合磁性纳米催化材料及其制备方法和在催化氧化处理废水中的应用。
背景技术
随着社会的进步和国民经济的快速发展,各种环境污染加剧,其中,水资源滥采滥用及污水废水的乱排乱放严重危害人类健康,水环境保护引起了人类社会的广泛关注,水处理技术也不断发展起来。近年来,高级氧化技术(Advanced Oxidation Process,简称AOPs)不断发展,被广泛应用于水中难降解污染物的去除。AOPs产生具有强氧化能力的羟基自由基,在高温高压、电催化、光催化、催化剂等反应条件下,将大分子难降解物质氧化为低毒或无毒的小分子物质,加快废水中污染物与氧化剂间的化学反应,实现污染物的去除。根据反应条件和自由基产生方式的不同,AOPs可分为光催化氧化、臭氧氧化、Fenton/类Fenton氧化、电化学氧化等。AOPs在环境内分泌干扰物、抗生素、耐药菌及抗生素抗性基因(ARGs)等有害物质的去除方面具有广阔的应用前景。
金属催化氧化技术是近年发展起来的一种较为新颖和高效的方法,以金属盐或其氧化物为催化剂,加强氧化反应,显著提高水体中高稳定性有机物的分解效果。同时,金属催化氧化技术具有氧化效率高、反应迅速、适用范围广、高稳定难降解有机物去除效率高等优点,得到研究者的广泛研究。洪浩峰等人在“臭氧催化氧化处理苯酚废水研究”一文中,以活性炭负载金属Fe、Cu、Mn氧化物,对模拟苯酚废水进行臭氧催化氧化技术的比较,催化氧化效果明显,Fe氧化物的活性相对较高(《环境科学与技术》,2010,33(7):301-304)。黄挺等人在“Fe0类芬顿法深度处理制药废水”一文中,以零价铁作为类芬顿反应中的催化剂,对某制药集团经生化处理后的制药废水进行深度处理,结果表明COD去除率20%时,可有效提高废水B/C比,且Fe0重复利用效果良好,为制药废水的深度处理提供了参考(《环境工程学报》,2017,11(11):5892-5896)。石振武等人在“纳米复合材料Ag@TiO2@SiO2的制备、光催化及其抑菌性能”一文中,以SiO2为模板,制备核壳纳米Ag@TiO2@SiO2复合材料,以罗丹明为目标污染物研究复合材料的光催化性能,测试对金黄色葡萄球菌和大肠杆菌的抑菌性能,结果显示复合材料具有良好的催化性能和抑菌性能(《无机材料学报》,2016,31(5):466-472)。
纳米氢氧化镁作为一种环境友好的无机纳米材料,具有吸附能力强、比表面积大、制备成本低等特点,在水处理领域、医药领域、阻燃填充领域等都得到广泛应用,如重金属脱除、含酸废水中和、塑料阻燃填充及缓泻剂制备等。但是,普通纳米氢氧化镁材料由于颗粒细小,制备后的收集难度和能耗较大,同时,使用过程中易于流失且难以回收重复利用。赋磁后的纳米颗粒可通过磁场进行快速低能耗收集,并多次回收再利用。然而,目前尚未有将纳米氢氧化镁负载于磁性颗粒表面形成核壳结构磁化纳米净水材料,并将其应用于催化高级氧化技术方面的报道。
发明内容
本发明的目的在于针对现有技术的不足,提供一种水处理用复合磁性纳米催化材料及其制备方法和催化氧化处理废水中的应用。
为实现上述目的,本发明采用的技术方案为:
一种水处理用复合磁性纳米催化材料的制备方法,其特征在于:
(1)磁性Fe3O4纳米颗粒的合成:将二价铁盐与三价铁盐混合均匀溶于水中,而后加入聚乙二醇、葡萄糖酸钠和柠檬酸铵,加入后使混合液中聚乙二醇终浓度为2.0%~4.0%、葡萄糖酸钠终浓度为0.1%~0.5%和柠檬酸铵终浓度为1.0%~5.0%,并控制反应体系总铁浓度为0.02~0.20mol/L,水浴恒温50~80℃,加入碱液调节体系pH≥10.0,反应1~3h得磁性Fe3O4纳米颗粒,备用;
(2)磁性Mg(OH)2@Fe3O4复合纳米材料的制备:上述所得磁性Fe3O4纳米颗粒经酸处理后均匀分散在CTAB溶液中,加入木质素磺酸盐至其在分散液中终浓度为0.2%~1.0%,混合溶液超声处理后,加入镁离子溶液,于室温下反应1~2h后,加入碱液调节体系pH≥12.0,50℃下反应4~5h,自然冷却至室温,得磁性Fe3O4@Mg(OH)2复合纳米颗粒,备用;
(3)磁性Mg(OH)2@Fe3O4复合纳米材料的表面修饰:将上述磁性Fe3O4@Mg(OH)2复合纳米颗粒浸于活性金属离子溶液中,浸泡液中活性金属离子终浓度为40~60mg/L,磁性复合纳米颗粒终浓度控制在0.15~1.0g/L,反应1~10min,磁力收集复合磁性纳米材料。
所述步骤(1)中二价铁盐选用FeSO4·7H2O,三价铁盐选用FeCl3·6H2O,两者质量比为1:1~3,总铁浓度控制在0.02~0.20mol/L范围内。
所述步骤(1)和步骤(2)中向反应体系中边搅拌边滴加碱液,调节溶液pH,所述碱液为氨水、NaOH溶液、KOH溶液中的一种或几种。
所述步骤(2)中磁性Fe3O4纳米颗粒经酸处理后均匀分散在CTAB溶液中,Fe3O4纳米颗粒添加量为1.0~3.0g/L,CTAB浓度为4.0~6.0g/L。
所述步骤(2)中镁离子溶液为含镁离子浓度为0.4~0.6mol/L的人工配制盐水、卤水或海水。
所述步骤(2)中木质素磺酸盐为木质素磺酸钠、木质素磺酸镁、木质素磺酸钙中的一种或几种。
所述步骤(3)活性金属离子溶液中活性金属为Li、Cu、Co、Mn、Ni、Ti中的一种或几种。
一种制备方法制得水处理用复合磁性纳米催化材料,其特征在于:按上述方法制备获得水处理用磁性Mg(OH)2@Fe3O4复合纳米催化材料。
一种水处理用复合磁性纳米催化材料的应用,所述磁性Mg(OH)2@Fe3O4复合纳米材料作为催化剂应用于催化氧化处理废水。
所述废水中的污染物为四环素、诺氟沙星、磺胺噻唑、甲硝唑、硝基苯、壬基酚、双酚A、硝基苯酚、雌二醇、耐药菌、病原菌、抗生素抗性基因(ARGs)等污染物中的一种或几种。
磁性Mg(OH)2@Fe3O4复合纳米催化材料应用于催化氧化处理废水,作为催化剂,通过催化臭氧氧化、类Fenton氧化、光催化氧化等高级氧化过程,既能高效去除废水中环境内分泌干扰物、抗生素等难降解有机物,又也能去除耐药菌、病原菌、抗生素抗性基因(ARGs)等物质,提高氧化效率,大幅降低废水处理成本。
本发明所具有的优点:
(1)本发明所述磁性Mg(OH)2@Fe3O4复合纳米催化材料的制备,Mg(OH)2负载于Fe3O4纳米颗粒表面,制备的核壳结构磁性材料可通过磁场进行快速低能耗收集并多次回收再利用。材料表面Mg(OH)2作为弱碱性试剂,缓冲性能好,反应活性强,吸附性能好,在中和酸性液体的同时,可吸附各种重金属离子,且具有抗菌性能,安全无毒无害,是绿色安全水处理剂。
(2)本发明所述磁性Mg(OH)2@Fe3O4复合纳米催化材料浸于活性金属溶液中,对磁性复合纳米材料进行表面修饰,促进形成晶格缺陷活性位点,对催化氧化具有较好的强化效果。
(3)本发明所述磁性Mg(OH)2@Fe3O4复合纳米材料为多用途的环境友好性材料,可催化氧化去除水中难降解有机物、抗生素抗性基因(ARGs)、病原菌、耐药菌等多种污染物。复合纳米材料性质稳定,制备工艺简易,原料廉价易得。制备用镁离子选自镁盐水溶液或富含镁离子的卤水与海水。自然界中,大量的镁以氯化物和硫酸盐形式溶解于海水和卤水中,该材料制备用镁离子来源广泛,具有较高的综合开发利用价值。
具体实施方式
下面通过实施例对本发明进一步说明,然而本发明并不局限于以下实施例。
实施例1
一种水处理用复合磁性纳米催化材料的制备及其在催化臭氧氧化去除水体中甲硝唑的应用。具体步骤如下:
(1)磁性Fe3O4纳米颗粒的合成:将二价铁盐(FeSO4·7H2O)与三价铁盐(FeCl3·6H2O)按质量比为1:2的比例混合均匀,加入终浓度2.0%的聚乙二醇、终浓度0.1%的葡萄糖酸钠和终浓度1.0%的柠檬酸铵,混合溶液置于三口烧瓶中,控制总铁浓度为0.05mol/L,水浴恒温50℃,边搅拌边逐滴加入NH3·H2O,至反应体系pH调节至pH≥10.0,反应2h。反应结束后,蒸馏水反复洗涤至中性,磁力收集磁性Fe3O4纳米颗粒,干燥备用。
(2)磁性Mg(OH)2@Fe3O4复合纳米材料的制备:将已制备好的Fe3O4纳米颗粒经稀盐酸(0.1N)处理后均匀分散在CTAB溶液中,其中,Fe3O4纳米颗粒添加量为1.0g/L,CTAB浓度为5.0g/L,随后加入终浓度0.2%的木质素磺酸钙,混合溶液超声处理后,加入MgCl2水溶液(镁离子浓度为0.5mol/L),于室温下反应2h,边搅拌边滴加氨水(25%,以氨计),调节pH=12.4,50℃下反应4h,自然冷却至室温,产物经蒸馏水和乙醇洗涤数次,即得磁性Mg(OH)2@Fe3O4复合纳米颗粒,60℃下烘干备用。
(3)磁性Mg(OH)2@Fe3O4复合纳米材料的表面修饰:将已制得的磁性Mg(OH)2@Fe3O4复合纳米材料浸于LiCl水溶液中(50mg/L),浓度为0.20g/L,反应10min,磁力收集复合磁性纳米材料,干燥密封备用。
(4)将制备所得磁性复合纳米材料用于催化臭氧氧化反应,研究水体中甲硝唑的去除效果。取初始浓度为100mg/L的甲硝唑溶液为研究对象,臭氧通量为0.1L/min,磁性Mg(OH)2@Fe3O4复合纳米材料添加量为0.5g/L,相较于单独臭氧氧化,添加磁性复合纳米材料后,甲硝唑的去除率提高了35.2%。
实施例2
一种水处理用复合磁性纳米催化材料的制备及其在催化类Fenton氧化去除水体中硝基苯酚和双酚A的应用。具体步骤如下:
(1)磁性Fe3O4纳米颗粒的合成:将二价铁盐(FeSO4·7H2O)与三价铁盐(FeCl3·6H2O)按质量比为1:2的比例混合均匀,加入终浓度2.5%的聚乙二醇、终浓度0.2%的葡萄糖酸钠和终浓度2.0%的柠檬酸铵,混合溶液置于三口烧瓶中,控制总铁浓度为0.10mol/L,水浴恒温50℃,边搅拌边逐滴加入NaOH溶液,至反应体系pH调节至pH≥10.0,反应1h。反应结束后,蒸馏水反复洗涤至中性,磁力收集磁性Fe3O4纳米颗粒,干燥备用。
(2)磁性Mg(OH)2@Fe3O4复合纳米材料的制备:将已制备好的Fe3O4纳米颗粒经稀盐酸(0.1N)处理后均匀分散在CTAB溶液中,其中,Fe3O4纳米颗粒添加量为2.0g/L,CTAB浓度为5.0g/L,随后加入终浓度0.5%的木质素磺酸钠,混合溶液超声处理后,加入卤水(镁离子浓度为0.5mol/L),于室温下反应1h,边搅拌边滴加NaOH溶液,调节pH=12.4,50℃下反应4h,自然冷却至室温,产物经蒸馏水和乙醇洗涤数次,即得磁性Fe3O4@Mg(OH)2复合纳米颗粒,60℃下烘干备用。
(3)磁性Mg(OH)2@Fe3O4复合纳米材料的表面修饰:将已制得的磁性Mg(OH)2@Fe3O4复合纳米材料浸于CuCl2和CoCl2的混合水溶液中(铜离子与钴离子浓度均为25mg/L),浓度为0.5g/L,反应10min,磁力收集复合磁性纳米材料,干燥密封备用。
(4)配制硝基苯酚(C0=50mg/L)和双酚A(C0=50mg/L)的混合水溶液,加入磁性Mg(OH)2@Fe3O4复合纳米材料(0.50g/L)和双氧水(0.05g/L),充分混合并不断搅拌,研究水中硝基苯酚和双酚A的去除效果。相较于Fenton氧化(Fe2+和H2O2体系),磁性复合纳米材料用于催化类Fenton氧化反应,使得硝基苯酚的去除率提高了45.3%,双酚A的去除率提高了43.0%。
实施例3
一种水处理用复合磁性纳米催化材料的制备及其在进一步催化光催化氧化去除水体中雌二醇的应用。具体步骤如下:
(1)磁性Fe3O4纳米颗粒的合成:将二价铁盐(FeSO4·7H2O)与三价铁盐(FeCl3·6H2O)按质量比为1:2的比例混合均匀,加入终浓度2.0%的聚乙二醇、终浓度0.1%的葡萄糖酸钠和终浓度2.0%的柠檬酸铵,混合溶液置于三口烧瓶中,控制总铁浓度为0.10mol/L,水浴恒温50℃,边搅拌边逐滴加入NaOH溶液,至反应体系pH调节至pH≥10.0,反应1h。反应结束后,蒸馏水反复洗涤至中性,磁力收集磁性Fe3O4纳米颗粒,干燥备用。
(2)磁性Mg(OH)2@Fe3O4复合纳米材料的制备:将已制备好的Fe3O4纳米颗粒经稀盐酸(0.1N)处理后均匀分散在CTAB溶液中,其中,Fe3O4纳米颗粒添加量为1.5g/L,CTAB浓度为5.0g/L,随后加入终浓度0.5%的木质素磺酸钠,混合溶液超声处理后,加入海水(镁离子浓度为0.6mol/L),于室温下反应1h,边搅拌边滴加NaOH溶液,调节pH=12.4,50℃下反应4h,自然冷却至室温,产物经蒸馏水和乙醇洗涤数次,即得磁性Fe3O4@Mg(OH)2复合纳米颗粒,60℃下烘干备用。
(3)磁性Mg(OH)2@Fe3O4复合纳米材料的表面修饰:将已制得的磁性Mg(OH)2@Fe3O4复合纳米材料浸于TiCl4水溶液中(50mg/L),浓度为0.5g/L,反应10min,磁力收集复合磁性纳米材料,干燥密封备用。
(4)配制雌二醇水溶液(C0=100mg/L),投加0.1%的TiO2和磁性Mg(OH)2@Fe3O4复合纳米材料(0.6g/L),避光条件下混合均匀,开启稳定紫外光并充分搅拌反应体系,研究水中雌二醇的去除效果。相较于单独TiO2光催化氧化效果,添加磁性Mg(OH)2@Fe3O4复合纳米材料后,雌二醇的去除率提高了38.3%。
实施例4
一种水处理用复合磁性纳米催化材料的制备及其在催化臭氧氧化去除水体中耐药菌及ARGs的应用。具体步骤如下:
(1)磁性Fe3O4纳米颗粒的合成:将二价铁盐(FeSO4·7H2O)与三价铁盐(FeCl3·6H2O)按质量比为1:2的比例混合均匀,加入终浓度2.0%的聚乙二醇、终浓度0.5%的葡萄糖酸钠和终浓度4.0%的柠檬酸铵,混合溶液置于三口烧瓶中,控制总铁浓度为0.20mol/L,水浴恒温50℃,边搅拌边逐滴加入KOH溶液,至反应体系pH调节至pH≥10.0,反应3h。反应结束后,蒸馏水反复洗涤至中性,磁力收集磁性Fe3O4纳米颗粒,干燥备用。
(2)磁性Mg(OH)2@Fe3O4复合纳米材料的制备:将已制备好的Fe3O4纳米颗粒经稀盐酸(0.1N)处理后均匀分散在CTAB溶液中,其中,Fe3O4纳米颗粒添加量为3.0g/L,CTAB浓度为5.0g/L,随后加入终浓度0.8%的木质素磺酸镁,混合溶液超声处理后,加入MgCl2水溶液(镁离子浓度为0.5mol/L),于室温下反应2h,边搅拌边滴加KOH溶液,调节pH=12.4,50℃下反应4h,自然冷却至室温,产物经蒸馏水和乙醇洗涤数次,即得磁性Fe3O4@Mg(OH)2复合纳米颗粒,60℃下烘干备用。
(3)磁性Mg(OH)2@Fe3O4复合纳米材料的表面修饰:将已制得的磁性Mg(OH)2@Fe3O4复合纳米材料浸于活性金属MnCl2和NiCl2的混合水溶液中(锰离子镍离子浓度均为25mg/L),浓度为1.0g/L,反应10min,磁力收集复合磁性纳米材料,干燥密封备用。
(4)将制备所得磁性复合纳米材料用于催化臭氧氧化反应,研究水体中耐药菌和ARGs的去除效果。取耐药菌含量为5.2×106CFU/mL,ARGs含量为2.8×106copies/mL的废水为研究对象,臭氧通量为0.1L/min,磁性Mg(OH)2@Fe3O4复合纳米材料添加量为1.0g/L,相较于单独臭氧氧化,耐药菌的去除率提高了27.5%,ARGs的去除率提高了20.6%。

Claims (10)

1.一种水处理用复合磁性纳米催化材料的制备方法,其特征在于:
(1)磁性Fe3O4纳米颗粒的合成:将二价铁盐与三价铁盐混合均匀溶于水中,而后加入聚乙二醇、葡萄糖酸钠和柠檬酸铵,控制反应体系总铁浓度为0.02~0.20mol/L,水浴恒温50~80℃,加入碱液调节体系pH≥10.0,反应1~3h得磁性Fe3O4纳米颗粒,备用;
(2)磁性Mg(OH)2@Fe3O4复合纳米材料的制备:上述所得磁性Fe3O4纳米颗粒经酸处理后均匀分散在CTAB溶液中,加入木质素磺酸盐,混合溶液超声处理后,加入镁离子溶液,于室温下反应1~2h后,加入碱液调节体系pH≥12.0,50℃下反应4~5h,自然冷却至室温,得磁性Fe3O4@Mg(OH)2复合纳米颗粒,备用;
(3)磁性Mg(OH)2@Fe3O4复合纳米材料的表面修饰:将上述磁性Fe3O4@Mg(OH)2复合纳米颗粒浸于活性金属离子溶液中,控制混合溶液中磁性复合纳米颗粒浓度在0.15~1.0g/L,反应1~10min,磁力收集复合磁性纳米材料。
2.按权利要求1所述的一种水处理用复合磁性纳米催化材料的制备方法,其特征在于:所述步骤(1)中二价铁盐选用FeSO4·7H2O,三价铁盐选用FeCl3·6H2O,两者质量比为1:1~3,总铁浓度控制在0.02~0.20mol/L范围内。
3.按权利要求1所述的一种水处理用复合磁性纳米催化材料的制备方法,其特征在于:所述步骤(1)和步骤(2)中向反应体系中边搅拌边滴加碱液,调节溶液pH,所述碱液为氨水、NaOH溶液、KOH溶液中的一种或几种。
4.按权利要求1所述的一种水处理用复合磁性纳米催化材料的制备方法,其特征在于:所述步骤(2)中磁性Fe3O4纳米颗粒经酸处理后均匀分散在CTAB溶液中,Fe3O4纳米颗粒添加量为1.0~3.0g/L,CTAB浓度为4.0~6.0g/L。
5.按权利要求1所述的一种水处理用复合磁性纳米催化材料的制备方法,其特征在于:所述步骤(2)中镁离子溶液为含镁离子浓度为0.4~0.6mol/L的海水、卤水或人工配制盐水。
6.按权利要求1所述的一种水处理用复合磁性纳米催化材料的制备方法,其特征在于:所述步骤(2)中木质素磺酸盐为木质素磺酸钠、木质素磺酸镁、木质素磺酸钙中的一种或几种。
7.按权利要求1所述的一种水处理用复合磁性纳米催化材料的制备方法,其特征在于:所述步骤(3)活性金属离子溶液中活性金属为Li、Cu、Co、Mn、Ni、Ti中的一种或几种。
8.一种权利要求1所述的制备方法制得水处理用复合磁性纳米催化材料,其特征在于:按权利要求1的方法制备获得水处理用磁性Mg(OH)2@Fe3O4复合纳米催化材料。
9.一种权利要求8所述的水处理用复合磁性纳米催化材料的应用,其特征在于:所述磁性Mg(OH)2@Fe3O4复合纳米材料作为催化剂应用于催化氧化处理废水。
10.按权利要求9所述的水处理用复合磁性纳米催化材料的应用,其特征在于:所述废水中的污染物为四环素、诺氟沙星、磺胺噻唑、甲硝唑、硝基苯、壬基酚、双酚A、硝基苯酚、雌二醇、耐药菌、病原菌、抗生素抗性基因(ARGs)等污染物中的一种或几种。
CN201810430244.1A 2018-05-08 2018-05-08 一种水处理用复合磁性纳米催化材料及其制备和应用 Active CN108714423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810430244.1A CN108714423B (zh) 2018-05-08 2018-05-08 一种水处理用复合磁性纳米催化材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810430244.1A CN108714423B (zh) 2018-05-08 2018-05-08 一种水处理用复合磁性纳米催化材料及其制备和应用

Publications (2)

Publication Number Publication Date
CN108714423A true CN108714423A (zh) 2018-10-30
CN108714423B CN108714423B (zh) 2020-10-30

Family

ID=63899512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810430244.1A Active CN108714423B (zh) 2018-05-08 2018-05-08 一种水处理用复合磁性纳米催化材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN108714423B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109806889A (zh) * 2019-02-25 2019-05-28 宁夏大学 一种二硫化钼/四氧化三铁磁性纳米复合材料及其制备方法和应用
CN109913200A (zh) * 2019-03-28 2019-06-21 汤新红 一种具有磁性和荧光双重功能的纳米材料及其制备方法
CN110395790A (zh) * 2019-07-30 2019-11-01 中国科学院青海盐湖研究所 一种磁性氢氧化镁复合材料及其制备方法
CN111924955A (zh) * 2020-08-07 2020-11-13 浙江工业大学 一种基于铁基多原子耦合催化剂活化硫酸根治理有机农药的方法
CN113786838A (zh) * 2021-09-22 2021-12-14 杭州诚洁环保有限公司 一种核壳纳米复合材料及其制备方法和应用
CN114524463A (zh) * 2022-03-18 2022-05-24 中南大学 一种超大尺寸高长径比四氧化三铁二维纳米片及其制备方法
CN114772676A (zh) * 2022-04-07 2022-07-22 张胜枚 一种应用于环境治理的磁性纳米颗粒技术
US11584655B2 (en) 2019-05-02 2023-02-21 King Fahd University Of Petroleum And Minerals Method for making mesoporous magnesium hydroxide nanoplates, an antibacterial composition, and a method of reducing nitroaromatic compounds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216780A (ja) * 1982-06-09 1983-12-16 Matsushita Electric Ind Co Ltd 浄水装置
CN106398646A (zh) * 2016-08-22 2017-02-15 中国科学院理化技术研究所 一种包覆型电磁无机纳米复合吸波材料及其制备方法和应用
CN106512943A (zh) * 2016-12-02 2017-03-22 秦皇岛中科瀚祺科技有限公司 一种纳米复合材料及其制备方法和在水处理中的应用
CN107081123A (zh) * 2017-05-26 2017-08-22 湖南农业大学 磁性氢氧化镁吸附剂及其制备方法
CN107159094A (zh) * 2017-05-26 2017-09-15 湖南农业大学 磁性氢氧化镁吸附剂去除废水中四环素的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216780A (ja) * 1982-06-09 1983-12-16 Matsushita Electric Ind Co Ltd 浄水装置
CN106398646A (zh) * 2016-08-22 2017-02-15 中国科学院理化技术研究所 一种包覆型电磁无机纳米复合吸波材料及其制备方法和应用
CN106512943A (zh) * 2016-12-02 2017-03-22 秦皇岛中科瀚祺科技有限公司 一种纳米复合材料及其制备方法和在水处理中的应用
CN107081123A (zh) * 2017-05-26 2017-08-22 湖南农业大学 磁性氢氧化镁吸附剂及其制备方法
CN107159094A (zh) * 2017-05-26 2017-09-15 湖南农业大学 磁性氢氧化镁吸附剂去除废水中四环素的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109806889A (zh) * 2019-02-25 2019-05-28 宁夏大学 一种二硫化钼/四氧化三铁磁性纳米复合材料及其制备方法和应用
CN109913200A (zh) * 2019-03-28 2019-06-21 汤新红 一种具有磁性和荧光双重功能的纳米材料及其制备方法
US11584655B2 (en) 2019-05-02 2023-02-21 King Fahd University Of Petroleum And Minerals Method for making mesoporous magnesium hydroxide nanoplates, an antibacterial composition, and a method of reducing nitroaromatic compounds
US12006224B2 (en) 2019-05-02 2024-06-11 King Fahd University Of Petroleum And Minerals Antibacterial magnesium hydroxide composition
CN110395790A (zh) * 2019-07-30 2019-11-01 中国科学院青海盐湖研究所 一种磁性氢氧化镁复合材料及其制备方法
CN111924955A (zh) * 2020-08-07 2020-11-13 浙江工业大学 一种基于铁基多原子耦合催化剂活化硫酸根治理有机农药的方法
CN113786838A (zh) * 2021-09-22 2021-12-14 杭州诚洁环保有限公司 一种核壳纳米复合材料及其制备方法和应用
CN114524463A (zh) * 2022-03-18 2022-05-24 中南大学 一种超大尺寸高长径比四氧化三铁二维纳米片及其制备方法
CN114524463B (zh) * 2022-03-18 2023-05-26 中南大学 一种超大尺寸高长径比四氧化三铁二维纳米片及其制备方法
CN114772676A (zh) * 2022-04-07 2022-07-22 张胜枚 一种应用于环境治理的磁性纳米颗粒技术

Also Published As

Publication number Publication date
CN108714423B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN108714423A (zh) 一种水处理用复合磁性纳米催化材料及其制备和应用
EP3885039A1 (en) Graphite-like carbon nitride doped modified microsphere catalyst, and preparation method therefor and application thereof
Dong et al. Degradation of sulfamethazine in water by sulfite activated with zero-valent Fe-Cu bimetallic nanoparticles
Wang et al. Photocatalytic degradation of sulfonamides by Bi2O3-TiO2/PAC ternary composite: Mechanism, degradation pathway
CN110801839B (zh) 一种Co2FeAl-LDH及其制备方法和降解污染物的方法
CN102989461B (zh) 磁性铁酸镍光催化材料的制备方法及应用
CN103058346B (zh) 一种废水的处理方法
CN108190976B (zh) 一种废水处理剂、制备方法及其使用方法
CN109809519A (zh) 一种有机-无机复合污水处理剂及其制备方法
CN103241793A (zh) 一种用于处理难降解废水的多功能水处理剂
CN109289857B (zh) 稀土元素掺杂的层状复合金属氢氧化物及其制备与应用
CN108653971A (zh) 一种去除生物医药废渣中残留青霉素类抗生素的方法
CN107252686A (zh) 一种含酚废水的处理方法
Li et al. In-situ preparation of yeast-supported Fe0@ Fe2O3 as peroxymonosulfate activator for enhanced degradation of tetracycline hydrochloride
Ghanbari et al. Degradation of 4-chlorophenol using MnOOH and γ-MnOOH nanomaterials as porous catalyst: Performance, synergistic mechanism, and effect of co-existing anions
Tung et al. Hydrothermal synthesis of CuCoFe layered double hydroxide and its performance in the degradation of antibiotics: Influencing factors, degradation pathways, and reaction mechanism
CN109368764B (zh) 一种强化过硫酸盐氧化的水处理方法
Cui et al. Towards advanced removal of organics in persulfate solution by heterogeneous iron-based catalyst: a review
Huang et al. In-situ synthesis of well-dispersed Cu/Cu2O nanoparticles supported on petaloid SiO2 for efficient degradation of high concentration tetracycline hydrochloride
Liu et al. Recent advances in ultrasound-Fenton/Fenton-like technology for degradation of aqueous organic pollutants
CN104261549A (zh) 一种海绵铁净水剂及其制备方法与应用
Miao et al. Norfloxacin degradation in synthetic human urine using nickel converter slag-laterite heterogeneous Electro-Fenton process
Xu et al. Efficient removal of tetracycline using magnetic MnFe2O4/MoS2 nanocomposite activated peroxymonosulfate: Mechanistic insights and performance evaluation
KR101765889B1 (ko) 난분해성 미량 독성 유기물 제거제, 이의 제조방법 및 이를 포함하는 수처리장치
Guo et al. Tetracycline degradation by activated persulfate with enhancement of ZIF-67 loaded wood-microreactor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant