CN108698029A - 高电荷密度金属硅磷酸盐分子筛sapo-79 - Google Patents

高电荷密度金属硅磷酸盐分子筛sapo-79 Download PDF

Info

Publication number
CN108698029A
CN108698029A CN201780011750.0A CN201780011750A CN108698029A CN 108698029 A CN108698029 A CN 108698029A CN 201780011750 A CN201780011750 A CN 201780011750A CN 108698029 A CN108698029 A CN 108698029A
Authority
CN
China
Prior art keywords
sapo
molar ratio
ammonium
mixture
metallic silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780011750.0A
Other languages
English (en)
Other versions
CN108698029B (zh
Inventor
G·J·刘易斯
L·奈特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Universal Oil Products Co
Original Assignee
Universal Oil Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Oil Products Co filed Critical Universal Oil Products Co
Publication of CN108698029A publication Critical patent/CN108698029A/zh
Application granted granted Critical
Publication of CN108698029B publication Critical patent/CN108698029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

合成了一族新的高电荷密度结晶微孔金属硅磷酸盐,称为SAPO‑79。这些金属硅磷酸盐由以下经验式表示:Rp+ rMm +ExPSiyOz,其中M是碱金属如钾,R是有机铵阳离子如二乙基二甲基铵,E是三价骨架元素如铝或镓。该SAPO‑79族材料代表具有ERI拓扑结构的第一碱稳定磷酸盐基分子筛,且具有用于进行各种烃转化方法的催化性能和分离至少一种组分的分离性能。

Description

高电荷密度金属硅磷酸盐分子筛SAPO-79
优先权声明
本申请要求2016年3月4日提交的美国申请No.62/303543的优先权,其内容通过引用整体并入本文。
发明领域
本发明涉及一族新的高电荷金属硅磷酸盐基分子筛,表示为SAPO-79。它们由以下经验式表示:
Rp+ rMm +ExPSiyOz
其中M是碱金属如钾,R是有机铵阳离子如二乙基二甲基铵,E是三价骨架元素如铝或镓。SAPO-79族材料是具有ERI拓扑结构且具有“Si岛”的第一碱稳定磷酸盐基分子筛。
背景技术
沸石是结晶硅铝酸盐组合物,其是微孔的并且由共角[AlO4/2]-和SiO4/2四面体形成。许多天然存在的和合成制备的沸石用于各种工业方法。使用合适的Si,Al源和结构导向剂(SDA)如碱金属,碱土金属,胺或有机铵阳离子通过水热合成制备合成沸石。结构导向剂居于沸石的孔中,并且主要负责最终形成的特定结构。这些物质平衡了与铝相关的骨架电荷,也可以作为空间填料。沸石的特征在于具有均匀尺寸的孔开口,具有显著的离子交换能力,并且能够可逆地解吸分散在晶体的整个内部空隙中的吸附相而不显著置换构成永久沸石晶体结构的任何原子。沸石可用作烃转化反应的催化剂,其可发生在沸石的外表面上以及沸石孔内的内表面上。
1982年,Wilson等人开发的铝磷酸盐分子筛,即所谓的AlPO,它是微孔材料,具有许多相同的沸石性质,但不含二氧化硅,由[AlO4/2]-和[PO4/2]+四面体组成(见US 4,319,440)。随后,通过用SiO4/2四面体代替[PO4/2]+四面体将电荷引入中性铝磷酸盐骨架中以产生SAPO分子筛(参见US 4,440,871)。将骨架电荷引入中性铝磷酸盐的另一种方法是用[M2+O4/2]2-四面体代替[AlO4/2]-四面体,得到MeAPO分子筛(参见US4,567,039)。还可以通过将SiO4/2和[M2+O4/2]2-四面体引入骨架中而在基于AlPO的分子筛上引入骨架电荷,得到MeAPSO分子筛(参见US 4,973,785)。
US4440871中公开的SAPO分子筛是名为SAPO-17的物种,其具有ERI拓扑结构(参见Database of Zeolite Structures,www.iza-structure.org/databases)。使用胺SDA奎宁环(实施例25,US 4440871)和环己胺(实施例26,US 4440871)公开了几种不同的SAPO-17途径,其产生少量Si取代,环己胺SDA产生组合物(环己胺)0.245Al1.33Si0.048P。类似地,SAPO-17也仅使用Valyocsik和von Ballmoos的己烷双胺SDA制备(参见US 4778780)。
最近,Lewis等人开发了高磷酸盐溶液化学,导致更高电荷密度SAPO,MeAPO和MeAPSO材料,使用乙基三甲基铵(ETMA+)和二乙基二甲基铵(DEDMA+)SDA使得SiO4/2和[M2+O4/2]2-分别能够更多地被取代到[PO4/2]+和[AlO4/2]-的骨架中。这些材料包括ZnAPO-57(US8871178),ZnAPO-59(US8871177)和ZnAPO-67(US8697927)和MeAPSO-64(US8696886)。在文献中概述了增加的产物电荷密度和反应参数之间的关系,即ETMAOH(DEDMAOH)/H3PO4比(参见Microporous and Mesoporous Materials,189,2014,49-63)。
申请人现在合成了一族新的带电荷金属硅磷酸盐骨架材料,其具有比上述那些甚至更高的电荷密度,称为SAPO-79。SAPO-79材料是具有ERI拓扑结构的第一碱稳定微孔磷酸盐(参见Database of Zeolite Structures,www.iza-structure.org/databases)且在混合有机铵/碱SDA体系中合成,例如DEDMA+/K+。碱在SAPO基体系中的应用是不常见的,并且在此需要实现更高的电荷密度。SAPO-79材料含有“Si岛”且在至少500℃下热稳定。
发明内容
如上所述,本发明涉及称为SAPO-79的一族新的金属硅磷酸盐分子筛。因此,本发明的一个实施方案是具有[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架和以合成形式和以无水为基础由如下经验式表示的经验组成的微孔结晶材料:
Rp+ rMm +ExPSiyOz
其中R是选自二乙基二甲基铵(DEDMA+),乙基三甲基铵(ETMA+),己烷双胺(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,四甲基铵(TMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的有机铵阳离子,“r”是R与P的摩尔比并且具有0.2至3.0的值,“p”是R的加权平均化合价并且在1至2之间变化,M是碱金属,例如Li+,Na+,K+,Rb+和Cs+及其混合物,“m”是M与P的摩尔比并且在0.2至3.0之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在1.25至4.0之间变化,“y”是Si与P的摩尔比并且在0.30至4.5之间变化,“y”>“x”-1,“z”是O与P的摩尔比,并且具有由如下等式确定的值:
z=(m+p·r+3·x+5+4·y)/2
其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
本发明的另一个实施方案是制备上述结晶金属硅磷酸盐分子筛的方法。该方法包括形成含有R,E,P,M和Si的反应源的反应混合物,并在60℃至200℃的温度下加热反应混合物足够的时间以形成分子筛,反应混合物具有如下以氧化物的摩尔比表示的组成:
aR2/pO:bM2O:E2O3:cP2O5:dSiO2:eH2O
其中“a”的值为2.5至20,“b”的值为0.125至1.5,“c”的值为2至8,“d”的值为1至8,“e”的值为50至1000。
本发明的又一个实施方案是使用上述分子筛作为催化剂的烃转化方法。该方法包括在转化条件下使至少一种烃与分子筛接触以产生至少一种转化的烃。
本发明的又一个实施方案是使用结晶SAPO-79材料的分离方法。该方法可包括通过使流体与SAPO-79分子筛接触来分离分子种类的混合物或去除污染物。分子种类的分离可以基于分子大小(动力学直径)或基于分子种类的极性度。去除污染物可以通过与分子筛的离子交换。
发明详述
申请人制备了第一族具有ERI拓扑结构的碱稳定金属硅磷酸盐组合物,称为SAPO-79。与现有技术中的其他SAPO材料相比,SAPO-79族材料包含更多的Si并且具有高骨架(FW)电荷密度,除有机铵离子外,需要使用碱阳离子来平衡FW电荷。传统的SAPO主要使用基于有机物质的物质进行FW电荷平衡。本发明的微孔结晶材料(SAPO-79)具有以合成形式和以无水为基础由如下经验式表示的经验组成:
Rp+ rMm +ExPSiyOz
其中M是至少一种碱阳离子并且选自碱金属。M阳离子的具体实例包括但不限于锂,钠,钾,铷,铯及其混合物。R是有机铵阳离子,其实例包括但不限于二乙基二甲基铵(DEDMA+),乙基三甲基铵(ETMA+),己烷双铵(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,四甲基铵(TMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物,“r”是R与P的摩尔比并且具有0.2至3.0的值,而“p”是R的加权平均化合价并且在1至2之间变化。“m”的值是M与P的摩尔比并且在0.2至3.0之间变化,“x”是E与P的摩尔比并且在1.25至4.0之间变化。硅与P的比由“y”表示并且在0.30至4.5之间变化且“y”>“x”-1。E是四面体配位的三价元素,存在于骨架中且选自铝和镓。最后,“z”是O与P的摩尔比并且由下式给出:
z=(m+r·p+3·x+5+4·y)/2.
当仅存在一种类型的R有机铵阳离子时,则加权平均化合价仅为该阳离子的化合价,例如+1或+2。当存在多于一个R阳离子时,则R的总量由下式给出:
加权平均化合价“p”由下式给出:
与对于大多数SAPO材料已知的相比,本发明SAPO-79的特征在于高电荷密度,并且可以表现出显著的“Si岛”形成,即Si-O-Si键合。根据上面给出的公式,理想SAPO-79上的FW电荷为“x”-1或Al-P。这些材料上的电荷是如此高使得除了有机铵阳离子之外还需要高电荷碱阳离子来平衡FW电荷。通常在SAPO材料中,Al、P和Si组分之间的关系由“x”–1=“y”或Al–P=Si或等价地Al=P+Si给出。在这种情况下,与中性AlPO基材料相比,Si仅取代P,在方法中添加FW电荷。必须分离所有FW磷,因为它只能通过P-O-Al键在骨架中与Al键合,因此,也可以分离取代P的Si。这是中等高电荷密度SAPO-59的情况(参见US8,871,177)。“Si岛”在本领域中是已知的,即使对于较低电荷密度的材料,例如,对于SAPO-56(参见Microporous and Mesoporous Materials,28,(1999),125-137)。在SAPO-79的当前情况下,要求是存在“Si岛”,如规范所示,“y”>“x”-1,即Si>Al-P。这意味着由于Si取代P而存在比满足FW电荷所需的更多的Si,意味着一些Si不再被分离。SAPO-79族中“Si岛”的形成非常广泛,因为通常为“y”>“x”-0.2或者换句话说,Si含量接近Al含量,出于FW电荷考虑,与P取代相比,Si并入程度要高得多,即“y”=“x”-1。
微孔结晶金属硅磷酸盐SAPO-79通过反应混合物的水热结晶来制备,所述反应混合物通过组合R,E,磷,M和硅的反应性来源制备。SAPO-79材料的优选形式是当E是Al时。铝源包括但不限于铝醇盐,沉淀氧化铝,铝金属,氢氧化铝,铝盐,碱金属铝酸盐和氧化铝溶胶。铝醇盐的具体实例包括但不限于邻仲丁醇铝和邻异丙醇铝。磷的来源包括但不限于正磷酸,五氧化二磷和磷酸二氢铵。二氧化硅的来源包括但不限于原硅酸四乙酯,胶态二氧化硅,和沉淀二氧化硅。其他E元素的来源包括但不限于沉淀的氢氧化镓,氯化镓,硫酸镓或硝酸镓。M金属的来源包括各种碱金属的卤化物盐,硝酸盐,氢氧化物盐,乙酸盐和硫酸盐。R是选自DEDMA+,ETMA+,HM2+,胆碱,三甲基丙基铵,TMA+,四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的有机铵阳离子,其来源包括氢氧化物,氯化物,溴化物,碘化物,和氟化物。具体实例包括但不限于二乙基二甲基氢氧化铵,乙基三甲基氢氧化铵,乙基三甲基氯化铵,二氢氧化己烷双铵,氯化己烷双铵,氢氧化胆碱,氯化胆碱,二乙基二甲基氯化铵,丙基三甲基氯化铵和四甲基氯化铵。在一个实施方案中,R是DEDMA+。在另一个实施方案中,R是DEDMA+和至少一种选自胆碱,ETMA+,TMA+,HM2+,三甲基丙基铵,TEA+和TPA+的有机铵阳离子的组合。
含有所需组分的反应性来源的反应混合物可以通过下式以氧化物的摩尔比来描述:
aR2/pO:bM2O:E2O3:cP2O5:dSiO2:eH2O
其中“a”在2.5至20之间变化,“b”在0.125至1.5之间变化,“c”在2至8之间变化,“d”在1至8之间变化,“e”在50至1000之间变化。如果使用醇盐,则优选包括蒸馏或蒸发步骤以除去醇水解产物。现在反应混合物在密封反应容器中在自生压力下在100℃至200℃,优选125℃至175℃的温度下反应1天至3周,优选2天至16天。结晶完成后,通过诸如过滤或离心的方法从非均相混合物中分离固体产物,然后用去离子水洗涤并在环境温度至100℃在空气中干燥。SAPO-79种子可任选地加入到反应混合物中,以加速所需微孔组合物的形成。
由上述方法获得的SAPO-79金属硅磷酸盐基材料的特征在于至少具有下表A中列出的d-间距和相对强度的X射线衍射图。
表A
在本发明的一个实施方案中,SAPO-79在至少400℃的温度下是热稳定的,在另一个实施方案中,SAPO-79在至少500℃的温度下是热稳定的。
可以以许多方式改性SAPO-79以使其适合于在特定应用中使用。改性包括煅烧,氨煅烧,离子交换,汽蒸,各种酸提取,六氟硅酸铵处理或其任何组合,如US 6,776,975B1中对于UZM-4M的情况所概述的,其全部内容通过引用并入本文。此外,可以改性的性质包括孔隙率,吸附性,骨架组成,酸度,热稳定性等。
合成时,SAPO-79材料将在其孔中含有一些可交换或电荷平衡的阳离子。这些可交换的阳离子可以与其他阳离子交换,或者在有机阳离子的情况下,它们可以通过在受控条件下加热来除去。从孔中除去有机阳离子的优选方法是氨煅烧。在空气中煅烧将孔中的有机阳离子转化为质子,这可导致一些金属(例如Al)在暴露于环境大气水蒸气时从骨架中损失。当煅烧在氨气氛中进行时,孔中的有机阳离子被NH4 +阳离子取代,并且骨架保持完整(参见Studies in Surface Science,(2004)vol.154,p.1324-1331)。氨煅烧的典型条件包括使用以1.1升/分钟的速率流动的气态无水氨,同时将样品温度以5℃/分钟升温至500℃并在该温度下保持5分钟至1小时的时间。所得铵/碱形式的SAPO-79基本上具有表A的衍射图。一旦以这种形式,氨煅烧的材料可以与H+,NH4 +,碱金属,碱土金属,过渡金属,稀土金属或其任何混合物进行离子交换,以在优良条件下用SAPO-79骨架获得多种组合物。
当SAPO-79在空气中煅烧时,可能存在来自骨架的金属损失,例如Al,其可以改变从所合成SAPO-79观察到的X射线衍射图(参见Studies in Surface Science,(2004)vol.154,p.1324-1331)。然而,已经确定SAPO-79对于通过煅烧除去有机阳离子是稳定的,在煅烧后保持结晶,如实施例中所证明的。煅烧SAPO-79样品的典型条件包括将温度从室温升至400℃至600℃的煅烧温度,优选450℃至550℃的煅烧温度,升温速率为1至5℃/分钟,优选2至4℃/分钟的升温速率,在由流动的氮气或流动的清洁干燥空气组成的气氛中进行升温,优选流动的氮气气氛。一旦达到所需的煅烧温度,如果在升温期间使用的煅烧气氛为流动的清洁干燥空气,它可以保持流动的清洁干燥空气。如果升温期间的煅烧气氛是流动的氮气,它可以在煅烧温度下保持流动的氮气,或者可以立即转化为清洁干燥空气;优选在煅烧温度下,在将煅烧气氛转化为流动的清洁干燥空气之前,煅烧气氛将保持流动氮气1至10小时,更优选2至4小时。煅烧的最后步骤是在清洁干燥空气中停留在煅烧温度下。无论初始升温期间的煅烧气氛是流动氮气还是流动清洁干燥空气,一旦处于煅烧温度并且一旦煅烧气氛是清洁干燥空气,则SAPO-79样品将在这些条件下花费1至24小时的时间,优选2至6小时的时间完成煅烧过程。煅烧的SAPO-79材料的特征在于其具有至少具有表B中所示的d-间距和强度的x-射线衍射图:
表B
本发明的结晶SAPO-79材料可用于分离分子种类的混合物,通过离子交换除去污染物和催化各种烃转化过程。分子种类的分离可以基于分子大小(动力学直径)或基于分子种类的极性度。
本发明SAPO-79组合物还可以在各种烃转化方法中用作催化剂或催化剂载体。烃转化方法是本领域公知的,包括裂化,加氢裂化,芳烃和异链烷烃的烷基化,异构化,聚合,重整,氢化,脱氢,烷基转移,脱烷基化,水合,脱水,加氢处理,加氢脱氮,加氢脱硫,甲醇制烯烃,甲烷化和合成气转化过程。可在这些方法中使用的具体反应条件和进料类型列于US4,310,440,US 4,440,871和US 5,126,308中,它们通过引用并入本文。优选的烃转化方法是其中氢是诸如加氢处理或加氢精制,氢化,加氢裂化,加氢脱氮,加氢脱硫等组分的那些。
加氢裂化条件通常包括400°至1200°F(204℃至649℃)范围内的温度,优选600°至950°F(316℃至510℃)范围内的温度。反应压力在大气压至3,500psig(24,132kPa g)的范围内,优选在200至3000psig(1379至20,685kPa g)之间。接触时间通常对应于0.1hr-1至15hr-1,优选0.2至3hr-1的液时空速(LHSV)。氢气循环速率范围为1,000至50,000标准立方英尺(scf)每桶装料(178-8,888标准立方米/立方米),优选2,000至30,000scf每桶装料(355-5,333标准立方米/立方米)。合适的加氢处理条件通常在上述加氢裂化条件的宽范围内。
通常从催化剂床中除去反应区流出物,进行部分冷凝和汽-液分离,然后分馏以回收其各种组分。将氢气和如果需要的话一些或所有未转化的较重材料再循环到反应器中。或者,可以采用两级流动,未转化的材料进入第二反应器。本发明的催化剂可以仅用于这种方法的一个阶段,或者可以用于两个反应器阶段。
催化裂化方法优选使用SAPO-79组合物,使用原料如瓦斯油,重石脑油,脱沥青原油残渣等进行,其中汽油是主要的所需产物。455℃至593℃(850°至1100°F)的温度条件,0.5hr-1至10hr-1的LHSV值和0至50psig的压力条件是合适的。
芳烃的烷基化通常包括使芳烃(C2至C12),尤其是苯与单烯烃反应,以产生线性烷基取代的芳烃。该方法在芳烃:烯烃(例如苯:烯烃)比为5:1至30:1,LHSV为0.3至6hr-1,温度为100至250℃和1,379-6,895kPa(200至1000psig)的压力下进行。关于装置的进一步细节可以在US 4,870,222中找到,该专利通过引用结合到本文中。
异链烷烃与烯烃的烷基化以产生适合作为发动机燃料组分的烷基化物在-30℃至40℃的温度,大气压至6,894kPa(1,000psig)的压力和0.1hr-1至120hr-1的重时空速(WHSV)下进行。关于链烷烃烷基化的细节可以在US5,157,196和US 5,157,197中找到,其通过引用并入。
通过在转化条件下使甲醇与SAPO-79催化剂接触,从而形成所需的烯烃,实现甲醇向烯烃的转化。甲醇可以是液相或气相,优选气相。甲醇与SAPO-79催化剂接触可以以连续模式或间歇模式进行,优选连续模式。甲醇与SAPO-79催化剂接触的时间必须足以将甲醇转化为所需的轻质烯烃产物。当该方法以间歇方法进行时,接触时间为0.001-1小时,优选0.01-1.0小时。较低的温度下使用较长的接触时间,而较高的温度下使用较短的时间。此外,当该方法以连续模式进行时,基于甲醇的重时空速(WHSV)可以在1hr-1至1000hr-1之间变化,优选1hr-1至100hr-1之间。
通常,该方法必须在升高的温度下进行,以便以足够快的速率形成轻质烯烃。因此,该方法应在300℃至600℃,优选400℃至550℃,最优选450℃至525℃的温度下进行。该方法可以在宽的压力范围内进行,包括自生压力。因此,压力可以在0kPa(0psig)至1724kPa(250psig)和优选34kPa(5psig)至345kPa(50psig)之间变化。
任选地,可以用惰性稀释剂稀释甲醇原料,以更有效地将甲醇转化为烯烃。可以使用的稀释剂的实例是氦气,氩气,氮气,一氧化碳,二氧化碳,氢气,蒸汽,链烷烃如甲烷,芳烃如苯,甲苯及其混合物。所用稀释剂的量可以有很大变化,通常为原料的5-90摩尔%,优选为25-75摩尔%。
反应区的实际构型可以是本领域已知的任何公知的催化剂反应装置。因此,可以使用单个反应区或多个串联或并联排列的区。在这样的反应区中,甲醇原料流过含有SAPO-79催化剂的床。当使用多个反应区时,可以串联使用一种或多种SAPO-79催化剂以产生所需的产物混合物。代替固定床,可以使用动态床系统,例如流化或移动的。这种动态系统将促进可能需要的SAPO-79催化剂的任何再生。如果需要再生,可以将SAPO-79催化剂作为移动床连续引入再生区,在再生区中可以通过诸如在含氧气氛中氧化以除去含碳材料的方式再生。
以下实施例用于说明本发明,而不是对所附权利要求中所述的本发明的广泛范围的不适当限制。产品将使用名称SAPO-79指定,其中包含后缀“-79”以指示“-79”结构(ERI拓扑结构)和反映产品组成性质的前缀,即对于金属硅磷酸盐的“SAPO”,但是应理解,在这些实例中的任何一个中,Al可以部分或完全被Ga取代。
通过X射线分析测定本发明的SAPO-79组合物的结构。使用标准x射线粉末衍射技术获得以下实施例中呈现的x射线图。辐射源是在45kV和35mA下操作的高强度X射线管。来自铜Kα辐射的衍射图通过适当的基于计算机的技术获得。在2°至56°(2θ)下连续扫描扁平压缩粉末样品。以埃为单位的晶面间距(d)由衍射峰的位置获得,表示为θ,其中θ是从数字化数据观察到的布拉格角。强度是在减去背景后从衍射峰的积分面积确定,“Io”是最强线或峰的强度,“I”是每个其他峰的强度。
如本领域技术人员将理解的,参数2θ的确定受到人为和机械误差的影响,其组合可对每个报告的2θ值施加±0.4°的不确定性。当然,这种不确定性也体现在由2θ值计算的d间距的报告值中。这种不确定性在本领域中是通用的,并且不足以排除本发明结晶材料彼此之间以及与现有技术组合物的区别。在所报告的一些x射线图中,d间距的相对强度由符号vs,s,m和w表示,它们分别代表非常强,强,中和弱。就100x I/Io而言,上述指示定义为:
w=0-15;m=15-60:s=60-80,且vs=80-100
在某些情况下,可以参考其x射线粉末衍射图评价合成产物的纯度。因此,例如,如果样品声称是纯的,则仅意图样品的x射线图不含可归因于结晶杂质的线,而不是不存在无定形材料。
为了更全面地说明本发明,提出以下实施例。应当理解,这些实施例仅仅是为了举例说明,而不是对所附权利要求中所述的本发明的广泛范围的过度限制。
实施例1
向特氟隆瓶中装入175.00g DEDMAOH(20重量%),6.24g TEOS(98重量%)和搅拌棒并短暂混合。然后将该混合物在95℃烘箱中消化3.5小时以水解TEOS。将混合物转移到配有高速搅拌器的特氟隆烧杯中。然后加入6.00g预研磨的异丙醇铝(13.2%Al)并在剧烈搅拌下溶解在混合物中。然后滴加20.14g H3PO4(85.7重量%),然后加入35.65g去离子水。另外,将1.44g KOAc溶解在13.25g去离子水中。在搅拌下将所得溶液滴加到反应混合物中。加完后,将反应混合物进一步均化。将得到的澄清溶液分配在8个特氟隆衬里的高压釜中,并在自生压力下在150℃和175℃的温度下消化96、194、288和382小时。通过离心分离产物,用去离子水洗涤并在室温下干燥。在288和382小时后从175℃合成分离的产物通过粉末X射线衍射鉴定为纯SAPO-79。175℃,382小时产物的代表性衍射线显示在表1中。该产物的元素分析得到经验组成DEDMA0.45K0.35Al1.76PSi1.66
表1
实施例2
向特氟隆瓶中加入1056.44g DEDMAOH(20%重量%),37.68g TEOS(98重量%)和磁力搅拌棒。将瓶密封并在搅拌板上混合过夜。然后,加入36.94g异丙醇铝(98+重量%),将混合物在密封瓶中搅拌~2h,得到澄清溶液。将反应混合物转移到特氟隆烧杯中并用高速顶置式搅拌器混合。接着,在剧烈混合的同时缓慢加入122.72g H3PO4(85%)。另外,将10.65g KBr溶解在235.56g去离子水中。将KBr溶液以等分试样缓慢加入到Si/Al/P/DEDMAOH溶液中,同时继续搅拌。将得到的澄清溶液分成2×125ml和1×2000ml高压釜,分别在自生压力下在175℃下消化11、13和15天。通过离心分离产物,用去离子水洗涤并在室温下干燥。通过粉末X射线衍射鉴定所有产物为SAPO-79。175℃/15天产物的代表性衍射线显示在下表2a中。对该相同产物的元素分析得到经验组成:DEDMA0.49K0.38Al1.69PSi1.71。将一部分样品在氮气下以2℃/分钟的速率加热至450℃进行煅烧。将样品在该温度下在氮气下保持3.5小时。然后将气氛转换为空气并将样品在450℃下再保持3.5小时。然后将样品冷却至100℃。使用带盖的架子通过粉末X射线衍射立即分析样品,以试图防止煅烧材料的水合。该材料是稳定的,鉴定为煅烧的SAPO-79,其代表性衍射线显示在表2b中。然后将样品打开至大气并使其再水化,然后用粉末X射线衍射进一步分析。该材料再次被鉴定为SAPO-79并且显示出对再水化稳定。再水化煅烧材料的代表性衍射线示于表2c中。
表2
实施例3铵离子交换
将一部分来自实施例2的所合成的SAPO-79样品进行铵离子交换。将10g SAPO-79在含有溶解在100g去离子水中的10g NH4NO3的溶液中浆化。将浆料加热至75℃,同时在配有搅拌的温控加热板上的带盖烧杯中混合。将浆料在75℃下保持1-4小时,过滤收集,并用去离子水洗涤。重复该程序总共三个交换步骤。最后交换后,将样品在100℃下干燥过夜。将一部分样品在流动的N2气氛中以2℃/分钟升温至450℃,在流动的N2中在450℃下保持2小时,然后将气氛切换至清洁干燥空气,其中将样品在450℃下再保持5小时。通过粉末X射线衍射鉴定样品为SAPO-79,表现出煅烧稳定性。煅烧交换的SAPO-79样品的代表性衍射线显示在表3a中。然后将样品打开至大气并使其再水化,然后用粉末X射线衍射进一步分析。该材料再次被鉴定为煅烧的SAPO-79,并且显示出对煅烧和再水化稳定。再水化煅烧SAPO-79的代表性衍射线显示在表3b中。
表3
具体实施方式
虽然结合具体实施例描述了以下内容,但是应该理解,该描述旨在说明而不是限制前述说明书和所附权利要求的范围。
本发明的第一实施方案是具有[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架和以合成形式和以无水为基础由经验式Rp+ rMm +ExPSiyOz表示的经验组成的微孔结晶金属硅磷酸盐材料,其中R是选自二乙基二甲基铵(DEDMA+),乙基三甲基铵(ETMA+),己烷双铵(HM2 +),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,四甲基铵(TMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的有机铵阳离子,“r”是R与P的摩尔比并且具有0.2至3.0的值,“p”是R的加权平均化合价并且在1至2之间变化,M是碱金属如Li+,Na+,K+,Rb+和Cs+及其混合物,“m”是M与P的摩尔比并且在0.2至3.0之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在1.25至4.0之间变化,“y”是Si与P的摩尔比并且在0.30至4.5之间变化,“y”>“x”–1,“z”是O与P的摩尔比,并且具有由等式z=(m+p·r+3·x+5+4·y)/2确定的值,其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中M是钾。本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中E是铝。本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中E是镓。本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中“y”>“x”-0.2。本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中金属硅磷酸盐材料在至少500℃的温度下热稳定。本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中R是二乙基二甲基铵阳离子DEDMA+。本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中金属硅磷酸盐材料包含[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架,其特征在于具有至少具有表B中列出的d-间距和强度的X射线衍射图:
表B
本发明的第二实施方案是制备具有[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架和以合成形式和以无水为基础由经验式Rp+ rMm +ExPSiyOz表示的经验组成的微孔结晶金属硅磷酸盐材料的方法,其中R是选自二乙基二甲基铵(DEDMA+),乙基三甲基铵(ETMA+),己烷双铵(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,四甲基铵(TMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的有机铵阳离子,“r”是R与P的摩尔比并且具有0.2至3.0的值,“p”是R的加权平均化合价并且在1至2之间变化,M是碱金属如Li+,Na+,K+,Rb+和Cs+及其混合物,“m”是M与P的摩尔比并且在0.2至3.0之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在1.25至4.0之间变化,“y”是Si与P的摩尔比并且在0.30至4.5之间变化,“y”>“x”–1,“z”是O与P的摩尔比,并且具有由等式z=(m+p·r+3·x+5+4·y)/2确定的值,其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
该方法包括形成含有R,E,P,M和Si的反应性来源的反应混合物,并在60℃至200℃的温度下加热反应混合物足够的时间以形成金属硅磷酸盐分子筛,反应混合物具有如下以氧化物的摩尔比表示的组成aR2/pO bM2O E2O3cP2O5dSiO2eH2O,其中“a”的值为2.5至20,“b”的值为0.125至1.5,“c”的值为2至8,“d”的值为1至8,“e”的值为50至1000。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中初始反应混合物在消化前是澄清溶液。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中M选自Li+,Na+,K+,Rb+和Cs+及其混合物。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中M的来源选自卤化物盐,硝酸盐,乙酸盐,硫酸盐,氢氧化物盐及其混合物。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中E的来源选自异丙醇铝,仲丁醇铝,沉淀氧化铝,Al(OH)3,碱金属铝酸盐,铝金属,卤化铝盐,硫酸铝盐,硝酸铝盐,沉淀的氢氧化镓,硝酸镓,硫酸镓及其混合物。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中硅源选自原硅酸四乙酯,硅醇盐,火成二氧化硅,胶态二氧化硅,碱金属硅酸盐,和沉淀二氧化硅。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中反应混合物在125℃至185℃的温度下反应2天至21天。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中R是DEDMA+。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中R是DEDMA+和至少一种选自胆碱,ETMA+,TMA+,HM2+,三甲基丙基铵,四乙基铵(TEA+)和四丙基铵(TPA+)的有机铵阳离子的组合。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,还包括将SAPO-79种子加入反应混合物中。
本发明的第三实施方案是烃转化方法,包括在烃转化条件下使烃料流与催化剂接触以产生至少一种转化产物,其中催化剂选自结晶微孔SAPO-79材料,结晶微孔改性的SAPO-79材料,结晶微孔煅烧的SAPO-79材料及其混合物,其中SAPO-79是具有[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架和以合成形式和以无水为基础由经验式Rp+ rMm +ExPSiyOz表示的经验组成的结晶微孔金属硅磷酸盐材料,其中R是选自二乙基二甲基铵(DEDMA+),乙基三甲基铵(ETMA+),己烷双铵(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,四甲基铵(TMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的有机铵阳离子,“r”是R与P的摩尔比并且具有0.2至3.0的值,“p”是R的加权平均化合价并且在1至2之间变化,M是碱金属如Li+,Na+,K+,Rb+和Cs+及其混合物,“m”是M与P的摩尔比并且在0.2至3.0之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在1.25至4.0之间变化,“y”是Si与P的摩尔比并且在0.30至4.5之间变化,“y”>“x”-1,“z”是O与P的摩尔比,并且具有由等式z=(m+p·r+3·x+5+4·y)/2确定的值,其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
结晶微孔改性的SAPO-79由[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架组成,衍生自SAPO-79经由煅烧,氨煅烧,离子交换,汽蒸,各种酸提取,六氟硅酸铵处理或其任何组合的改性方法,而结晶微孔煅烧的SAPO-79由[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架组成,衍生自SAPO-79经由煅烧且特征在于它具有至少具有表B中列出的d-间距和强度的X射线衍射图:
表B
本发明的一个实施方案为从该段中第三实施方案开始的该段中先前实施方案中的一个、任何或全部,其中烃转化方法选自裂化,加氢裂化,烷基化,异构化,聚合,重整,氢化,脱氢,烷基转移,脱烷基化,水合,脱水,加氢处理,加氢精制,加氢脱氮,加氢脱硫,甲醇制烯烃,甲烷化,合成气转换方法,烯烃二聚,低聚,脱蜡及其组合。本发明的一个实施方案为从该段中第三实施方案开始的该段中先前实施方案中的一个、任何或全部,其中其中烃转化方法是加氢裂化或加氢处理,并且其中加氢裂化或加氢处理在400至1200°F(204-649℃)的温度和大气压至3,500psig(24,132kPa g)的压力下操作。本发明的一个实施方案为从该段中第三实施方案开始的该段中先前实施方案中的一个、任何或全部,其中烃转化方法是催化裂化,其在850至1100°F的温度、0.5至10的LHSV值和0至50psig的压力下操作。本发明的一个实施方案为从该段中第三实施方案开始的该段中先前实施方案中的一个、任何或全部,其中烃转化方法是芳族化合物的烷基化,并且转化产物是至少一种线性烷基取代的芳族化合物,并且其中该方法在51-301的芳族化合物烯烃摩尔比,0.3-6hr-1的LHSV,100-250℃的温度,200-1000psig的压力下操作。本发明的一个实施方案为从该段中第三实施方案开始的该段中先前实施方案中的一个、任何或全部,其中烃转化方法是甲醇转化为烯烃,其中该方法在300℃至600℃的温度和0kPa(0psig)至1724kPa(250psig)的压力下操作。
本发明的第四实施方案是分离方法,包括使至少两种组分与材料接触以产生至少一种分离的组分,其中催化剂选自结晶微孔SAPO-79材料,结晶微孔改性的SAPO-79材料,结晶微孔煅烧的SAPO-79材料及其混合物,其中SAPO-79是具有[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架和以合成形式和以无水为基础由经验式Rp+ rMm +ExPSiyOz表示的经验组成的结晶微孔金属硅磷酸盐,其中R是选自二乙基二甲基铵(DEDMA+),乙基三甲基铵(ETMA+),己烷双铵(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,四甲基铵(TMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的有机铵阳离子,“r”是R与P的摩尔比并且具有0.2至3.0的值,“p”是R的加权平均化合价并且在1至2之间变化,M是碱金属如Li+,Na+,K+,Rb+和Cs+及其混合物,“m”是M与P的摩尔比并且在0.2至3.0之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在1.25至4.0之间变化,“y”是Si与P的摩尔比并且在0.30至4.5之间变化,“y”>“x”-1,“z”是O与P的摩尔比,并且具有由等式z=(m+p·r+3·x+5+4·y)/2确定的值,其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
结晶微孔改性的SAPO-79由[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架组成,衍生自SAPO-79经由煅烧,氨煅烧,离子交换,汽蒸,各种酸提取,六氟硅酸铵处理或其任何组合的改性方法,而结晶微孔煅烧的SAPO-79由[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架组成,衍生自SAPO-79经由煅烧且特征在于它具有至少具有表B中列出的d-间距和强度的X射线衍射图:
表B
本发明的一个实施方案为从该段中第四实施方案开始的该段中先前实施方案中的一个、任何或全部,其中分离基于组分的分子大小、组分的极性度、或组分与材料的离子交换。

Claims (10)

1.微孔结晶金属硅磷酸盐材料,具有[EO4/2]-、[PO4/2]+和SiO4/2四面体单元的三维骨架和以合成形式和以无水为基础由如下经验式表示的经验组成:
Rp+ rMm +ExPSiyOz
其中R是选自二乙基二甲基铵(DEDMA+)、乙基三甲基铵(ETMA+)、己烷双胺(HM2+)、胆碱[Me3NCH2CH2OH]+、三甲基丙基铵、四甲基铵(TMA+)、四乙基铵(TEA+)、四丙基铵(TPA+)及其混合物的有机铵阳离子,“r”是R与P的摩尔比并且具有0.2至3.0的值,“p”是R的加权平均化合价并且在1至2之间变化,M是碱金属如Li+、Na+、K+、Rb+和Cs+及其混合物,“m”是M与P的摩尔比并且在0.2至3.0之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在1.25至4.0之间变化,“y”是Si与P的摩尔比并且在0.30至4.5之间变化,“y”>“x”-1,“z”是O与P的摩尔比,并且具有由如下等式确定的值:
z=(m+p·r+3·x+5+4·y)/2
其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
2.根据权利要求1所述的金属硅磷酸盐材料,其中“y”>“x”–0.2。
3.根据权利要求1所述的金属硅磷酸盐材料,其中金属硅磷酸盐材料在至少500℃的温度下热稳定。
4.根据权利要求1所述的金属硅磷酸盐材料,其中R是二乙基二甲基铵阳离子DEDMA+
5.根据权利要求1所述的结晶微孔金属硅磷酸盐的稳定、煅烧形式,包含[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架,特征在于具有至少具有表B中列出的d-间距和强度的X射线衍射图:
表B
6.制备具有[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架且具有以合成形式以无水为基础由如下经验式表示的经验组成的微孔结晶金属硅磷酸盐材料的方法:
Rp+ rMm +ExPSiyOz
其中R是选自二乙基二甲基铵(DEDMA+)、乙基三甲基铵(ETMA+)、己烷双胺(HM2+)、胆碱[Me3NCH2CH2OH]+、三甲基丙基铵、四甲基铵(TMA+)、四乙基铵(TEA+)、四丙基铵(TPA+)及其混合物的有机铵阳离子,“r”是R与P的摩尔比并且具有0.2至3.0的值,“p”是R的加权平均化合价并且在1至2之间变化,M是碱金属如Li+、Na+、K+、Rb+和Cs+及其混合物,“m”是M与P的摩尔比并且在0.2至3.0之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在1.25至4.0之间变化,“y”是Si与P的摩尔比并且在0.30至4.5之间变化,“y”>“x”-1,“z”是O与P的摩尔比,并且具有由如下等式确定的值:
z=(m+p·r+3·x+5+4·y)/2
其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
该方法包括形成含有R、E、P、M和Si的反应性来源的反应混合物,并在60℃至200℃的温度下加热反应混合物足够的时间以形成金属硅磷酸盐分子筛,反应混合物具有如下以氧化物的摩尔比表示的组成:
aR2/pO:bM2O:E2O3:cP2O5:dSiO2:eH2O其中“a”的值为2.5至20,“b”的值为0.125至1.5,“c”的值为2至8,“d”的值为1至8,“e”的值为50至1000。
7.根据权利要求6所述的方法,其中初始反应混合物在消化前是澄清溶液。
8.根据权利要求6所述的方法,其中M选自Li+、Na+、K+、Rb+和Cs+及其混合物。
9.根据权利要求6所述的方法,其中M的来源选自卤化物盐、硝酸盐、乙酸盐、硫酸盐、氢氧化物盐及其混合物。
10.烃转化方法,包括在烃转化条件下使烃料流与催化剂接触以产生至少一种转化产物,其中催化剂选自结晶微孔SAPO-79材料、结晶微孔改性的SAPO-79材料、结晶微孔煅烧的SAPO-79材料及其混合物,其中SAPO-79是具有[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架和以合成形式以无水为基础由如下经验式表示的组成的结晶微孔金属硅磷酸盐材料:
Rp+ rMm +ExPSiyOz
其中R是选自二乙基二甲基铵(DEDMA+)、乙基三甲基铵(ETMA+)、己烷双胺(HM2+)、胆碱[Me3NCH2CH2OH]+、三甲基丙基铵、四甲基铵(TMA+)、四乙基铵(TEA+)、四丙基铵(TPA+)及其混合物的有机铵阳离子,“r”是R与P的摩尔比并且具有0.2至3.0的值,“p”是R的加权平均化合价并且在1至2之间变化,M是碱金属如Li+、Na+、K+、Rb+和Cs+及其混合物,“m”是M与P的摩尔比并且在0.2至3.0之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在1.25至4.0之间变化,“y”是Si与P的摩尔比并且在0.30至4.5之间变化,“y”>“x”-1,“z”是O与P的摩尔比,并且具有由如下等式确定的值:
z=(m+p·r+3·x+5+4·y)/2
其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
结晶微孔改性的SAPO-79由[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架组成,衍生自SAPO-79经由煅烧、氨煅烧、离子交换、汽蒸、各种酸提取、六氟硅酸铵处理或其任何组合的改性方法,而结晶微孔煅烧的SAPO-79由[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架组成,衍生自SAPO-79经由煅烧且特征在于它具有至少具有表B中列出的d-间距和强度的X射线衍射图:
表B
CN201780011750.0A 2016-03-04 2017-03-02 高电荷密度金属硅磷酸盐分子筛sapo-79 Active CN108698029B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662303543P 2016-03-04 2016-03-04
US62/303,543 2016-03-04
PCT/US2017/020382 WO2017151875A1 (en) 2016-03-04 2017-03-02 High charge density silicometallophosphate molecular sieves sapo-79

Publications (2)

Publication Number Publication Date
CN108698029A true CN108698029A (zh) 2018-10-23
CN108698029B CN108698029B (zh) 2021-05-07

Family

ID=59723036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780011750.0A Active CN108698029B (zh) 2016-03-04 2017-03-02 高电荷密度金属硅磷酸盐分子筛sapo-79

Country Status (3)

Country Link
US (1) US10449527B2 (zh)
CN (1) CN108698029B (zh)
WO (1) WO2017151875A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10449527B2 (en) 2016-03-04 2019-10-22 Uop Llc High charge density silicometallophosphate molecular sieves SAPO-79
US10449528B2 (en) 2016-03-04 2019-10-22 Uop Llc High charge density silicometallophosphate molecular sieves
US10421063B2 (en) 2016-03-04 2019-09-24 Uop Llc High charge density silicometallophosphate molecular sieves SAPO-69
WO2017205112A1 (en) * 2016-05-25 2017-11-30 Uop Llc HIGH CHARGE DENSITY METALLOALUMINOPHOSPHOSILICATE MOLECULAR SIEVES MeAPSO-83
CN108495711B (zh) * 2016-05-25 2021-08-03 环球油品公司 高电荷密度金属铝磷硅酸盐分子筛MeAPSO-82
US10449526B2 (en) * 2016-05-25 2019-10-22 Uop Llc High charge density metallophosphate molecular sieves
US10370257B2 (en) * 2016-05-25 2019-08-06 Uop Llc High charge density metalloaluminophosphosilicate molecular sieves
US10807083B1 (en) 2019-06-04 2020-10-20 Uop Llc Metallophosphate molecular sieves and method of preparation and use

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85103247A (zh) * 1984-04-13 1986-10-22 联合碳化公司 铁-铝-磷-硅-氧化物分子筛
WO2004039725A2 (en) * 2002-05-09 2004-05-13 Uop Llc 'crystalline aluminosilicate zeolitic composition: uzm-4m'
CN101208149A (zh) * 2005-06-27 2008-06-25 埃克森美孚化学专利公司 制备硅铝磷酸盐分子筛的方法
RU2445166C2 (ru) * 2007-03-26 2012-03-20 ПиКью КОРПОРЕЙШН Новый микропористый кристаллический материал, включающий молекулярные сита или цеолит, имеющий восьмикольцевую структуру открытых пор, и способы его получения и применения
US20120184429A1 (en) * 2010-03-11 2012-07-19 Johnson Matthey Public Limited Company DISORDERED MOLECULAR SIEVE SUPPORTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NOx
US20140004035A1 (en) * 2012-06-29 2014-01-02 Uop Llc Metallophosphate molecular sieves, methods of preparation and use
US8696886B1 (en) * 2012-11-30 2014-04-15 Uop Llc Silicometallophosphate molecular sieves, method of preparation and use
US8911704B2 (en) * 2012-11-30 2014-12-16 Uop Llc Silicometallophosphate molecular sieves, method of preparation and use

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443892A (en) 1966-04-15 1969-05-13 Herrmann Gebr Process for producing crystalline zeolites
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4567029A (en) 1983-07-15 1986-01-28 Union Carbide Corporation Crystalline metal aluminophosphates
US4973785A (en) 1984-04-13 1990-11-27 Uop Molecular sieve compositions
US4735929A (en) 1985-09-03 1988-04-05 Uop Inc. Catalytic composition for the isomerization of paraffinic hydrocarbons
CA1296124C (en) * 1986-11-06 1992-02-18 Shinji Nakano Paint resin
US4778780A (en) 1987-07-23 1988-10-18 Mobil Oil Corporation Synthesis of crystalline SAPO-17
US5157197A (en) 1990-09-26 1992-10-20 Catalytica, Inc. Isoparaffin alkylation using a lewis acid promoted transition alumina catalyst
US5157196A (en) 1990-12-24 1992-10-20 Chemical Research & Licensing Company Paraffin alkylation process
US5126308A (en) 1991-11-13 1992-06-30 Uop Metal aluminophosphate catalyst for converting methanol to light olefins
EP2736637B1 (en) 2011-07-27 2019-07-17 Johnson Matthey Public Limited Company Low phosphorus chabazites
US8871177B2 (en) 2012-06-29 2014-10-28 Uop Llc Metallophosphate molecular sieves, methods of preparation and use
US8569558B1 (en) 2012-11-30 2013-10-29 Uop Llc Metallophosphate molecular sieves, method of preparation and use
US10421063B2 (en) * 2016-03-04 2019-09-24 Uop Llc High charge density silicometallophosphate molecular sieves SAPO-69
US10449528B2 (en) * 2016-03-04 2019-10-22 Uop Llc High charge density silicometallophosphate molecular sieves
US10449527B2 (en) 2016-03-04 2019-10-22 Uop Llc High charge density silicometallophosphate molecular sieves SAPO-79

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85103247A (zh) * 1984-04-13 1986-10-22 联合碳化公司 铁-铝-磷-硅-氧化物分子筛
WO2004039725A2 (en) * 2002-05-09 2004-05-13 Uop Llc 'crystalline aluminosilicate zeolitic composition: uzm-4m'
CN101208149A (zh) * 2005-06-27 2008-06-25 埃克森美孚化学专利公司 制备硅铝磷酸盐分子筛的方法
RU2445166C2 (ru) * 2007-03-26 2012-03-20 ПиКью КОРПОРЕЙШН Новый микропористый кристаллический материал, включающий молекулярные сита или цеолит, имеющий восьмикольцевую структуру открытых пор, и способы его получения и применения
US20120184429A1 (en) * 2010-03-11 2012-07-19 Johnson Matthey Public Limited Company DISORDERED MOLECULAR SIEVE SUPPORTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NOx
US20150141237A1 (en) * 2010-03-11 2015-05-21 Johnson Matthey Public Limited Company DISORDERED MOLECULAR SIEVE SUPPORTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NOx
US20140004035A1 (en) * 2012-06-29 2014-01-02 Uop Llc Metallophosphate molecular sieves, methods of preparation and use
US8696886B1 (en) * 2012-11-30 2014-04-15 Uop Llc Silicometallophosphate molecular sieves, method of preparation and use
US20140206918A1 (en) * 2012-11-30 2014-07-24 Uop Llc Silicometallophosphate molecular sieves, method of preparation and use
US8911704B2 (en) * 2012-11-30 2014-12-16 Uop Llc Silicometallophosphate molecular sieves, method of preparation and use

Also Published As

Publication number Publication date
CN108698029B (zh) 2021-05-07
WO2017151875A1 (en) 2017-09-08
US10449527B2 (en) 2019-10-22
US20170252732A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
CN108698029A (zh) 高电荷密度金属硅磷酸盐分子筛sapo-79
CN108698030A (zh) 高电荷密度金属硅磷酸盐分子筛
CN108698031A (zh) 高电荷密度金属硅磷酸盐分子筛sapo-69
CN108602052A (zh) 高电荷密度金属磷酸盐分子筛
US8871178B2 (en) Metallophosphate molecular sieves, methods of preparation and use
JP5271266B2 (ja) Uzm−22アルミノシリケートゼオライト、その調製方法およびuzm−22の使用方法
US8933287B2 (en) Silicometallophosphate molecular sieves, method of preparation and use
CN108473328A (zh) 高电荷密度金属磷酸盐分子筛
CN108495816A (zh) 高电荷密度金属铝磷硅酸盐分子筛
CN108602054A (zh) 高电荷密度金属磷酸盐分子筛
CN104428250A (zh) 金属磷酸盐分子筛,制备方法和用途
US8906225B2 (en) Metallophosphate molecular sieves, methods of preparation and use
CN108472635B (zh) 高电荷密度金属铝磷硅酸盐分子筛MeAPSO-83
CN104884162B (zh) 硅金属磷酸盐分子筛、其制备方法和使用
US8911704B2 (en) Silicometallophosphate molecular sieves, method of preparation and use
EP2867167B1 (en) Metallophosphate molecular sieves, method of preparation and use
CN108495711A (zh) 高电荷密度金属铝磷硅酸盐分子筛MeAPSO-82
CN108602053A (zh) 高电荷密度金属磷酸盐分子筛
CN104822454B (zh) 金属磷酸盐分子筛、制备和使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant