CN108472635B - 高电荷密度金属铝磷硅酸盐分子筛MeAPSO-83 - Google Patents

高电荷密度金属铝磷硅酸盐分子筛MeAPSO-83 Download PDF

Info

Publication number
CN108472635B
CN108472635B CN201780006692.2A CN201780006692A CN108472635B CN 108472635 B CN108472635 B CN 108472635B CN 201780006692 A CN201780006692 A CN 201780006692A CN 108472635 B CN108472635 B CN 108472635B
Authority
CN
China
Prior art keywords
mixtures
molar ratio
varies
meapso
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780006692.2A
Other languages
English (en)
Other versions
CN108472635A (zh
Inventor
G·J·刘易斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Original Assignee
UOP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UOP LLC filed Critical UOP LLC
Publication of CN108472635A publication Critical patent/CN108472635A/zh
Application granted granted Critical
Publication of CN108472635B publication Critical patent/CN108472635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/065Catalytic reforming characterised by the catalyst used containing crystalline zeolitic molecular sieves, other than aluminosilicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

已经合成了一族新的结晶微孔金属铝(棓)磷硅酸盐,称为MeAPSO‑83。这些金属铝(棓)磷硅酸盐由以下经验式表示:Rp+ rA+ mM2+ wExPSiyOz,其中A是碱金属如钾,R是季铵阳离子如乙基三甲基铵,M是二价金属如Zn,E是三价骨架元素如铝或镓。该族金属铝(棓)磷硅酸盐材料通过碱金属和季铵阳离子的组合稳定化,从而实现独特的高电荷密度组合物。MeAPSO‑83族材料具有BPH拓扑结构并具有催化性能,用于进行各种烃转化过程和分离至少一种组分的分离性能。

Description

高电荷密度金属铝磷硅酸盐分子筛MeAPSO-83
早期国家申请的优先权声明
本申请要求2016年5月25日提交的美国申请No.62/341,389的优先权,其引用的申请的内容通过引用整体并入本文。
发明领域
本发明涉及一族新的高电荷密度金属铝(棓)-磷硅酸盐基分子筛,表示为MeAPSO-83。它们由以下经验式表示:
Rp+ rA+ mM2+ wExPSiyOz
其中A是碱金属如钾,M是二价金属如Zn2+,R是至少一种季铵阳离子如乙基三甲基铵,E是三价骨架元素如铝或镓。MeAPSO-83系列材料具有BPH拓扑结构,可以具有“Si岛”。
背景技术
沸石是结晶硅铝酸盐组合物,其是微孔的并且由共角[AlO4/2]-和SiO4/2四面体形成。许多天然存在的和合成制备的沸石用于各种工业方法。使用合适的Si,Al源和结构导向剂(SDA)如碱金属,碱土金属,胺或有机铵阳离子通过水热合成制备合成沸石。结构导向剂居于沸石的孔中,并且主要负责最终形成的特定结构。这些物质平衡了与铝相关的骨架电荷,也可以作为空间填料。沸石的特征在于具有均匀尺寸的孔开口,具有显著的离子交换能力,并且能够可逆地解吸分散在晶体的整个内部空隙中的吸附相而不显著置换构成永久沸石晶体结构的任何原子。沸石可用作烃转化反应的催化剂,其可发生在沸石的外表面上以及沸石孔内的内表面上。
1982年,Wilson等人开发的铝磷酸盐分子筛,即所谓的AlPO,它是微孔材料,具有许多相同的沸石性质,但不含二氧化硅,由[AlO4/2]-和[PO4/2]+四面体组成(见US 4,319,440)。随后,通过用SiO4/2四面体代替[PO4/2]+四面体将电荷引入中性铝磷酸盐骨架中以产生SAPO分子筛(参见US 4,440,871)。将骨架电荷引入中性铝磷酸盐的另一种方法是用[M2+O4/2]2-四面体代替[AlO4/2]-四面体,得到MeAPO分子筛(参见US4,567,029)。这些MeAPO材料通常显示出M2+对Al3+的低取代水平,通常为约10%,而几种材料,特别是MeAPO-44,显示出M2 +对Al3+40%的取代水平。后来,MeAPO-50也显示出M2+对Al3+的近40%的取代,但这些高Me2+取代的实例很少(参见ZEOLITES,1995,15,583-590)。还可以通过将SiO4/2和[M2+O4/2]2-四面体引入骨架中而在基于AlPO的分子筛上引入骨架电荷,得到MeAPSO分子筛(参见US 4,973,785)。
在US4,440,871的SAPO材料已知之前,曾尝试制备“磷酸盐沸石”,即用磷取代硅铝酸盐中的硅。在硅铝酸盐沸石中的这种取代,[PO4/2]+对[SiO4/2],表示硅铝酸盐骨架上负电荷的减少。Flanigen和Grose的初步工作共沉淀了硅铝磷酸盐凝胶组分,分离出所得固体,将所得固体悬浮在碱金属氢氧化物溶液中并在水热条件下处理它们,得到一系列磷酸盐沸石,包括LTL,CHA,LTA和GIS拓扑结构的那些(参见E.M.Flanigen and R.W.Grose,Advancesin Chemistry,Series No.101,ACS,Washington D.C.,1971)。低磷酸盐制剂,P/Al≤1.1,导致碱金属硅铝磷酸盐物种不像其硅铝酸盐类似物那样具有热稳定性,通常低于350℃至400℃,并且在某些情况下吸附能力降低表明存在一些磷酸盐封留在孔和笼中的可能性。同样,Wacks等人公开了一种制备硅铝磷酸盐沸石的方法,该方法需要在硅酸钠溶液存在下消化水合铝磷酸盐固体以制备所需的硅铝磷酸盐材料,其中并入所要求范围的磷酸盐由P2O5/Al2O3=0–0.2给出,表明在这些材料中Al/P≥5(参见K.Wacks等人,US 3,443,892)。虽然在US 3,443,892中公开了这种沸石合成方法的八个实例,但是没有提供的数据表明任何P实际上并入沸石产品中,这是可能的,因为要求保护的范围延伸到零。制备硅铝磷酸盐沸石的许多尝试类似于用于制备硅铝酸盐沸石的反应,但是在磷酸盐存在下进行,产生很少的磷酸盐并入。Kuhl进行了硅铝磷酸盐组合物的合成,采用高含量的磷酸盐和氢氧化物,对于后者使用四甲基铵和钠氢氧化物的组合,制备LTA相关物种ZK-21和ZK-22(参见G.H.Kuhl,Inorganic Chemistry,1971年10月,第2488页)。这些物种表现出低磷酸盐并入,Al/P>8.9,并且得出结论,磷酸盐被封留在沸石笼中而不是并入骨架中。Casci等人公开了低磷酸盐菱沸石材料,其中骨架磷声称在0.05-5摩尔%之间,即P/(Al+Si+P)=0.0005-0.05(见US2014/0193327)。在实施例的反应混合物中使用的磷酸盐的量低(Al/P>5.5),并且在实施例中没有提供数据以显示P实际上并入。SAPO专利(US4440871)中公开的异常值使用一些铝酸钠,四甲基氢氧化铵和低磷酸盐(P/Al=0.4)来制备SAPO-42(实施例48),其具有LTA拓扑结构和类似于以上提及的ZK-21和ZK-22的组成,Al/P>10。SAPO-42产品由不含碱金属的基本配方描述,因为US4,440,871仅涵盖配方mR:(SixAlyPz)O2的组成。该专利还公开了由在较高温度下处理的相同反应混合物合成SAPO-20(实施例28)。SAPO-20产品具有SOD拓扑结构,不是多孔的,但具有略增加的P含量,Al/P=3.17。多年以来,在已知的微孔硅铝磷酸盐组合物中在US 4,440,871中公开的SAPO和上面综述的“磷酸盐沸石”之间存在较大的差距。特别是,缺少中间硅和磷水平的材料。这些是中间电荷密度的材料,其电荷密度高于源自低水平Si取代到中性AlPO骨架中的SAPO,但电荷密度低于磷酸盐沸石。
对于基于MeAPO的材料存在类似的电荷密度间隙。在20世纪90年代早期,由Bedard(参见US 5,126,120)和Gier(参见US 5,152,972)开发了类似于MeAPO但没有Al的高电荷密度分子筛。这些金属磷酸盐(有时是砷酸盐或钒酸盐)基于M2+(M=Zn,Co),其在T-原子方面,T2+-T5+,的通式为A+T2+T5+O4,具有类似于Si/Al=1沸石的骨架电荷密度,并且通过碱金属阳离子A+在孔中进行电荷平衡。后来尝试制备具有相似组成但具有有机SDA的金属磷酸盐导致多孔但间断的结构,即含有末端P-O-H和Zn-N键的结构(参见J.Mater.Chem.,1992,2(11),1127-1134)。尝试在磷酸锌网络中的Al取代在碱金属和季铵试剂的存在下进行,特别是最高电荷的季铵盐物种,四甲基铵,但由于高的骨架电荷密度,只有碱金属进入孔中以平衡骨架电荷(参见US 5,302,362)。类似地,在产生沸石X的磷酸锌类似物的高电荷密度磷酸锌体系中,在Na+和TMA+存在下的合成产生含有比Na+少得多的TMA+的产物(参见Chem.Mater.,1991,3,27-29)。
为了桥接US4,567,029的MeAPO与上述Bedard和Gier的碱金属稳定的Me2+-磷酸盐之间的相当大的电荷密度间隙,Stucky小组开发了在乙二醇中使用胺,通常是二胺的合成途径。他们能够制造高电荷密度的小孔MeAPO,其中R(CoxAl1-x)PO4中Co2+和Al3+的浓度变化使得在所谓的ACP系列材料,铝钴磷酸盐中0.33≤x≤0.9(参见NATURE,1997,388,735)。继续使用这种合成方法,利用乙二醇反应混合物并使胺与R(M2+ xAl1-x)PO4的骨架电荷密度相匹配,使得0.4≤x≤0.5,(M2+=Mg2+,Mn2+,Zn2+,Co2+),分离出大孔材料UCSB-6,-8和-10(参见SCIENCE,1997,278,2080)。类似地,该方法还产生组合物RM2+ 0.5Al0.5PO4的沸石ρ的MeAPO类似物,其中R=N,N'-二异丙基-1,3-丙二胺,M2+=Mg2+,Co2+和Mn2+。Cowley采用这种基于乙二醇的方法,他称之为“主要是非水溶剂热条件”,用DABCO SDA合成高电荷密度CoGaPO-5,(DABCO)2[Co4Ga5P9O36](参见ZEOLITES,1997,18,176-181)。Cowley还利用这种策略制备钴和锌镓磷酸盐,使用奎宁环作为SDA,其中一种具有CGS拓扑结构,其骨架电荷密度为-0.125/T-原子(参见MICROPOROUS AND MESOPOROUS MATERIALS 1999,28,163-172)。同样,Lin和Wang使用1,2-二氨基环己烷(DACH)和乙二醇方法制备了具有CGS拓扑结构的Zn-Ga磷酸盐,其Zn并入量高于Cowley工作,实现了对于(H2DACH)Zn2Ga2(PO4)4为-0.25/T-原子的骨架电荷密度(参见CHEMISTRY OF MATERIALS,2000,12,3617-3623)。从安全和环境的角度来看,这种非水合成方法对乙二醇溶剂的依赖性导致其在工业规模上并不适用。这种非水方法还导致非常大的晶体,通常具有数百微米的尺寸,这对于工业用途来说太大,其中通常优选μ尺寸或更小的晶体(参见SCIENCE,1997,278,2080)。除了这里引用的这项工作之外,在该中间电荷密度区域中几乎没有活性,其中对于[M2+ xAl1-xPO4]x-组合物,0.2≤x≤0.9。
追求水化学,使用高度带电的三季铵SDA来制备新的MeAPO材料(参见seeChem.Mater.,1999,11,2456-2462)。其中一种材料,具有BPH拓扑结构的STA-5(Mg2.1Al11.9P14O28),显示出显著的Mg2+对Al3+的取代,高达15%,但是在Stucky的非水乙二醇方法中看见更少的取代。
与前面段落中讨论的SAPO和MeAPO化学不同,在MeAPSO组成领域的研究少得多,可能是因为这种4组分材料的复杂性质。MeAPO和SAPO材料分别由3个T-原子组分组成,这些T-原子组分分别衍生自Me2+或Si取代到AlPO基骨架中。在现有技术中,添加第四T-原子组分(Si或Me2+)通常是现有MeAPO或SAPO材料的扰动。Flanigen等人回顾了铝磷酸盐分子筛和元素周期表,并讨论了可以取代到AlPO基骨架中的元素以及已纳入22种不同的AlPO基拓扑结构中的元素(参见Y.Murakami,A.Lijima,J.W.Ward(Eds.),Proc.of 7th Int.ZeoliteConf.,(Elsevier Amsterdam 1986),第103-112页)。在存在MeAPSO组合物的每种情况下,除了MeAPSO-46之外,还存在AlPO,SAPO或MeAPO组合物,其实际上首先作为MeAPSO组合物发现,但后来在具有相同SDA,二异丙胺的MeAPO组合物中发现(参见J.Chem.Soc.,FaradayTrans.,1993,89,4141-4147)。MeAPSO组合物的许多实例是先前已知的MeAPO或SAPO组合物的衍生物,例如MeAPSO-34,衍生物通常制备以观察对催化和其它材料性质的影响(参见Applied Catalysis A,General 2011 406,59-62)。然而,MeAPSO组合物尚未成为新探索性合成的焦点。例如,Stucky,Cowley等人的更高电荷密度的金属铝磷酸盐和在上面讨论的其它的制备的尝试尚未扩展到MeAPSO组合物。因此,除了上面讨论的MeAPO和SAPO之外,还缺乏中间到高电荷密度的MeAPSO组合物,换句话说,MeAPSO含有大量的Me2+,Si4+或两者,高于US 4,973,785中所描述的小至中等的取代水平。简而言之,MeAPSO材料的组成自US 4,973,785中公开的方法没有进展。
最近,Lewis等人开发了水溶液化学,导致更高电荷密度SAPO,MeAPO和MeAPSO材料,使用乙基三甲基铵(ETMA+)和二乙基二甲基铵(DEDMA+)SDA使得SiO4/2和[M2+O4/2]2-分别能够更多地被取代到[PO4/2]+和[AlO4/2]-的骨架中。这些材料包括MeAPO,SAPO,和MeAPSO版本的ZnAPO-57(US 8871178),ZnAPO-59(US 8871177)和ZnAPO-67(US 8697927),以及具有BPH拓扑结构的MeAPSO-64物种(US 8696886),这并未实现为具有这些SDA的MeAPO或SAPO组合物。在文献中概述了增加的产物电荷密度和反应参数之间的关系,即ETMAOH(DEDMAOH)/H3PO4比(参见MICROPOROUS AND MESOPOROUS MATERIALS,189,2014,49,63)。
申请人现在已经合成了具有BPH拓扑结构的称为MeAPSO-83的一族新的带电荷金属铝(棓)-磷硅酸盐骨架材料。MeAPSO-83表现出比US 4,973,785中提到的MeAPSO或MeAPSO-64更高的电荷密度,最显著的是含有更多的Me2+,更多的Si4+或两者。本发明的高电荷密度(HCD)MeAPSO在混合的季铵/碱金属SDA体系中合成,例如ETMA+/K+。碱金属在AlPO基体系中的应用是不常见的,并且在此需要实现更高的电荷密度和更高的Me2+和Si4+并入。本发明的MeAPSO材料通常含有“Si岛”,“Si-O-Si”键合区域。
发明内容
如上所述,本发明涉及称为MeAPSO-83的一族新的金属铝(棓)-磷硅酸盐分子筛。因此,本发明的一个实施方案是具有[MO4/2]2-,[EO4/2]-,[PO4/2]+和SiO4/2四面体单元的三维骨架和以合成形式和以无水为基础由如下经验式表示的经验组成的微孔结晶材料:
Rp+ rA+ mM2+ wExPSiyOz
其中R是选自乙基三甲基铵(ETMA+),己烷双胺(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,三甲基异丙基铵,三甲基丁基铵,四甲基铵(TMA+),二乙基二甲基铵(DEDMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的有机铵阳离子,“r”是R与P的摩尔比并且具有0.1至1.5的值,“p”是R的加权平均化合价并且在1至2之间变化,A是碱金属,例如Li+,Na+,K+,Rb+和Cs+及其混合物,“m”是A与P的摩尔比并且在0.1至1.5之间变化,M是选自Zn,Co,Mg,Mn及其混合物的二价金属,“w”是M与P的摩尔比并且在0.5至0.9之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在0.1至0.8之间变化,“w”≥“x”,“y”是Si与P的摩尔比并且在0.02至2.5之间变化,“z”是O与P的摩尔比,并且具有由如下等式确定的值:
z=(m+p·r+2·w+3·x+5+4·y)/2
其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
Figure BDA0001729681610000071
本发明的另一个实施方案是制备上述结晶金属铝(棓)磷硅酸盐分子筛的方法。该方法包括形成含有R,A,E,P,M和Si的反应源的反应混合物,并在60℃至200℃的温度下加热反应混合物足够的时间以形成分子筛,反应混合物具有如下以氧化物的摩尔比表示的组成:
aR2/pO:bA2O:cMO:E2O3:dP2O5:eSiO2:fH2O
其中“a”的值为2.1至120,“b”的值为0.1至8,“c”的值为0.25至8,“d”的值为1.69至30,“e”的值为0.1至16,“f”的值为50至5000。
本发明的又一个实施方案是使用上述分子筛作为催化剂的烃转化方法。该方法包括在转化条件下使至少一种烃与分子筛接触以产生至少一种转化的烃。
本发明的又一个实施方案是使用结晶MeAPSO-83材料的分离方法。该方法可包括通过使流体与MeAPSO-83分子筛接触来分离分子种类的混合物或去除污染物。分子种类的分离可以基于分子大小(动力学直径)或基于分子种类的极性度。去除污染物可以通过与分子筛的离子交换。
发明详述
申请人已经制备了一族基于金属铝(棓)磷硅酸盐的分子筛,称为MeAPSO-83。与现有技术中的其他MeAPSO材料相比,MeAPSO-83族材料包含更多的Si或更多的M2+或两者并且具有高骨架(FW)电荷密度,除季铵离子外,需要使用碱阳离子来平衡FW电荷。传统的MeAPSO,例如US 4,973,785中公开的那些,主要使用基于有机物质的FW电荷平衡,最常用的是胺,同时避免使用碱。本发明的微孔结晶材料(MeAPSO-83)具有以合成形式和以无水为基础由如下经验式表示的经验组成:
Rp+ rA+ mM2+ wExPSiyOz
其中A是至少一种碱阳离子并且选自碱金属。A阳离子的具体实例包括但不限于锂,钠,钾,铷,铯及其混合物。R是至少一种季铵阳离子,其实例包括但不限于乙基三甲基铵(ETMA+),己烷双铵(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,三甲基异丙基铵,三甲基丁基铵,二乙基二甲基铵(DEDMA+),四甲基铵(TMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物,“r”是R与P的摩尔比并且具有0.1至1.5的值,而“p”是R的加权平均化合价并且在1至2之间变化。M和E是四面体配位的并且在骨架中,M是选自Zn,Mg,Co,Mn及其混合物的二价元素,而E是选自铝和镓及其混合物的三价元素。“m”的值是A与P的摩尔比并且在0.1至1.5之间变化,“w”是M与P的摩尔比并且在0.5至0.9之间变化,“x”是E与P的摩尔比并且在0.1至0.8之间变化,“w”≥“x”。硅与P的比由“y”表示并且在0.02至2.5之间变化。最后,“z”是O与E的摩尔比并且由下式给出:
z=(m+r·p+2·w+3·x+5+4·y)/2。
当仅存在一种类型的R季铵阳离子时,则加权平均化合价仅为该阳离子的化合价,例如+1或+2。当存在多于一个R阳离子时,则R的总量由下式给出:
Figure BDA0001729681610000091
加权平均化合价“p”由下式给出:
Figure BDA0001729681610000092
与对于大多数MeAPSO材料已知的相比,本发明MeAPSO-83的特征在于高电荷密度,并且可以表现出显著的“Si岛”形成,即Si-O-Si键合。根据上面给出的经验式,理想MeAPSO-83上的FW电荷为-2·“w”-“x”+1或-2·M-Al+P。这些材料上的电荷是使得除了季铵阳离子之外还使用高电荷碱阳离子来平衡FW电荷。将MeAPSO材料与AlPO材料进行比较,与中性AlPO材料相比,两种取代机制导致FW电荷起作用,即[M2+O4/2]2-对[AlO4/2]-和[SiO4/2]对[PO4/2]+。观察到在MeAPSO-83材料中“Si”以两种不同的方式并入。在一种情况下,Si仅取代P,在如上所述的方法中添加FW电荷。必须分离所有FW磷,因为它只能通过P-O-E(M)键合在骨架中与M或E键合,因此,也可以分离取代P的Si。然而,与P不同,Si也可以通过Si-O-Si键合而自身键合,形成所谓的“Si岛”。“Si岛”在本领域中是已知的,即使对于较低电荷密度的材料,例如,对于SAPO-56(参见MICROPOROUS AND MESOPOROUS MATERIALS,28,(1999),125-137)。在MeAPSO-83的当前情况下,当根据描述MeAPSO-83的经验式,“w”+“x”<1+“y”时,“Si岛”的存在是显而易见的。
还已经注意到,在MeAPSO-83材料中,一部分M2+也可能存在于可能具有电荷平衡作用的孔中。
微孔结晶金属铝(棓)磷硅酸盐MeAPSO-83通过反应混合物的水热结晶来制备,所述反应混合物通过组合R,A,E,磷,M和硅的反应性来源制备。MeAPSO-83材料的优选形式是当E是Al时。铝源包括但不限于铝醇盐,沉淀氧化铝,铝金属,氢氧化铝,铝盐,碱金属铝酸盐和氧化铝溶胶。铝醇盐的具体实例包括但不限于邻仲丁醇铝和邻异丙氧基铝。M的来源包括但不限于乙酸锌,氯化锌,乙酸钴,氯化钴,乙酸镁,硝酸镁,硫酸锰,乙酸锰和硝酸锰。磷的来源包括但不限于正磷酸,五氧化二磷和磷酸二氢铵。二氧化硅的来源包括但不限于原硅酸四乙酯,胶态二氧化硅,碱金属硅酸盐和沉淀二氧化硅。其他E元素的来源包括但不限于沉淀的氢氧化镓,氯化镓,硫酸镓或硝酸镓。A金属的来源包括各种碱金属的卤化物盐,硝酸盐,氢氧化物盐,乙酸盐和硫酸盐。R是至少一种选自乙基三甲基铵(ETMA+),己烷双铵(HM2 +),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,三甲基异丙基铵,三甲基丁基铵,二乙基二甲基铵(DEDMA+),四甲基铵(TMA+)四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的季铵阳离子,其来源包括氢氧化物,氯化物,溴化物,碘化物,乙酸盐和氟化物。具体实例包括但不限于乙基三甲基氢氧化铵,乙基三甲基氯化铵,六甲基二氢氧化铵,六甲基二氯化铵,氢氧化胆碱,氯化胆碱,二乙基二甲基氯化铵,二乙基二甲基氢氧化铵,丙基三甲基氯化铵和四甲基氯化铵。在一个实施方案中,R是ETMA+。在另一个实施方案中,R是DEDMA+。在另一个实施方案中,R是ETMA+和至少一种选自胆碱,DEDMA+,TMA+,HM2+,三甲基丙基铵,TEA+和TPA+的有机铵阳离子的组合。
含有所需组分的反应性来源的反应混合物可以通过下式以氧化物的摩尔比来描述:
aR2/pO:bA2O:cMO:E2O3:dP2O5:eSiO2:fH2O
其中“a”在2.1到120之间变化,“b”在0.1到8之间变化,“c”在0.25到8之间变化,“d”在1.69到30之间变化,“e”在0.1到16之间变化并且“f”在50到5000之间变化。如果使用醇盐,则优选包括蒸馏或蒸发步骤以除去醇水解产物。现在反应混合物在密封反应容器中在自生压力下在60℃至200℃,优选95℃至175℃的温度下反应1天至3周,优选1天至14天。结晶完成后,通过诸如过滤或离心的方法从非均相混合物中分离固体产物,然后用去离子水洗涤并在环境温度至100℃在空气中干燥。MeAPSO-83种子可任选地加入到反应混合物中,以加速或以其它方式增强所需微孔组合物的形成。
由上述方法获得的MeAPSO-83金属铝(棓)磷硅酸盐基材料的特征在于至少具有下表A中列出的d-间距和相对强度的X射线衍射图。
表A
Figure BDA0001729681610000111
Figure BDA0001729681610000121
可以以许多方式改性MeAPSO-83以使其适合于在特定应用中使用。改性包括煅烧,氨煅烧,离子交换,汽蒸,各种酸提取,六氟硅酸铵处理或其任何组合,如US 6,776,975中对于UZM-4的情况所概述的,其全部内容通过引用并入本文。此外,可以改性的性质包括孔隙率,吸附性,骨架组成,酸度,热稳定性,离子交换能力等。
合成时,MeAPSO-83材料将在其孔中含有一些可交换或电荷平衡的阳离子。这些可交换的阳离子可以与其他阳离子交换,或者在有机阳离子的情况下,它们可以通过在受控条件下加热来除去。由于MeAPSO-83是大孔材料,BPH拓扑结构沿c轴具有12环孔,许多有机阳离子可通过离子交换直接除去,加热可能不是必需的。如果需要加热以除去有机阳离子,则从孔中除去它们的优选方法是氨煅烧。在空气中煅烧将孔中的有机阳离子转化为质子,这可导致一些金属(例如Al)在暴露于环境大气水蒸气时从骨架中损失。当煅烧在氨气氛中进行时,孔中的有机阳离子被NH4 +阳离子取代,并且骨架保持完整(参见Studies inSurface Science,(2004)vol.154,p.1324-1331)。氨煅烧的典型条件包括使用以1.1升/分钟的速率流动的气态无水氨,同时将样品温度以5℃/分钟升温至500℃并在该温度下保持5分钟至1小时的时间。所得铵/碱形式的MeAPSO-83基本上具有表A的衍射图。一旦以这种形式,氨煅烧的材料可以与H+,NH4 +,碱金属,碱土金属,过渡金属,稀土金属或其任何混合物进行离子交换,以在优良条件下用MeAPSO-83骨架获得多种组合物。
当MeAPSO-83或其改性形式在空气中煅烧时,可能存在来自骨架的金属损失,例如Al,其可以改变从所合成MeAPSO-83观察到的X射线衍射图(参见Studies in SurfaceScience,(2004)vol.154,p.1324-1331)。煅烧MeAPSO-83样品的典型条件包括将温度从室温升至400℃至600℃的煅烧温度,优选450℃至550℃的煅烧温度,升温速率为1至5℃/min,优选2至4℃/min的升温速率,在由流动的氮气或流动的清洁干燥空气组成的气氛中进行升温,优选流动的氮气气氛。一旦达到所需的煅烧温度,如果在升温期间使用的煅烧气氛为流动的清洁干燥空气,它可以保持流动的清洁干燥空气。如果升温期间的煅烧气氛是流动的氮气,它可以在煅烧温度下保持流动的氮气,或者可以立即转化为清洁干燥空气;优选在煅烧温度下,在将煅烧气氛转化为流动的清洁干燥空气之前,煅烧气氛将保持流动氮气1至10小时,优选2至4小时。煅烧的最后步骤是在清洁干燥空气中停留在煅烧温度下。无论初始升温期间的煅烧气氛是流动氮气还是流动清洁干燥空气,一旦处于煅烧温度并且一旦煅烧气氛是清洁干燥空气,则MeAPSO-83样品将在这些条件下花费1至24小时的时间,优选2至6小时的时间完成煅烧过程。
本发明的结晶MeAPSO-83材料可用于分离分子种类的混合物,通过离子交换除去污染物和催化各种烃转化过程。分子种类的分离可以基于分子大小(动力学直径)或基于分子种类的极性度。
本发明MeAPSO-83组合物还可以在各种烃转化方法中用作催化剂或催化剂载体。烃转化方法是本领域公知的,包括裂化,加氢裂化,芳烃和异链烷烃的烷基化,异构化,聚合,重整,氢化,脱氢,烷基转移,脱烷基化,水合,脱水,加氢处理,加氢脱氮,加氢脱硫,甲醇制烯烃,甲烷化和合成气转化过程。可在这些方法中使用的具体反应条件和进料类型列于US 4,310,440,US 4,440,871和US 5,126,308中,它们通过引用并入本文。优选的烃转化方法是其中氢是诸如加氢处理或加氢精制,氢化,加氢裂化,加氢脱氮,加氢脱硫等组分的那些。
加氢裂化条件通常包括400°至1200°F(204℃至649℃)范围内的温度,优选600°至950°F(316℃至510℃)范围内的温度。反应压力在大气压至3,500psig(24,132kPa g)的范围内,优选在200至3000psig(1379至20,685kPag)之间。接触时间通常对应于0.1hr-1至15hr-1,优选0.2至3hr-1的液时空速(LHSV)。氢气循环速率范围为1,000至50,000标准立方英尺(scf)每桶装料(178-8,888标准立方米/立方米),优选2,000至30,000scf每桶装料(355-5,333标准立方米/立方米)。合适的加氢处理条件通常在上述加氢裂化条件的宽范围内。
通常从催化剂床中除去反应区流出物,进行部分冷凝和汽-液分离,然后分馏以回收其各种组分。将氢气和如果需要的话一些或所有未转化的较重材料再循环到反应器中。或者,可以采用两级流动,未转化的材料进入第二反应器。本发明的催化剂可以仅用于这种方法的一个阶段,或者可以用于两个反应器阶段。
催化裂化方法优选使用MeAPSO-83组合物,使用原料如瓦斯油,重石脑油,脱沥青原油残渣等进行,其中汽油是主要的所需产物。850°至1100°F(455℃至593℃)的温度条件,0.5hr-1至10hr-1的LHSV值和0至50psig(0-345kPa)的压力条件是合适的。
芳烃的烷基化通常包括使芳烃(C2至C12),尤其是苯与单烯烃反应,以产生线性烷基取代的芳烃。该方法在芳烃:烯烃(例如苯:烯烃)比为5:1至30:1,LHSV为0.3至6hr-1,温度为100至250℃和200至1000psig(1,379-6,895kPa)的压力下进行。关于装置的进一步细节可以在US 4,870,222中找到,该专利通过引用结合到本文中。
异链烷烃与烯烃的烷基化以产生适合作为发动机燃料组分的烷基化物在-30℃至40℃的温度,大气压至6,894kPa(1,000psig)的压力和0.1hr-1至120hr-1的重时空速(WHSV)下进行。关于链烷烃烷基化的细节可以在US 5,157,196和US 5,157,197中找到,其通过引用并入。
通过在转化条件下使甲醇与MeAPSO-83催化剂接触,从而形成所需的烯烃,实现甲醇向烯烃的转化。甲醇可以是液相或气相,优选气相。甲醇与MeAPSO-83催化剂接触可以以连续模式或间歇模式进行,优选连续模式。甲醇与MeAPSO-83催化剂接触的时间必须足以将甲醇转化为所需的轻质烯烃产物。当该方法以间歇方法进行时,接触时间为0.001-1.0小时,优选0.01-1.0小时。较低的温度下使用较长的接触时间,而较高的温度下使用较短的时间。此外,当该方法以连续模式进行时,基于甲醇的重时空速(WHSV)可以在1hr-1至1000hr-1之间变化,优选1hr-1至100hr-1之间。
通常,该方法必须在升高的温度下进行,以便以足够快的速率形成轻质烯烃。因此,该方法应在300℃至600℃,优选400℃至550℃,最优选450℃至525℃的温度下进行。该方法可以在宽的压力范围内进行,包括自生压力。因此,压力可以在0kPa(0psig)至1724kPa(250psig)和优选34kPa(5psig)至345kPa(50psig)之间变化。
任选地,可以用惰性稀释剂稀释甲醇原料,以更有效地将甲醇转化为烯烃。可以使用的稀释剂的实例是氦气,氩气,氮气,一氧化碳,二氧化碳,氢气,蒸汽,链烷烃如甲烷,芳烃如苯,甲苯及其混合物。所用稀释剂的量可以有很大变化,通常为原料的5-90摩尔%,优选为25-75摩尔%。
反应区的实际构型可以是本领域已知的任何公知的催化剂反应装置。因此,可以使用单个反应区或多个串联或并联排列的区。在这样的反应区中,甲醇原料流过含有MeAPSO-83催化剂的床。当使用多个反应区时,可以串联使用一种或多种MeAPSO-83催化剂以产生所需的产物混合物。代替固定床,可以使用动态床系统,例如流化或移动的。这种动态系统将促进可能需要的MeAPSO-83催化剂的任何再生。如果需要再生,可以将MeAPSO-83催化剂作为移动床连续引入再生区,在再生区中可以通过诸如在含氧气氛中氧化以除去含碳材料的方式再生。
以下实施例用于说明本发明,而不是对所附权利要求中所述的本发明的广泛范围的不适当限制。产品将使用名称MeAPSO-83指定,其中包含后缀“-83”以指示“-83”结构(BPH拓扑结构)和反映产品组成性质的前缀,即对于金属铝(棓)-磷硅酸盐的“MeAPSO”,其中应理解,在这些实例中的任何一个中,Al可以部分或完全被Ga取代。
通过X射线分析测定本发明的MeAPSO-83组合物的结构。使用标准x射线粉末衍射技术获得以下实施例中呈现的x射线图。辐射源是在45kV和35mA下操作的高强度X射线管。来自铜Kα辐射的衍射图通过适当的基于计算机的技术获得。在2°至56°(2θ)下连续扫描扁平压缩粉末样品。以埃为单位的晶面间距(d)由衍射峰的位置获得,表示为θ,其中θ是从数字化数据观察到的布拉格角。强度是在减去背景后从衍射峰的积分面积确定,“Io”是最强线或峰的强度,“I”是每个其他峰的强度。
如本领域技术人员将理解的,参数2θ的确定受到人为和机械误差的影响,其组合可对每个报告的2θ值施加±0.4°的不确定性。当然,这种不确定性也体现在由2θ值计算的d间距的报告值中。这种不确定性在本领域中是通用的,并且不足以排除本发明结晶材料彼此之间以及与现有技术组合物的区别。在所报告的一些x射线图中,d间距的相对强度由符号vs,s,m和w表示,它们分别代表非常强,强,中和弱。就100x I/Io而言,上述指示定义为:
w=0-15;m=15-60:s=60-80,且vs=80-100
在某些情况下,可以参考其x射线粉末衍射图评价合成产物的纯度。因此,例如,如果样品声称是纯的,则仅意图样品的x射线图不含可归因于结晶杂质的线,而不是不存在无定形材料。
为了更全面地说明本发明,提出以下实施例。应当理解,这些实施例仅仅是为了举例说明,而不是对所附权利要求中所述的本发明的广泛范围的过度限制。
实施例1
向特氟隆烧杯中装入150.00g ETMAOH(SACHEM Inc.,20%),向其中加入6.06gTEOS(98%)并用高速混合器搅拌混合物2小时。将溶液转移到密封的特氟隆瓶中并在95℃下消化2小时以水解TEOS。将反应混合物转移回特氟隆烧杯中,加入5.79g预研磨的异丙醇铝(Sigma-Aldrich,13.3%Al)并在剧烈搅拌下溶解。然后快速滴加19.57g H3PO4(85.7%)。另外,将6.26g Zn(OAc)2*2H2O溶解在30.30g去离子水中。将该溶液以逐滴方式以四个单独的等分试样加入到反应混合物中,在每次加入之间搅拌。通过将2.82g KOAc(99.4%)溶解在30.30g去离子水中制备溶液。将该溶液以三个等分试样滴加到反应混合物中,并将反应混合物均化。将反应混合物分配在7个特氟隆衬里的高压釜中,并在95℃,125℃,150℃和175℃的温度下在自生压力下静态消化33或149小时或两者。通过离心分离固体产物,用去离子水洗涤并在室温下干燥。通过粉末X射线衍射发现所有产物都含有具有BPH拓扑结构的MeAPSO-83,除了三种产物含有轻微杂质。对于来自125℃/149小时消化的纯MeAPSO-83产物,代表性衍射线显示在下表1中。扫描电子显微镜(SEM)显示该产物由0.2至0.8μ直径,0.015至0.15μ厚的六方形片晶组成。该同一产物的元素分析表明,它由元素比Al/P=0.43,Zn/P=0.64,Si/P=0.10,K/P=0.39且N/P=0.18组成,与化学计量ETMA0.18K0.39Zn0.64Al0.4 3PSi0.10一致。
表1
Figure BDA0001729681610000171
Figure BDA0001729681610000181
实施例2
向特氟隆瓶中装入145.00g DEDMAOH(SACHEM Inc.,20%)。加入搅拌棒和5.17gTEOS(98%),将瓶密封并在室温下搅拌18小时以水解TEOS。然后将反应混合物转移到特氟隆烧杯中并置于高速搅拌器下。然后加入预研磨的异丙醇铝(13.2%Al),4.97g,并搅拌溶解。然后滴加16.69gH3PO4(85.7%)。另外,将5.34g Zn(OAc)2*2H2O溶解在25.00g去离子水中。将该溶液滴加到反应混合物中。通过将1.19g KOAc(99.4%)溶解在12.44g去离子水中制备另一溶液。以两个步骤逐滴加入该溶液,在其间为搅拌时间。将最终的反应混合物再均化1小时。将反应混合物分配在7个特氟隆衬里的高压釜中,并在95℃,125℃,150℃和175℃的温度下在自生压力下静态消化48或167小时或两者。通过离心分离固体产物,用去离子水洗涤并在室温下干燥。除95℃/177小时消化的产物外,发现所有产物均含有具有BPH拓扑结构的MeAPSO-83作为粉末X射线衍射的主要产物,48小时样品含有微量杂质。对于来自150℃/167小时消化的纯MeAPSO-83产物,代表性衍射线显示在下表2中。扫描电子显微镜(SEM)显示该产物由0.5至3μ直径,0.1至1.0μ厚的六方形片晶组成。对同一产物的元素分析表明,它由以下元素比组成:Al/P=0.50,Zn/P=0.64,Si/P=0.61,K/P=0.32,N/P=0.38,与化学计量DEDMA0.38K0.32Zn0.64Al0.50PSi0.61一致。
表2
Figure BDA0001729681610000182
Figure BDA0001729681610000191
实施例3
向特氟隆瓶中装入174.00g DEDMAOH(20%),然后加入5.17g TEOS(98%)和搅拌棒。将瓶密封并将溶液搅拌18小时以水解TEOS。将反应混合物转移到特氟隆烧杯中并置于高速搅拌器下。加入预研磨的异丙醇铝(13.2%Al),4.97g,并在剧烈搅拌下溶解。然后滴加16.69g H3PO4(85.7%)。另外,将5.34g Zn(OAc)2*2H2O溶解在25.00g去离子水中,并将所得溶液以逐滴方式加入到反应混合物中。在继续搅拌反应混合物的同时,将1.19g KOAc(99.4%)溶解在7.88g去离子水中。逐滴加入并后加该溶液,然后将反应混合物进一步均化。将反应混合物分配在7个特氟隆衬里的高压釜中,并在95℃,125℃,150℃和175℃的温度下在自生压力下静态消化48或168小时或两者。通过离心分离固体产物,用去离子水洗涤并在室温下干燥。通过粉末X射线衍射,将95℃/168小时消化的产物鉴定为具有BPH拓扑结构的MeAPSO-83。代表性的衍射线如下表3所示。扫描电子显微镜(SEM)显示该MeAPSO-83产物由0.1至3μ直径,0.015至0.8μ厚的六方形片晶组成。对同一产物的元素分析表明它由以下元素比组成:Al/P=0.41,Zn/P=0.85,Si/P=0.10,K/P=0.34,N/P=0.22,与化学计量DEDMA0.22K0.34Zn0.85Al0.41PSi0.10一致。
表3
Figure BDA0001729681610000201
Figure BDA0001729681610000211
具体实施方式
虽然结合具体实施例描述了以下内容,但是应该理解,该描述旨在说明而不是限制前述说明书和所附权利要求的范围。
本发明的第一实施方案是具有M2+O4/2],[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架和以合成形式和以无水为基础由经验式Rp+ rA+ mM2+ wExPSiyOz表示的经验组成的微孔结晶材料,其中R是至少一种选自乙基三甲基铵(ETMA+),己烷双铵(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,三甲基异丙基铵,三甲基丁基铵,四甲基铵(TMA+),二乙基二甲基铵(DEDMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的季有机铵阳离子,“r”是R与P的摩尔比并且具有0.1至1.5的值,“p”是R的加权平均化合价并且在1至2之间变化,A是碱金属如Li+,Na+,K+,Rb+和Cs+及其混合物,“m”是A与P的摩尔比并且在0.1至1.5之间变化,M是选自Zn,Co,Mg,Mn及其混合物的二价金属,“w”是M与P的摩尔比并且在0.5至0.9之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在0.1至0.8之间变化,“w”≥“x”,“y”是Si与P的摩尔比并且在0.02至2.5之间变化,“z”是O与P的摩尔比,并且具有由等式z=(m+p·r+2·w+3·x+5+4·y)/2确定的值,其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
Figure BDA0001729681610000212
Figure BDA0001729681610000221
本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中E是铝。本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中E是镓。本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中R是乙基三甲基铵阳离子ETMA+。本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中R是二乙基二甲基铵阳离子,DEDMA+。本发明的一个实施方案为从该段中第一实施方案开始的该段中先前实施方案中的一个、任何或全部,其中微孔结晶材料的结晶改性形式包含[M2+O4/2]2-,[EO4/2]-,[PO4/2]+和SiO4/2四面体单元的三维骨架,并衍生自改性上述结晶微孔金属铝(棓)磷硅酸盐,改性包括煅烧,氨煅烧,离子交换,汽蒸,各种酸提取,六氟硅酸铵处理或其任何组合。
本发明的第二实施方案是制备具有[M2+O4/2]2-,[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架和以合成形式和以无水为基础由经验式Rp+ rA+ mM2+ wExPSiyOz表示的经验组成的微孔结晶材料的方法,其中R是至少一种选自乙基三甲基铵(ETMA+),己烷双铵(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,三甲基异丙基铵,三甲基丁基铵,四甲基铵(TMA+),二乙基二甲基铵(DEDMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的季有机铵阳离子,“r”是R与P的摩尔比并且具有0.1至1.5的值,“p”是R的加权平均化合价并且在1至2之间变化,A是碱金属如Li+,Na+,K+,Rb+和Cs+及其混合物,“m”是A与P的摩尔比并且在0.1至1.5之间变化,M是选自Zn,Co,Mg,Mn及其混合物的二价金属,“w”是M与P的摩尔比并且在0.5至0.9之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在0.1至0.8之间变化,“w”≥“x”,“y”是Si与P的摩尔比并且在0.02至2.5之间变化,“z”是O与P的摩尔比,并且具有由等式z=(m+p·r+2·w+3·x+5+4·y)/2确定的值,其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
Figure BDA0001729681610000231
Figure BDA0001729681610000241
该方法包括形成含有R,A,E,P,M和Si的反应性来源的反应混合物,并在60℃至200℃的温度下加热反应混合物足够的时间以形成金属铝(棓)磷硅酸盐分子筛,反应混合物具有如下以氧化物的摩尔比表示的组成aR2/pO:bA2O:cMO:E2O3:dP2O5:eSiO2:fH2O,其中“a”的值为2.1至120,“b”的值为0.1至8,“c”的值为0.25至8,“d”的值为1.69至30,“e”的值为0.1至16,“f”的值为50至5000。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中初始反应混合物在消化前是澄清溶液。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中A选自Li+,Na+,K+,Rb+和Cs+及其混合物且A的来源选自卤化物盐,硝酸盐,乙酸盐,硫酸盐,氢氧化物盐及其混合物。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中M选自Zn2+,Mn2+,Co2+和Mg2+及其混合物,并且M的来源选自卤化物盐,硝酸盐,乙酸盐,硫酸盐及其混合物。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中E的来源选自异丙醇铝,仲丁醇铝,沉淀氧化铝,Al(OH)3,碱金属铝酸盐,铝金属,卤化铝盐,硫酸铝盐,硝酸铝盐,沉淀的羟基氧化镓,硝酸镓,硫酸镓及其混合物。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中硅源选自原硅酸四乙酯,硅醇盐,火成二氧化硅,胶态二氧化硅,碱金属硅酸盐,沉淀二氧化硅及其混合物。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中反应混合物在95℃至175℃的温度下反应1天至14天。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中R是ETMA+。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,其中R是DEDMA+。本发明的一个实施方案为从该段中第二实施方案开始的该段中先前实施方案中的一个、任何或全部,还包括将MeAPSO-83种子加入反应混合物中。
本发明的第三实施方案是烃转化方法,包括在烃转化条件下使烃料流与催化剂接触以产生至少一种转化产物,其中催化剂选自结晶微孔MeAPSO-83材料,结晶微孔改性的MeAPSO-83材料及其混合物,其中MeAPSO-83是具有[M2+O4/2]2-,[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架和以合成形式和以无水为基础由经验式Rp+ rA+ mM2+ wExPSiyOz表示的经验组成的结晶微孔金属铝(棓)磷硅酸盐材料,其中R是至少一种选自乙基三甲基铵(ETMA+),己烷双铵(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,三甲基异丙基铵,三甲基丁基铵,四甲基铵(TMA+),二乙基二甲基铵(DEDMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的季有机铵阳离子,“r”是R与P的摩尔比并且具有0.1至1.5的值,“p”是R的加权平均化合价并且在1至2之间变化,A是碱金属如Li+,Na+,K+,Rb+和Cs+及其混合物,“m”是A与P的摩尔比并且在0.1至1.5之间变化,M是选自Zn,Co,Mg,Mn及其混合物的二价金属,“w”是M与P的摩尔比并且在0.5至0.9之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在0.1至0.8之间变化,“w”≥“x”,“y”是Si与P的摩尔比并且在0.02至2.5之间变化,“z”是O与P的摩尔比,并且具有由等式z=(m+p·r+2·w+3·x+5+4·y)/2确定的值,其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
Figure BDA0001729681610000261
Figure BDA0001729681610000271
结晶微孔改性的MeAPSO-83由[M2+O4/2]2-,[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架组成,衍生自MeAPSO-83经由煅烧,氨煅烧,离子交换,汽蒸,各种酸提取,六氟硅酸铵处理或其任何组合的改性方法。本发明的一个实施方案为从该段中第三实施方案开始的该段中先前实施方案中的一个、任何或全部,其中烃转化方法选自裂化,加氢裂化,烷基化,异构化,聚合,重整,氢化,脱氢,烷基转移,脱烷基化,水合,脱水,加氢处理,加氢精制,加氢脱氮,加氢脱硫,甲醇制烯烃,甲烷化,合成气转换方法,烯烃二聚,低聚,脱蜡及其组合。
无需进一步详细说明,相信使用前面的描述,本领域技术人员可以在最大程度上利用本发明并且在不脱离本发明的精神和范围的情况下容易地确定本发明的基本特征。对本发明进行各种改变和修改,并使其适应各种用途和条件。因此,前述优选的具体实施方案应被解释为仅是说明性的,并且不以任何方式限制本公开的其余部分,并且旨在覆盖包括在所附权利要求范围内的各种修改和等同布置。
在上文中,除非另有说明,否则所有温度均以摄氏度表示,并且所有份数和百分比均以重量计。

Claims (10)

1.微孔结晶材料,具有[M2+O4/2]2-,[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架,并且具有以合成形式以无水为基础由如下经验式表示的组成:
Rp+ rA+ mM2+ wExPSiyOz
其中R是至少一种选自乙基三甲基铵(ETMA+),己烷双铵(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,三甲基异丙基铵,三甲基丁基铵,四甲基铵(TMA+),二乙基二甲基铵(DEDMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的季有机铵阳离子,“r”是R与P的摩尔比并且具有0.1至1.5的值,“p”是R的加权平均化合价并且在1至2之间变化,A是选自Li,Na,K,Rb和Cs及其混合物的碱金属,“m”是A与P的摩尔比并且在0.1至1.5之间变化,M是选自Zn,Co,Mg,Mn及其混合物的二价金属,“w”是M与P的摩尔比并且在0.5至0.9之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在0.1至0.8之间变化,“w”≥“x”,“y”是Si与P的摩尔比并且在0.02至2.5之间变化,“z”是O与P的摩尔比,并且具有由如下等式确定的值:
z=(m+p·r+2·w+3·x+5+4·y)/2
其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
Figure FDA0003060065780000011
Figure FDA0003060065780000021
2.根据权利要求1所述的微孔结晶材料,其中R是乙基三甲基铵阳离子ETMA+或二乙基二甲基铵阳离子DEDMA+
3.根据权利要求1所述的微孔结晶材料的结晶改性形式,包含[M2+O4/2]2-,[EO4/2]-,[PO4/2]+和SiO4/2四面体的三维骨架并且衍生自将根据权利要求1所述的结晶微孔金属铝(镓)磷硅酸盐改性,改性包括氨煅烧,离子交换,或其任何组合。
4.制备具有[M2+O4/2]2-,[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架且具有以合成形式以无水为基础由如下经验式表示的组成的微孔结晶材料的方法:
Rp+ rA+ mM2+ wExPSiyOz
其中R是至少一种选自乙基三甲基铵(ETMA+),己烷双铵(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,三甲基异丙基铵,三甲基丁基铵,四甲基铵(TMA+),二乙基二甲基铵(DEDMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的季有机铵阳离子,“r”是R与P的摩尔比并且具有0.1至1.5的值,“p”是R的加权平均化合价并且在1至2之间变化,A是选自Li,Na,K,Rb和Cs及其混合物的碱金属,“m”是A与P的摩尔比并且在0.1至1.5之间变化,M是选自Zn,Co,Mg,Mn及其混合物的二价金属,“w”是M与P的摩尔比并且在0.5至0.9之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在0.1至0.8之间变化,“w”≥“x”,“y”是Si与P的摩尔比并且在0.02至2.5之间变化,“z”是O与P的摩尔比,并且具有由如下等式确定的值:
z=(m+p·r+2·w+3·x+5+4·y)/2
其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
Figure FDA0003060065780000031
Figure FDA0003060065780000041
该方法包括形成含有R,A,E,P,M和Si的反应性来源的反应混合物,并在60℃至200℃的温度下加热反应混合物足够的时间以形成金属铝(镓)磷硅酸盐分子筛,反应混合物具有如下以氧化物的摩尔比表示的组成:
aR2/pO:bA2O:cMO:E2O3:dP2O5:eSiO2:fH2O
其中“a”的值为2.1至120,“b”的值为0.1至8,“c”的值为0.25至8,“d”的值为1.69至30,“e”的值为0.1至16,“f”的值为50至5000。
5.根据权利要求4所述的方法,其中初始反应混合物在消化前是澄清溶液。
6.根据权利要求4所述的方法,其中A选自Li,Na,K,Rb和Cs及其混合物,A的来源选自卤化物盐,硝酸盐,乙酸盐,硫酸盐,氢氧化物盐及其混合物;M选自Zn,Mn,Co和Mg及其混合物,M的来源选自卤化物盐,硝酸盐,乙酸盐,硫酸盐及其混合物,E的来源选自异丙醇铝,仲丁醇铝,沉淀氧化铝,Al(OH)3,碱金属铝酸盐,铝金属,卤化铝盐,硫酸铝盐,硝酸铝盐,沉淀的羟基氧化镓,硝酸镓,硫酸镓及其混合物。
7.根据权利要求4所述的方法,其中硅源选自原硅酸四乙酯,硅醇盐,火成二氧化硅,胶态二氧化硅,碱金属硅酸盐,沉淀二氧化硅及其混合物。
8.根据权利要求4所述的方法,其中R是乙基三甲基铵阳离子ETMA+或二乙基二甲基铵阳离子DEDMA+
9.烃转化方法,包括在烃转化条件下使烃料流与催化剂接触以产生至少一种转化产物,其中催化剂选自结晶微孔MeAPSO-83材料,结晶微孔改性MeAPSO-83材料及其混合物,其中MeAPSO-83是结晶微孔金属铝(镓)磷硅酸盐材料,具有[M2+O4/2]2-,[EO4/2]-和[PO4/2]+和SiO4/2的三维骨架四面体单元和以合成形式以无水为基础由如下经验式表示的组成:
Rp+ rA+ mM2+ wExPSiyOz
其中R是至少一种选自乙基三甲基铵(ETMA+),己烷双铵(HM2+),胆碱[Me3NCH2CH2OH]+,三甲基丙基铵,三甲基异丙基铵,三甲基丁基铵,四甲基铵(TMA+),二乙基二甲基铵(DEDMA+),四乙基铵(TEA+),四丙基铵(TPA+)及其混合物的季有机铵阳离子,“r”是R与P的摩尔比并且具有0.1至1.5的值,“p”是R的加权平均化合价并且在1至2之间变化,A是选自Li,Na,K,Rb和Cs及其混合物的碱金属,“m”是A与P的摩尔比并且在0.1至1.5之间变化,M是选自Zn,Co,Mg,Mn及其混合物的二价金属,“w”是M与P的摩尔比并且在0.5至0.9之间变化,E是选自铝和镓及其混合物的三价元素,“x”是E与P的摩尔比并且在0.1至0.8之间变化,“w”≥“x”,“y”是Si与P的摩尔比并且在0.02至2.5之间变化,“z”是O与P的摩尔比,并且具有由如下等式确定的值:
z=(m+p·r+2·w+3·x+5+4·y)/2
其特征在于它具有至少具有表A中列出的d-间距和强度的X射线衍射图:
表A
Figure FDA0003060065780000051
Figure FDA0003060065780000061
结晶微孔改性的MeAPSO-83由[M2+O4/2]2-,[EO4/2]-和[PO4/2]+和SiO4/2四面体单元的三维骨架组成,衍生自MeAPSO-83经由氨煅烧,离子交换,或其任何组合的改性方法。
10.根据权利要求9所述的方法,烃转化方法选自裂化,烷基化,异构化,聚合,重整,脱氢,烷基转移,脱烷基化,水合,脱水,加氢处理,甲醇制烯烃,合成气转换方法,脱蜡及其组合。
CN201780006692.2A 2016-05-25 2017-05-16 高电荷密度金属铝磷硅酸盐分子筛MeAPSO-83 Active CN108472635B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662341389P 2016-05-25 2016-05-25
US62/341,389 2016-05-25
PCT/US2017/032873 WO2017205112A1 (en) 2016-05-25 2017-05-16 HIGH CHARGE DENSITY METALLOALUMINOPHOSPHOSILICATE MOLECULAR SIEVES MeAPSO-83

Publications (2)

Publication Number Publication Date
CN108472635A CN108472635A (zh) 2018-08-31
CN108472635B true CN108472635B (zh) 2021-09-07

Family

ID=60412628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780006692.2A Active CN108472635B (zh) 2016-05-25 2017-05-16 高电荷密度金属铝磷硅酸盐分子筛MeAPSO-83

Country Status (3)

Country Link
US (1) US10427144B2 (zh)
CN (1) CN108472635B (zh)
WO (1) WO2017205112A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602052B (zh) * 2016-05-25 2021-11-26 环球油品公司 高电荷密度金属磷酸盐分子筛
US10370257B2 (en) * 2016-05-25 2019-08-06 Uop Llc High charge density metalloaluminophosphosilicate molecular sieves
US10449526B2 (en) * 2016-05-25 2019-10-22 Uop Llc High charge density metallophosphate molecular sieves
CN111547735B (zh) * 2020-04-30 2022-08-09 上海工程技术大学 一种纯硅和高硅cha分子筛的可控合成方法
CN114644347B (zh) * 2020-12-17 2023-07-04 中国石油化工股份有限公司 一种sapo-20分子筛及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85103228A (zh) * 1984-04-13 1986-10-22 联合碳化公司 镁-铝-磷-硅-氧化物分子筛组合物
WO2004039725A2 (en) * 2002-05-09 2004-05-13 Uop Llc 'crystalline aluminosilicate zeolitic composition: uzm-4m'
CN101077481A (zh) * 2007-07-04 2007-11-28 太原理工大学 一种双微孔沸石及其制备方法
CN102811950A (zh) * 2010-03-31 2012-12-05 环球油品公司 Uzm-37硅铝酸盐沸石
RU2012145101A (ru) * 2010-03-31 2014-04-27 Юоп Ллк Способ алкилирования ароматических углеводородов с использованием алюмосиликатного цеолита uzm-37

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302362A (en) * 1992-04-10 1994-04-12 Uop Crystalline microporous metallo-zinc phosphate compositions
EP2867166B1 (en) * 2012-06-29 2017-05-03 Uop Llc Metallophosphate molecular sieves, method of preparation and use
US8911614B2 (en) * 2012-06-29 2014-12-16 Uop Llc Metallophosphate molecular sieves, methods of preparation and use
US8871177B2 (en) * 2012-06-29 2014-10-28 Uop Llc Metallophosphate molecular sieves, methods of preparation and use
US8871178B2 (en) * 2012-06-29 2014-10-28 Uop Llc Metallophosphate molecular sieves, methods of preparation and use
US8906225B2 (en) * 2012-06-29 2014-12-09 Uop Llc Metallophosphate molecular sieves, methods of preparation and use
US8936776B2 (en) * 2012-11-30 2015-01-20 Uop Llc Metallophosphate molecular sieves, method of preparation and use
US8569558B1 (en) * 2012-11-30 2013-10-29 Uop Llc Metallophosphate molecular sieves, method of preparation and use
US8911704B2 (en) * 2012-11-30 2014-12-16 Uop Llc Silicometallophosphate molecular sieves, method of preparation and use
US8569557B1 (en) * 2012-11-30 2013-10-29 Uop Llc Silicometallophosphate molecular sieves, method of preparation and use
US10449527B2 (en) * 2016-03-04 2019-10-22 Uop Llc High charge density silicometallophosphate molecular sieves SAPO-79
US10421063B2 (en) * 2016-03-04 2019-09-24 Uop Llc High charge density silicometallophosphate molecular sieves SAPO-69
US10449528B2 (en) * 2016-03-04 2019-10-22 Uop Llc High charge density silicometallophosphate molecular sieves
US10370257B2 (en) * 2016-05-25 2019-08-06 Uop Llc High charge density metalloaluminophosphosilicate molecular sieves

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85103228A (zh) * 1984-04-13 1986-10-22 联合碳化公司 镁-铝-磷-硅-氧化物分子筛组合物
WO2004039725A2 (en) * 2002-05-09 2004-05-13 Uop Llc 'crystalline aluminosilicate zeolitic composition: uzm-4m'
CN101077481A (zh) * 2007-07-04 2007-11-28 太原理工大学 一种双微孔沸石及其制备方法
CN102811950A (zh) * 2010-03-31 2012-12-05 环球油品公司 Uzm-37硅铝酸盐沸石
RU2012145101A (ru) * 2010-03-31 2014-04-27 Юоп Ллк Способ алкилирования ароматических углеводородов с использованием алюмосиликатного цеолита uzm-37

Also Published As

Publication number Publication date
WO2017205112A1 (en) 2017-11-30
US20190091671A1 (en) 2019-03-28
US10427144B2 (en) 2019-10-01
CN108472635A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
CN108698030B (zh) 高电荷密度金属硅磷酸盐分子筛
CN108495816B (zh) 高电荷密度金属铝磷硅酸盐分子筛
CN108472635B (zh) 高电荷密度金属铝磷硅酸盐分子筛MeAPSO-83
CN108602052B (zh) 高电荷密度金属磷酸盐分子筛
CN108698029B (zh) 高电荷密度金属硅磷酸盐分子筛sapo-79
CN108698031B (zh) 高电荷密度金属硅磷酸盐分子筛sapo-69
JP5271266B2 (ja) Uzm−22アルミノシリケートゼオライト、その調製方法およびuzm−22の使用方法
CN108602054B (zh) 高电荷密度金属磷酸盐分子筛
US10471415B2 (en) High charge density metallophosphate molecular sieves
CN108473328B (zh) 高电荷密度金属磷酸盐分子筛
CN108495711B (zh) 高电荷密度金属铝磷硅酸盐分子筛MeAPSO-82
US11033887B2 (en) High charge density metallophosphate molecular sieves
CA3232542A1 (en) Emm-63 aluminosilicate zeolites, syntheses, and uses

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant