CN108694273B - 用于评估稀有失效事件的电路良率分析方法及系统 - Google Patents

用于评估稀有失效事件的电路良率分析方法及系统 Download PDF

Info

Publication number
CN108694273B
CN108694273B CN201810325304.3A CN201810325304A CN108694273B CN 108694273 B CN108694273 B CN 108694273B CN 201810325304 A CN201810325304 A CN 201810325304A CN 108694273 B CN108694273 B CN 108694273B
Authority
CN
China
Prior art keywords
failure
transform
dimensions
processor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810325304.3A
Other languages
English (en)
Other versions
CN108694273A (zh
Inventor
许诺
王敬
崔祐晟
江正平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN108694273A publication Critical patent/CN108694273A/zh
Application granted granted Critical
Publication of CN108694273B publication Critical patent/CN108694273B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/147Discrete orthonormal transforms, e.g. discrete cosine transform, discrete sine transform, and variations therefrom, e.g. modified discrete cosine transform, integer transforms approximating the discrete cosine transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/62Performing operations exclusively by counting total number of pulses ; Multiplication, division or derived operations using combined denominational and incremental processing by counters, i.e. without column shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31718Logistic aspects, e.g. binning, selection, sorting of devices under test, tester/handler interaction networks, Test management software, e.g. software for test statistics or test evaluation, yield analysis

Abstract

一种用于评估稀有失效事件的电路良率分析方法及其系统,其可提高重要性采样蒙特卡罗(ISMC)模拟效率及准确性。所述方法包括:执行初始采样,以检测在多维度参数空间中分别位于一个或多个失效区处的失效样本;产生失效样本沿每一维度在离散值处的分布;识别所述失效样本;执行变换以将所述失效样本投影到变换空间中的所有维度中;以及针对所述参数空间中的每一维度来分类失效区的类型。

Description

用于评估稀有失效事件的电路良率分析方法及系统
技术领域
本揭露的一些实施例大体来说涉及集成电路(IC)良率分析以及执行集成电路良率分析的系统,集成电路良率分析包括一种通过减少对影响产品良率的一个或多个稀有失效事件(failure event)进行识别及分析所需的模拟的次数来提高重要性采样蒙特卡罗(importance sampling Monte Carlo,ISMC)模拟的效率及准确性的方法。
背景技术
在集成电路(integrated circuit,IC)良率分析的领域中,当存在许多工艺变化性来源时(例如,当存在多于100个工艺变化性来源时),对极稀有失效事件(即,很少发生的失效事件)进行评估已变得越来越具有挑战性。这些情况可被归类为高维度问题,其中维度的数目是指不同电路中的工艺变化性来源的数目。
不同的工艺变化性来源可因例如与将被分析良率的电子电路对应的代表性单元中具有数十或数百个晶体管而造成。另外,每一个晶体管可具有多个特性,其中,一个或多个晶体管的一个或多个特性可因工艺变化性而极大地偏离预期形式。
作为更具体的实例,静态随机存取存储器(static random access memory,SRAM)的动态性能规范可通过对实际电路设计模拟进行测试而得到评估。为对静态随机存取存储器的动态规范进行评估,可能需要包括对所分析的静态随机存取存储单元与未选择的/虚设的相邻单元的连接进行分析。由于不能在可接受数目的所模拟样本中收敛到稳定的稀有失效率,因此将相邻单元引入到分析中会本质上导致高维度问题,从而使传统的重要性采样(importance sampling,IS)方法将不足以检测并识别极稀有失效事件。
失效率在“高西格玛”尾部(“high-sigma”tail)(例如,6σ或高于6σ)的分布处颇为重要,这是因为阵列需要数十亿的寿命循环,且由于即使只有少量单元的失效便可为灾难性的。为确保在基于模拟的评估/生效阶段中捕获极其稀有失效事件,在实际中,可需要多于1e11次标准蒙特卡罗(Monte Carlo,MC)模拟,此可使恒定采样预算紧绷。
另外,现有的重要性采样方法一般来说因“维度灾难(the curse ofdimensionality)”而不稳定且不准确,这意味着对于任何类型的采样来说,样本的准确性或覆盖范围(coverage)与待分析的维度/工艺变化性来源的数目成反比。在给定恒定数目的样本条件下,如果样本散布在极高维度的空间中,则覆盖范围的基数(basis)将非常小。另外,已证明代理模型(surrogated model)及其他采样方式在分析大数目的维度时会失效,这是因为它们一般来说不能准确地检测失效区。
作为另一实例,对于一些新兴技术(例如,自旋转移力矩磁性随机存取存储器(spin-transfer-torque magnetic random-access-memory,STT-MRAM))来说,自由层(free layer)与被钉扎层(pinned layer)之间极小的初始磁化角(例如,近似为零的初始角)会引起内在的装置写入操作失效/写入误差率(write-error-rate,“WER”)。因此,无法直接应用重要性采样(IS)函数的传统最优化方法,这是因为在高西格玛区处无法使用移位的或被重新塑形的高斯采样来捕获稀有失效区。
因此,提供用于在较少数目的所模拟样本中识别稀有失效事件的新方法可为有用的。
发明内容
本揭露的一些实施例提供用于提高重要性采样蒙特卡罗(ISMC)模拟效率及准确性的方法以及执行所述方法的系统。
根据一些实施例,提供一种用于评估稀有失效事件的电路良率分析方法,所述方法包括:执行初始采样,以检测在多维度参数空间(parametric space)中分别位于一个或多个失效区处的失效样本(failed sample);产生失效样本沿每一维度在离散值处的分布;识别(identifying)所述失效样本;执行变换以将所述失效样本投影到变换空间(transform space)中的所有维度中;以及针对所述参数空间中的每一维度来分类(classifying)失效区的类型。
所述方法还可包括以迭代(iterative)方式将重要性采样(IS)函数最优化,以通过维度缩减来抑制所述维度中的每一维度的不良影响。
进行所述最优化的方法可对应于所述失效区的类型。
所述方法还可包括:判断是否因对所述重要性采样函数进行所述最优化而发生向稀有失效率的收敛;以及进一步以迭代方式将所述重要性采样函数最优化,直到发生所述收敛为止。
所述方法还可包括执行重要性采样蒙特卡罗(importance sampling MonteCarlo)以计算所分析电路的失效率。
所述变换可包括离散余弦变换(discrete cosine transform,DCT)、离散正弦变换(discrete sine transform,DST)或离散傅里叶变换(discrete Fourier transform,DFT)。
所述分类可包括基于变换空间中的所述维度的标记(signature)来确定所述维度中的哪一维度是重要的。
所述分类可包括评估与所述失效样本对应的所述变换的第二变换系数(transform coefficient)及第三变换系数。
所述分类可包括判断所述第二变换系数与所述第三变换系数哪一者更大,其中当所述第二变换系数更大时,所述失效区的类型被分类为高西格玛失效类型(high-sigmafailure type),且其中当所述第三变换系数更大时,所述失效区的类型被分类为集中失效类型(concentrated failure type)。
根据一些实施例,提供一种用于评估稀有失效事件的电路良率分析系统,所述系统包括处理器以及存储器,所述存储器上存储有指令(instruction),所述指令在由所述处理器执行时使所述处理器:执行初始采样,以检测在多维度参数空间中分别位于一个或多个失效区处的失效样本;产生所述失效样本沿每一维度在离散值(discrete value)处的分布;识别所述失效样本;执行变换以将所述失效样本投影到变换空间中的所有维度中;以及针对所述参数空间中的每一维度来分类所述失效区的类型。
所述指令在由所述处理器执行时可进一步使所述处理器以迭代方式将重要性采样(IS)函数最优化,以通过维度缩减来抑制所述维度中的每一维度的不良影响。
所述指令在由所述处理器执行时可进一步使所述处理器根据所述失效区的分类类型以迭代方式将所述重要性采样函数最优化。
所述指令在由所述处理器执行时可进一步使所述处理器:判断是否因对所述重要性采样函数进行所述最优化而发生向稀有失效率的收敛;以及进一步以迭代方式将所述重要性采样函数最优化,直到发生所述收敛为止。
所述指令在由所述处理器执行时可进一步使所述处理器执行重要性采样蒙特卡罗以计算所述电路的失效率。
所述变换可包括离散余弦变换(DCT)、离散正弦变换(DST)或离散傅里叶变换(DFT)。
所述指令在由所述处理器执行时可进一步使所述处理器通过基于变换空间中的所述维度的标记确定所述维度中的哪一维度是重要的来分类所述失效区的类型。
所述指令在由所述处理器执行时可进一步使所述处理器通过评估与所述失效样本对应的所述变换的第二变换系数及第三变换系数来分类所述失效区的类型。
所述指令在由所述处理器执行时可进一步使所述处理器通过判断所述第二变换系数与所述第三变换系数中的哪一者更大来分类所述失效区的类型,其中当所述第二变换系数更大时,所述失效区的类型被分类为高西格玛失效类型,且其中当所述第三变换系数更大时,所述失效区的类型被分类为集中失效类型。
根据实施例,提供一种用于评估稀有失效事件的电路良率分析方法,所述方法包括:对所模拟样本的初始数目执行变换,以指示与所分析电路对应的变化性维度的数目;基于所述变换,检测所述变化性维度中的具有失效样本的变化性维度;分类所述变化性维度中的具有失效样本的变化性维度中的每一者的失效类型;以及基于所述分类,以迭代方式将所述变化性维度中的具有失效样本的变化性维度中的每一者的重要性采样函数最优化。
进行所述最优化的方法可对应于所述失效区的类型。
附图说明
结合附图阅读以下说明可更详细地理解一些实施例,在附图中:
图1是根据用于对本揭露的实施例进行例示的实例的指示集中失效区及高西格玛尾部失效区(high-sigma tail failure region)的概率密度函数(probability densityfunction)。
图2是根据本揭露实施例的用于评估稀有失效事件的方法的总体流程图。
图3是绘示根据本揭露实施例的基于滤波器的维度缩减技术(filter-baseddimension reduction technique)的方块图。
图4绘示根据本揭露实施例的实例的来自不同分布的离散余弦变换系数被投影到变换空间中。
图5A和图5B绘示根据本揭露实施例的基于滤波器的维度缩减技术以及根据比较例的维度缩减技术。
图6绘示根据本揭露实施例的对重要性采样函数进行的最优化。
图7绘示根据本揭露实施例的对静态随机存取存储器阵列动态写入失效进行的分析的实例。
图8绘示静态随机存取存储器阵列写入失效的分析结果,且绘示根据本揭露实施例的使用维度选择的重要性采样与不使用维度选择的重要性采样的比较。
图9绘示根据本揭露实施例的自旋转移力矩磁性随机存取存储器写入误差率分析。
图10绘示对根据本揭露实施例及根据比较例的重要性采样蒙特卡罗准确性及收敛的验证。
图11绘示根据本揭露实施例的自旋转移力矩磁性随机存取存储器写入误差率。
具体实施方式
通过参照对实施例及附图的以下详细说明,可更容易地理解本发明概念的特征及其实现方法。在下文中,将参照附图更详细地阐述实施例,在所有的附图中,相同的参考编号指代相同的元件。然而,本发明可被实施为各种不同形式,而不应被视为仅限于本文中所例示的实施例。确切来说,提供这些实施例作为实例是为了使本揭露将透彻及完整,并将向所属领域中的技术人员全面传达本发明的各个方面及特征。因此,可不再阐述对于所属领域的普通技术人员完整地理解本发明的各个方面及特征而言并非必需的工艺、元件及技术。除非另外注明,否则在所有附图及书面说明通篇中相同的参考编号表示相同的元件,且因此,将不再对其予以重复说明。在图式中,为清晰起见,可夸大各元件、各层及各区的相对大小。
在以下说明中,出于解释目的,阐述各种具体细节来提供对各种实施例的透彻理解。然而,显而易见的是,可不使用这些具体细节或者使用一种或多种等效配置来实践各种实施例。在其他实例中,以方块图形式示出众所周知的结构及装置以避免不必要地混淆各种实施例。
应理解,尽管本文中可能使用用语“第一(first)”、“第二(second)”、“第三(third)”等来阐述各种元件、组件、区、层及/或区段,然而这些元件、组件、区、层及/或区段不应受这些用语限制。这些用语用于区分各个元件、组件、区、层或区段。因此,在不背离本发明的精神及范围的条件下,以下所述第一元件、组件、区、层或区段亦可被称为第二元件、组件、区、层或区段。
为易于解释,本文中可使用例如“在…之下(beneath)”、“在…下面(below)”、“下部的(lower)”、“在…下方(under)”、“在…上方(above)”、“上部的(upper)”等空间相对性用语来阐述图中所示一个元件或特征与另一(其他)元件或特征的关系。应理解,空间相对性用语旨在除图中所绘示的取向外还囊括装置在使用或操作中的不同取向。举例来说,若图中所示装置被翻转,则被描述为位于其他元件或特征“下面”或“之下”或者“下方”的元件此时将被取向为位于所述其他元件或特征“上方”。因此,示例性用语“在…下面”及“在…下方”可囊括“上方”及“下方”两种取向。装置可具有其他取向(例如,旋转90度或处于其他取向)且本文中使用的空间相对性描述语应相应地进行解释。
应理解,当称一元件、层、区或组件位于另一元件、层、区或组件“上(on)”、“连接到(connected to)”或“耦合到(coupled to)”另一元件、层、区或组件时,所述元件、层、区或组件可直接位于所述另一元件、层、区或组件上、直接连接到或直接耦合到所述另一元件、层、区或组件,抑或可存在一个或多个中间元件、层、区或组件。然而,“直接连接/直接耦合(directly connected/directly coupled)”则是指一个组件与另一个组件直接连接或直接耦合,而不具有中间组件。另外,还应理解,当称一元件或层“位于”两个元件或层“之间(between)”时,所述元件或层可为所述两个元件或层之间的唯一元件或层,抑或也可存在一个或多个中间元件或层。
出于本揭露的目的,“X、Y及Z中的至少一者”及“选自由X、Y及Z组成的群组中的至少一者”可被视为仅X、仅Y、仅Z或X、Y及Z中的两者或多者的任何组合,例如,举例来说,XYZ、XYY、YZ及ZZ。在通篇中相同的编号指代相同的元件。本文所用用语“及/或(and/or)”包括相关列出项中的一个或多个项的任意及所有组合。
本文所用术语仅是出于阐述特定实施例的目的而并非旨在限制本发明。除非上下文清楚地另外指明,否则本文所用单数形式“一(a及an)”旨在也包括复数形式。还应理解,当在本说明书中使用用语“包括(comprises、comprising、includes及including)”时,是指明所陈述特征、整数、步骤、操作、元件及/或组件的存在,但不排除一个或多个其他特征、整数、步骤、操作、元件、组件及/或其群组的存在或添加。本文所用用语“及/或”包括相关列出项中的一个或多个项的任意及所有组合。当例如“...中的至少一个(at least one of)”等表达位于一系列元件之后时,是修饰整个系列的元件而非修饰所述一系列元件中的各别元件。
本文所用用语“实质上(substantially)”、“大约(about)”及类似用语用作近似用语、而并非作为程度用语,并且旨在考虑到所属领域的普通技术人员将知的测量值或计算值的固有偏差。另外,在阐述本发明的实施例时使用“可(may)”是指“本发明的一个或多个实施例”。本文所用用语“使用(use)”、“正使用(using)”及“被使用(used)”可被视为分别与用语“利用(utilize)”、“正利用(utilizing)”及“被利用(utilized)”同义。另外,用语“示例性(exemplary)”旨在指实例或例示。
当某一实施例可被以不同方式实施时,特定工艺次序可与所阐述的次序不同地执行。举例来说,两个连续阐述的工艺可实质上同时执行或以与所阐述的次序相反的次序执行。
在本文中参照剖视图阐述各种实施例,所述剖视图为实施例及/或中间结构的示意性例示。因此,预期会因例如制造技术及/或容差而导致相对于例示形状的变化。因此,本文所揭露的实施例不应被视为仅限于各个区的特定例示形状,而是应包含由例如制造引起的形状偏差。举例来说,被例示为矩形的植入区通常应具有圆形特征或曲线特征及/或在其边缘存在植入浓度的梯度而非从植入区到非植入区为二元变化。同样地,通过植入而形成的隐埋区可在所述隐埋区与在进行植入时所经过的表面之间的区中引起一些植入。因此,图式中所例示的区为示意性的且其形状并非旨在例示装置的区的实际形状且并非旨在进行限制。
根据本文所述本发明的实施例的电子装置或电装置及/或任何其他相关装置或组件可利用任何适合的硬件、固件(例如,应用专用集成电路(application-specificintegrated circuit))、软件或软件、固件及硬件的组合来实施。举例来说,可将这些装置的各种组件形成在一个集成电路(integrated circuit,IC)芯片上或单独的集成电路芯片上。此外,可将这些装置的各种组件实施在柔性印刷电路膜(flexible printed circuitfilm)、载带封装(tape carrier package,TCP)、印刷电路板(printed circuit board,PCB)上或形成在一个衬底上。此外,这些装置的各种组件可为在一个或多个计算装置中由一个或多个处理器运行、执行计算机程序指令并与用于执行本文所述各种功能性的其他系统组件进行交互的过程或线程(thread)。计算机程序指令存储在可在使用例如(举例来说)随机存取存储器(random access memory,RAM)等标准存储器装置的计算装置中实施的存储器中。计算机程序指令也可存储在例如(举例来说)压缩盘只读存储器(compact discread only memory,CD-ROM)、闪存驱动器(flash deive)或类似元件等其他非暂时性计算机可读媒体中。另外,所属领域中的技术人员应知,在不背离本发明示例性实施例的精神及范围的条件下,可将各种计算装置的功能性组合或整合成单一的计算装置,或者可使一特定计算装置的功能性跨越一个或多个其他计算装置分布。
除非另外定义,否则本文所用所有用语(包括技术及科学用语)的含义均与本发明所属领域中的普通技术人员所通常理解的含义相同。还应理解,用语(例如在常用字典中所定义的用语)应被解释为具有与其在相关技术的上下文及/或本说明书中的含义一致的含义,且除非在本文中明确定义,否则不应将其解释为具有理想化或过于正式的意义。
图1是根据用于对本揭露的实施例进行例示的实例的指示集中失效区及高西格玛尾部失效区的概率密度函数。
为产生概率密度函数100,首先,从给定的分布函数N(μ,σ)中提取出N1个均匀分布的样本且运行蒙特卡罗(MC)模拟来识别在失效区中出现的样本(例如,识别失效样本)并参照平均值来计算失效样本的L2范数值(L2-norm value)。接着,选择失效样本中具有最小L2范数的一者来用作的初始移位向量μ1
之后,从初始参数化分布h(ξ,μ11)中提取出N2个样本,且可将迭代索引(iteration index)设定为2(例如,t=2)。
接着,可使用N2个样本来对指示函数(indicator function)I(ξj)进行评估。之后,可在与各个样本对应的参数化空间的多个维度中计算平均值及西格玛。平均值及西格玛可分别通过以下方程式来计算:
及/>
接着,可从更新的参数化分布中提取出另一批次的N2个样本,且可将迭代索引t设定为t+1,直到发生收敛为止(例如,当平均值及西格玛处于误差容差范围内时)。
最后,可从所获得的最优化的或改善的采样分布中提取出N3个样本,且可运行蒙特卡罗模拟来识别失效样本。失效概率可通过以下方程式来表达:
之后,可产生概率密度函数100来指示失效区(例如,高西格玛尾部失效区110及集中失效区120),如图1所示。然而,在位于因工艺变化性来源而导致的多元分布(multivariate distribution)(由概率密度函数100指示)的“高西格玛”尾部区110处的通常识别出的“稀有”失效区处可存在问题。举例来说,当失效样本在主空间中的分布的边界非常窄(例如,失效样本位于集中区120中)时,则失效样本不需要出现在待分析的高西格玛尾部区110中(假设失效相对集中)。另外,可能难以具有来自会导致稀有事件失效的区的足够数目的样本。
如以下将阐述,本揭露实施例为位于这种“集中”区处的失效提供修改策略,从而改善集成电路良率分析。也就是说,可使用根据本揭露实施例的重要性采样(IS)框架来更容易地检测极稀有失效事件。如以下将阐述,所揭露的实施例大体来说可包括执行初始均匀采样来大致检测失效区(例如,检测哪一维度或哪一工艺变化性似乎表现出高的失效率)。之后,使用高斯分布函数分析进行的集中采样会更密切地聚焦于初始检测到的失效区。最后,可应用对重新采样函数进行的一次或多次参数最优化来确定标称情况(nominalcase),从而可计算并识别出相对的浪费,以使得能够准确地捕获相对稀有的失效事件,并提高重要性采样蒙特卡罗(ISMC)的效率及准确性。
本揭露实施例的一个贡献是能够在每一变化性来源维度处对失效样本的分布函数(例如,概率密度函数100)执行基于变换的滤波(例如,离散余弦变换(DCT)滤波、离散正弦变换(DST)滤波及离散傅里叶变换(DFT)滤波),从而确定哪一些变化性来源维度是影响电路良率(例如,稀有失效事件)的首要维度。因此,可在对对应的重要性采样分布函数进行最优化或改善期间抑制维度的不良影响,此可被称为基于滤波器的维度缩减技术(filter-based dimension reduction technique)。
本揭露实施例的另一个贡献是能够基于经过变换的系数来将每一变化性维度的“失效类型”分类为“高西格玛尾部”类型或“集中”类型。也就是说,可以判断稀有失效的失效类型是归因于高西格玛尾部还是归因于在参数空间中出现的一些集中窗口(concentrated window)。
本揭露实施例的再一个贡献是能够使用迭代算法(iterative algorithms)(例如,概率总体(probability collectives,PC))来沿每一变化性维度对重要性采样函数进行改善或最优化,并根据每一变化性维度的失效类型来对每一维度应用恰当的约束条件。
图2是根据本揭露实施例的用于评估稀有失效事件的方法的总体流程图。
参照图2,初始地,可执行均匀采样操作(例如,涵盖整个多维度参数空间)。也就是说,可在步骤S210处执行初始蒙特卡罗(MC)采样来检测失效样本。应注意,可将采样操作与先进采样技术(例如,分类器辅助的自适应采样(classifier-assisted adaptivesampling)、统计封锁(statistical blockade)或马尔科夫链蒙特卡罗方法(Markov ChainMC method)等)进行组合,且用于采样的概率分布函数可为均匀类型的、高斯类型的或“壳/环(shell/ring)”类型的。之后,可识别并收集失效样本。
接着,在步骤S220处可对关于所收集的失效样本的分布执行一些类型的变换。举例来说,可对失效概率分布(例如,图1所示概率密度函数100)执行变换(例如,离散余弦变换/离散正弦变换/或离散傅里叶变换)来指示哪些维度可为重要的。换句话说,可沿每一所选择维度对失效样本的分布执行变换(例如,使用离散余弦变换/离散正弦变换、离散傅里叶变换等)将来自不同分布的系数投影到变换空间中。
因此,所执行的变换使得能够收集关于失效的相关信息,且使得能够在步骤S230处对每一维度的失效类型进行分类。举例来说,可收集包括来自变换结果的系数的信息以使得可对每一维度的失效类型(例如,“高西格玛尾部”失效样本或“集中窗口”失效样本)进行分类,且可确定每一所分类的维度的重要性。也就是说,基于经变换域中的系数,可结合对应的失效类型判断哪一个维度是关键的。
操作步骤S220与操作步骤S230可被笼统地视为前述基于滤波器的维度缩减技术。如上所述,基于滤波器的维度缩减使得能够确定哪一个(哪一些)参数是不关键的以由此确定失效率。可对所确定的失效率应用维度缩减技术以在仅使用缩减的/有限的数目的样本的同时在高维度处减小蒙特卡罗方差(MC variance)。
之后,可在每一所选择的“重要的”失效维度上针对每一种类型的失效使用不同的最优化策略。也就是说,可基于通过对失效样本的分布执行变换而收集的信息来在步骤S240处以迭代方式对重要性采样函数进行最优化。举例来说,可根据不同情况执行定制最优化,且可针对缩减维度情况进行不同的定制最优化,从而能够保持准确性。重要性采样分布函数的最优化可使用概率总体及/或其他迭代算法执行,此可基于每一维度的失效类型而定。
接着,可在步骤S250处判断是否发生向稀有失效率的收敛。在收敛之后,可将重要性采样函数参数化,且可在步骤S260处执行最终重要性采样蒙特卡罗模拟以计算电路失效率。
因此,通过执行采样及通过针对每一失效样本进行重新计算,可计算最终的极稀有失效率。另外,应注意,所揭露的实施例与现有的重要性采样蒙特卡罗及其他稀有事件评估方法兼容。
图3是绘示根据本揭露实施例的基于滤波器的维度缩减技术的方块图。
参照图3,在实际的重要性采样蒙特卡罗问题中,维度缩减会提高给定采样的准确性及稳定性,这是因为通常情况下,对于所分析电路的失效率来说,只有一小部分维度/工艺变化性来源的影响可能至关重要。如上所述,在初始(例如,均匀的)采样(例如,图2所示步骤S210)之后,可识别出失效样本,且可通过变换产生失效样本沿每一维度(在离散值处)的分布(例如,图2所示步骤S220),并将失效样本分类为特定失效类型(例如,图2所示步骤S230)。
换句话说,且如图3所示,使均匀样本310通过“滤波器”320,以产生包括所识别的失效样本的不均匀样本330。可接着对不均匀样本进行变换340以由此产生首要的变化性维度350,可接着对所产生的首要的变化性维度350进行分析以对相关维度的失效类型进行分类。
图4绘示根据本揭露实施例的实例的来自不同分布的离散余弦变换系数被投影到变换空间中。
参照图4,通过针对每一分布执行离散余弦变换(DCT)、离散傅里叶变换(DFT)或其他类型的变换,可对潜分量(latent component)(例如,具有奇偶对称性的分量)进行检测以指示参数空间中的失效区的类型(例如,失效区是高西格玛尾部区110还是集中失效区120,如图1所示)。也就是说,可对所收集的失效样本执行变换以对分布进行变换。因此,通过与信号处理相似的方式,可将失效样本的分布重新投影到对应的变换空间400中,如图4所示。
所阐述的方法对在采样期间可能出现的及可作为高频分量出现的波动来说可为稳健的(robust)。对于离散余弦变换来说,前三个系数涵盖所有关于变化性维度的“选择性”的信息。因此,可通过仅评估第二离散余弦变换系数及第三离散余弦变换系数来实施低通滤波器(low-pass filter)以分类失效类型,且可以各方面为基础收集信息作为来自不同分布的离散余弦变换系数。
也就是说,投影到变换空间400中的经变换信号对应于信号的能量分布。因此,来自不同分布的不同离散余弦变换系数可被认为用于形成信号的所有分量410a、410b和410c。在本实例中,对应于离散余弦变换基础索引(DCT basis index)“1”的第一分量410a在基本上是信号中的恒定背景基底(background floor)。另外,对应于离散余弦变换基础索引“2”的第二分量410b对应于信号的单侧分量(例如,奇对称函数),而对应于离散余弦变换基础索引“3”的第三分量410c对应于双侧/偶对称函数(double-sided/even symmetricfunction)。在本实例中,第二分量410b及第三分量410c分别包括高次谐波分量(highorder harmonic component)。
通过对失效样本分布执行上述基于滤波器的维度缩减,可对每一分量造成失效样本的程度进行估测,从而指示造成失效样本分布的每一偏离信号基础分量(off-signalbasis component)的相对一部分。因此,可确定对于失效分析来说哪一维度/工艺变化性来源是重要的。由于在与失效样本对应的信号中出现常数,因此通过将所有失效样本投影到所有维度中,可基于离散余弦变换域、离散正弦变换域或离散傅里叶变换域中的(例如,变换空间中的)标记来确定哪一维度是重要的。
也就是说,基于每一分量的相对系数,可判断失效是归因于高西格玛尾部,还是失效归因于低的或中等的西格玛区中的一些集中窗口。如果在高西格玛尾部处存在失效样本,则失效样本指示对一侧的偏好。高西格玛失效样本可为极负或极正的,在这种情况中,失效样本的分布将表现出一定程度上为单侧的奇对称函数。如果失效样本对应于非常窄的窗口失效区(例如,低西格玛区),则失效区将接近中心(例如,偶对称函数分布),这是可通过上述分析检测到的信息。
图5A和图5B绘示根据本揭露实施例的基于滤波器的维度缩减技术以及根据比较例的维度缩减技术。
如以下所述,数据科学/机器学习领域中现有的维度缩减方法一般不足以准确地确定失效区。举例来说,首要分量分析(Principal Component Analysis,PCA)提供对参数维度之间的相关性的检验。然而,在大部分电路模拟情况中,被建模的变化性来源是相互独立的,因此这不能够有所助益。也就是说,由于对于电路模拟来说,输入层次总是具有包括独立同分布样本(independently identically distributed sample)的数据,因此首要分量分析不能应用于本文所阐述的实例。然而,首要分量分析仅对可在两个维度之间存在的相关数据有效。因此,尽管首要分量分析可用于维度缩减,然而在本文中所阐述的实例中,所有维度均是独立的,且不能使用首要分量分析。
作为另一实例,朴素参数敏感性检查(parametric sensitivity check)无法界定高维度的不平滑函数的“响应表面(response surface)”,且也无法直观地感知失效类型。尽管朴素参数敏感性检查适用于那些处理某种标称情况周围的一些小的扰动的实例,然而朴素参数敏感性检查由于相对来说在输入中具有大的变化而不能应用于本文所阐述的实例。
作为另一实例,ReliefF受限于高维度处有限数目的样本变数,但不能直观地对失效类型进行分类。尽管可使用ReliefF来对每一维度进行评分以根据相对重要性进行评级,然而不能够实现由本文所述实施例所实现的相同程度的分析。
相比之下,根据所阐述的实施例,对于多失效区(multiple-failure region)来说,可使用各种超距离准则(hyper-distance criterion)(L1/L2或余弦)来对所存在的潜在失效区的数目进行评估。接着,可对每一失效集群应用维度缩减及重要性采样函数最优化。另外,重要性采样函数是不均匀的,且可改变滤波机制来评估离散余弦变换第二分量及离散余弦变换第三分量的相对改变,从而确定离散余弦变换第二分量及离散余弦变换第三分量的重要性及离散余弦变换第二分量及离散余弦变换第三分量的对应的失效类型。
参照图5A、图5B和表1,当处理不足数目的样本时,根据本揭露实施例的离散余弦变换滤波510比ReliefF方式520表现地更稳健。通过在超过100个维度上对真实的静态随机存取存储器电路的实用问题执行测试,使用ReliefF方式520(作为比较例)及根据本揭露实施例的离散余弦变换滤波510方法两者来针对不同大小的样本获得以上首要变化性维度的评级。
如上所述,执行均匀采样,且收集所有的失效样本。接着,使用本实施例的离散余弦变换滤波技术与迭代提出的ReliefF衡量标准两者执行维度选择或缩减。为对每一维度的从这两种衡量标准得到的评分进行评级,产生连续的读数来表达所有的维度,因为这些维度贡献不同的重要性。基于对读数的分析,可将一些更重要的维度(这些维度涉及失效样本)隔离以进行进一步分析。
对于ReliefF方式520可以看出,在固定维度之后,所有其余维度具有大致相同的评分,此使得其余维度相对难以区分。然而,在本实例中,对重要的维度进行了修改。因此,使用ReliefF方式520不能完成对所有重要维度的正确选择。
在本实例中,对10,000个样本及20,000个样本执行ReliefF方式520(作为比较例)及根据本揭露实施例的离散余弦变换滤波方法510两者。不同于ReliefF方式520,根据本实施例的离散余弦变换滤波方法510表现出一致的未来维度捕获结果,而无论使用足够的样本还是不足的样本(例如,使用10,000个样本或20,000个样本)。然而ReliefF方式520指示一旦样本减半(例如,从20,000个样本减少到10,000个样本),在所选择的维度上便可看出波动(例如,表1中对最后两列的首要变化性维度的评级之间的对比来指示)。另外,在本实例中,更仔细地审视所选择的两个波动维度(表1中对应于最后两列,这是因为它们与最终电路(例如,无论是制作出的还是模拟的)相关)后发现,维度不具有任何物理意义。然而,通过使用本实例的离散余弦变换滤波方法510,所提出的维度选择仍可解决所述问题。
[表1]
为进一步提高重要性采样蒙特卡罗准确性,可应用维度缩减。维度缩减将在最优化操作期间“消除”非首要维度的变化性直到再次使用原始采样分布的最终重要性采样操作为止。然而,在维度缩减之后,在许多典型情况中,总体失效率可被低估。
以下提供用于更准确地估测总体失效率的解决方案。举例来说,作为补偿对失效率低估的解决方案,可应用贝叶斯链规则(Bayesian chain rule)以使得初始样本可由以下方程式表达:
以上方程式可用于产生以下方程式:
Pr(ξ∈ΩFail R)=Pr(ξ∈ΩFail R|ξ∈ΩFail)·Pr(ξ∈ΩFail)
另外,可应用准则(criterion)来约束大于某一阈值(threshold value)的置信度(confidence)(例如,ΩFail)。
图6绘示根据本揭露实施例的对重要性采样函数进行的最优化。
参照图6,根据本揭露的实施例,也可对一般的重要性采样函数进行最优化。通过使用维度缩减技术,可极大地缩减用于采样的参数空间(例如,减小到少于10个维度),从而有利于重要性采样蒙特卡罗方法。可对初始概率分布函数pdf(x)进行最优化以产生最优化重要性采样分布函数g(x)。
举例来说,如果检测到失效区,但失效未出现在高西格玛尾部区中,则本实施例的方法可将高斯函数塑形成高西格玛区。也就是说,尽管传统方法不能够在失效区不位于高西格玛尾部中时,将高斯函数塑形成高西格玛区(通过使用从离散余弦变换及离散余弦变换滤波收集的信息),然而根据本文所阐述的实施例,可判断哪一个离散余弦变换系数最大。
如果确定第二离散余弦变换系数更大,则可假设存在高西格玛失效问题(例如,指示高西格玛尾部失效区610)。然而,如果确定第三离散余弦变换系数更大,则可假设失效问题更可能为集中失效区问题(例如,指示集中失效区620)。
在本实施例中,失效率可通过以下方程式来确定:
其中I(x)是指示函数(例如,0或1),pdf(x)是原始分布,且g(x)是最优化(重要性采样)分布。
因此,在第t迭代步骤处,对于第i维度,应用以下方程式:
其中σi,0来自原始的第i个变化性维度;以及/>
其中σc,i是第i个变化性维度的临界值,其中σc,i可通过隔离所有其他变化性维度以及通过对造成失效率的第i个维度执行二元搜索(binary search)来计算得到。
举例来说,对于每一种情况来说(例如,高西格玛尾部失效区及集中失效区),可对每一种情况单独进行最优化。对于传统的高西格玛失效问题来说,可对重新采样函数进行最优化。相比之下,对于集中失效区问题,可基于失效样本执行迭代,且可设定限制失效样本的一些边界。之后,可对重新采样函数进行最优化,以将失效窗口(failure window)内的失效样本作为目标,且可在此窗口内执行集中采样,从而使得与传统蒙特卡罗采样相比时采样准确性提高。
因此,所分类的失效类型将引导如何针对每一首要维度来对重要性采样函数进行最优化。
图7绘示根据本揭露实施例的对静态随机存取存储器阵列动态写入失效进行分析的实例。
参照图7,工艺变化性(例如,随机掺杂波动性(random dopant fluctuation,RDF)及线边缘粗糙度(line-edge roughness,LER))引起的晶体管性能(例如,阈值电压,Vth)失配已被视为静态随机存取存储器良率损失的主要原因。在先进技术节点中,可使用动态读取及写入操作作为失效准则,这被证明比静态规格更准确。
本实例中的模拟对具有全局变化性来源及局部变化性来源的24-静态随机存取存储器区块(例如,总共144个晶体管)进行评估,且对晶体管使用伯克利共多栅极晶体管(BSIM Common Multi Gate,BSIM-CMG)紧凑型模型(compact model)。在图表700中示出根据本揭露实施例产生的维度中的不指示失效的一些维度(例如,维度710)以及所述维度中的指示失效区的一些维度(例如,与工艺变化性60、66、114、144及146对应的重要维度720)。在本实例中,重要维度720中的每一者指示高西格玛尾部失效区。
也就是说,在本实例中,示出本实例的所有147个维度中的失效样本分布中的一些失效样本分布。对于大部分维度来说,失效样本分布相对均匀(例如,维度710既不显示出高西格玛失效也不显示出集中窗口失效)。也就是说,大部分维度不指示对某一纬度失效(latitude fail)的偏好。
然而,图7所示变化性维度720中的一些变化性维度720在与大部分维度相比时表现不同,这是由于它们指示对失效样本的分布的偏好。也就是说,当在对应曲线图的某一侧处出现较大数目的失效样本时(例如,对于负的高西格玛失效来说在左侧,或对于正的高西格玛失效来说在右侧),则所述分析指示这些对应的样本更可能失效。因此,这些维度可通过进行离散余弦变换来收集,以由此产生分布及函数的经量化标记。
因此,本实例识别出六个重要维度720,且重要维度720中的每一者均被给予相对评级。尽管本实例中的所有维度均被识别为高西格玛失效,然而应注意,在其他实例中维度可被识别为集中窗口失效。
图8和表2示出静态随机存取存储器阵列写入失效的分析结果,且示出根据本揭露实施例的使用维度选择的重要性采样与不使用维度选择的重要性采样的比较。表2为不同选项下的静态随机存取存储器的失效率比较。
参照图8和表2,在本实例的基于滤波器的维度缩减中,选择首要维度,且所有首要维度均被分类为造成“高西格玛尾部”失效类型。已采用概率总体(PC)及基于顺序性二次编程(sequential quadratic programming,SQP)的梯度搜索方法来使重要性采样函数最优化,此与不使用基于滤波器维度缩减结果的条件下相比显示出相当的性能以及大得多的改善。
[表2]
如在本实例中所示,在不使用维度选择时,结果极低。然而,在使用维度选择时,会返回非常合理的结果。
图9绘示根据本揭露实施例的自旋转移力矩磁性随机存取存储器写入误差率分析。
参照图9,自旋转移力矩磁性随机存取存储器(STT-MRAM)是具有例如功率低、形状因数(form factor)小及耐用性高等优点的新兴非易失性存储器。然而,除了工艺变化性之外,由于其量子机械性质,初始磁化角(θ0)变化性910会造成开关失效,此可能需要在自旋转移力矩磁性随机存取存储器装置及电路设计期间进行研究。不同于其他变化性来源造成的“高西格玛尾部”失效,初始磁化角θ0变化性910一般来说将在其平均值(零)周围引入“集中”失效区,此不同于图表900中所示出的其他维度。通过使用所提出的基于滤波器的维度缩减,所有关键维度以及其造成的失效类型均可被检测并分类。
在本实例中,仅对单个单元进行测试,应注意,大数目的维度对应于单个受测试单元。也就是说,可存在影响装置性能(例如,受测试单元的装置参数)的包括材料几何形状参数在内的多个工艺变化性。以与图7所示出的实例相似的方式,维度中的一些维度绘示失效样本的相对均匀的分布,而其他维度产生单侧失效样本分布(例如,与高西格玛尾部对应的失效样本)。
另外,在本实例中,初始磁化角θ0维度被绘示为在函数时间中偶对称。因此,初始磁化角θ0维度中的失效样本在非常窄的区内出现在为零的标称情况附近。相比之下,标准采样(例如,系列西格玛采样(series sigma sampling))在与附近的标称情况对应的区中可能无法捕获大数目的样本,从而因那一区中的样本数目不足而无法提供总体失效率的准确结果。
因此,一旦检测到初始磁化角θ0维度,便可将初始磁化角θ0维度分类为集中失效情况(例如,图2所示步骤S230)。接着,可仅在那一窗口内应用最优化(例如,图2所示步骤S240),以使得可仅在此窗口内对偏差的采样中心进行最优化,从而使得能够进行集中采样以使得可对未存在于高西格玛尾部中的稀有失效事件进行评估。因此,初始磁化角θ0维度使失效时间集中,且造成内在的装置失效率。
图10绘示对根据本揭露实施例及根据比较例的重要性采样蒙特卡罗准确性及收敛的验证,且图11绘示根据本揭露实施例的自旋转移力矩磁性随机存取存储器写入误差率。
参照图10,可看出,比较例1010的标准蒙特卡罗分析与本实施例的重要性采样蒙特卡罗的比较1000显示:在与标准的蒙特卡罗方法相比时,本实施例实现了模拟收敛及准确性的明显改善。
在本揭露实施例的本实例中获得的结果在与标准蒙特卡罗模拟相比时显示出高度一致的失效率估测。也就是说,在给定恒定的采样预算的条件下,根据本实施例的重要性采样会节约模拟时间/评估时间。相比之下,对于标准蒙特卡洛模拟来说,可需要超过百万个样本才能得到1.E-04的失效事件。另外,为模拟更稀有的事件(例如,1.E-06),可能需要提取多达10^9个样本,一般来说这是十分不切实际的。
然而,对于根据本实施例的经修改的重要性采样方式来说,可使用少至10,000个样本而仍取得相同的准确性水平。另外,基于此处示出的曲线,根据本实施例的经修改的重要性采样方式与蛮力(brute force)相比表现得更稳健。
另外,参照图11,所模拟的写入误差率1100示出来自工艺变化性1110以及来自初始磁化角变化性1120两者的影响,从而为设计自旋转移力矩磁性随机存取存储器装置及大规模阵列提供指导。
因此,如上所述,所阐述的实施例会使效率及准确性得到提高。另外,如图11所示,由于利用所揭露的实施例能够有效地使用更有限数目的样本,因此可产生内在变化或内在失效率以及由工艺变化造成的失效率两者。
根据所揭露的实施例,通过实施基于滤波器的维度缩减(其可通过对概率密度函数进行变换以及基于所实施的变换来对每一维度的失效类型进行分类来完成),电路良率分析的准确性得到提高,而重要性采样的评估时间减少。

Claims (18)

1.一种用于评估稀有失效事件的电路良率分析方法,其特征在于,所述电路良率分析方法包括:
执行初始采样,以检测在多维度参数空间中分别位于一个或多个失效区处的失效样本;
产生所述失效样本沿多维度参数空间中的每一维度在离散值处的分布;
识别所述失效样本;
执行变换,以将所述失效样本投影到变换空间中的所有维度中,其中所述变换包括离散余弦变换、离散正弦变换或离散傅里叶变换;以及
针对所述多维度参数空间中的所述每一维度通过评估一或多个变换系数来分类所述失效区的类型。
2.根据权利要求1所述的电路良率分析方法,其特征在于,还包括以迭代方式将重要性采样函数最优化,以通过维度缩减来抑制所述变换空间中的所述所有维度中的每一维度的不良影响。
3.根据权利要求2所述的电路良率分析方法,其特征在于,进行所述最优化的方法对应于所述失效区的所述类型。
4.根据权利要求2所述的电路良率分析方法,其特征在于,还包括判断是否因对所述重要性采样函数进行所述最优化而发生向稀有失效率的收敛;以及
进一步以迭代方式将所述重要性采样函数最优化,直到发生所述收敛为止。
5.根据权利要求4所述的电路良率分析方法,其特征在于,还包括执行重要性采样蒙特卡罗以计算所分析电路的失效率。
6.根据权利要求1所述的电路良率分析方法,其特征在于,所述分类包括基于所述变换空间中的所述所有维度的标记来确定所述所有维度中的哪一维度是重要的。
7.根据权利要求1所述的电路良率分析方法,其特征在于,所述分类包括评估与所述失效样本对应的所述变换的第二变换系数及第三变换系数。
8.根据权利要求7所述的电路良率分析方法,其特征在于,所述分类包括判断所述第二变换系数是否大于所述第三变换系数,
其中当所述第二变换系数大于所述第三变换系数时,所述失效区的所述类型被分类为高西格玛失效类型,且
其中当所述第三变换系数大于所述第二变换系数时,所述失效区的所述类型被分类为集中失效类型。
9.一种用于评估稀有失效事件的电路良率分析系统,其特征在于,所述电路良率分析系统包括:
处理器;以及
存储器,所述存储器上存储有指令,所述指令在由所述处理器执行时使所述处理器:
执行初始采样,以检测在多维度参数空间中分别位于一个或多个失效区处的失效样本;
产生所述失效样本沿多维度参数空间中的每一维度在离散值处的分布;
识别所述失效样本;
执行变换,以将所述失效样本投影到变换空间中的所有维度中,其中所述变换包括离散余弦变换、离散正弦变换或离散傅里叶变换;以及
针对所述多维度参数空间中的所述每一维度通过评估一或多个变换系数来分类所述失效区的类型。
10.根据权利要求9所述的电路良率分析系统,其特征在于,所述指令在由所述处理器执行时进一步使所述处理器以迭代方式将重要性采样函数最优化,以通过维度缩减来抑制所述变换空间中的所述所有维度中的每一维度的不良影响。
11.根据权利要求10所述的电路良率分析系统,其特征在于,所述指令在由所述处理器执行时使所述处理器根据所述失效区的分类类型以迭代方式将所述重要性采样函数最优化。
12.根据权利要求10所述的电路良率分析系统,其特征在于,所述指令在由所述处理器执行时进一步使所述处理器:
判断是否因对所述重要性采样函数进行所述最优化而发生向稀有失效率的收敛;以及
进一步以迭代方式将所述重要性采样函数最优化,直到发生所述收敛为止。
13.根据权利要求12所述的电路良率分析系统,其特征在于,所述指令在由所述处理器执行时进一步使所述处理器执行重要性采样蒙特卡罗以计算所分析电路的失效率。
14.根据权利要求9所述的电路良率分析系统,其特征在于,所述指令在由所述处理器执行时使所述处理器通过基于所述变换空间中的所述所有维度的标记确定所述所有维度中的哪一维度是重要的来分类所述失效区的所述类型。
15.根据权利要求9所述的电路良率分析系统,其特征在于,所述指令在由所述处理器执行时使所述处理器通过评估与所述失效样本对应的所述变换的第二变换系数及第三变换系数来分类所述失效区的所述类型。
16.根据权利要求15所述的电路良率分析系统,其特征在于,所述指令在由所述处理器执行时使所述处理器通过判断所述第二变换系数是否大于所述第三变换系数来分类所述失效区的所述类型,
其中当所述第二变换系数大于所述第三变换系数时,所述失效区的所述类型被分类为高西格玛失效类型,且
其中当所述第三变换系数大于所述第二变换系数时,所述失效区的所述类型被分类为集中失效类型。
17.一种用于评估稀有失效事件的电路良率分析方法,其特征在于,所述电路良率分析方法包括:
对所模拟样本的初始数目执行变换,以指示与所分析电路对应的变化性维度的数目,其中所述变换包括离散余弦变换、离散正弦变换或离散傅里叶变换;
基于所述变换,检测所述变化性维度中的具有失效样本的第一变化性维度;
通过评估一或多个变换系数来分类所述第一变化性维度中的每一第一变化性维度的失效类型;以及
基于所述分类,以迭代方式将所述第一变化性维度中的所述每一第一变化性维度的重要性采样函数最优化。
18.根据权利要求17所述的电路良率分析方法,其特征在于,进行所述最优化的方法对应于所述失效类型。
CN201810325304.3A 2017-04-12 2018-04-12 用于评估稀有失效事件的电路良率分析方法及系统 Active CN108694273B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762484850P 2017-04-12 2017-04-12
US62/484,850 2017-04-12
US15/696,150 US11003737B2 (en) 2017-04-12 2017-09-05 Generic high-dimensional importance sampling methodology
US15/696,150 2017-09-05

Publications (2)

Publication Number Publication Date
CN108694273A CN108694273A (zh) 2018-10-23
CN108694273B true CN108694273B (zh) 2023-08-08

Family

ID=63790670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810325304.3A Active CN108694273B (zh) 2017-04-12 2018-04-12 用于评估稀有失效事件的电路良率分析方法及系统

Country Status (4)

Country Link
US (1) US11003737B2 (zh)
KR (1) KR102396914B1 (zh)
CN (1) CN108694273B (zh)
TW (1) TWI783965B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10816606B2 (en) * 2019-01-03 2020-10-27 GM Global Technology Operations LLC Method and system for noise-tolerant RC response prediction
WO2020182992A1 (en) 2019-03-14 2020-09-17 Xenergic Ab High-dimensional multi-distributed importance sampling for circuit yield analysis
CN110796024B (zh) * 2019-10-09 2022-07-29 武汉光庭信息技术股份有限公司 一种针对失效样本的自动驾驶视觉感知测试方法和装置
US11630938B1 (en) * 2019-11-04 2023-04-18 Cadence Design Systems, Inc. Failure mode analysis for circuit design
CN111929527B (zh) * 2020-06-05 2023-06-20 国电南瑞科技股份有限公司 设备故障特征规则化知识表示的适应性评价系统及方法
CN113779926A (zh) * 2021-08-03 2021-12-10 深圳天狼芯半导体有限公司 一种电路的检测方法、装置、电子设备及可读存储介质
CN117648895B (zh) * 2024-01-26 2024-04-12 全智芯(上海)技术有限公司 失效分析方法及装置、计算机可读存储介质、终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533173A (en) * 1991-10-21 1996-07-02 Polaroid Corporation Method and apparatus for processing a color map using discrete cosine transforms
JP2003316849A (ja) * 2002-04-26 2003-11-07 Hitachi Ltd 半導体集積回路の設計方法及び半導体集積回路の製造方法
CN101290517A (zh) * 2007-04-17 2008-10-22 中芯国际集成电路制造(上海)有限公司 对离散样本数据进行统计过程控制的方法及其装置
JP2010219285A (ja) * 2009-03-17 2010-09-30 Nuflare Technology Inc 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
WO2012055045A2 (en) * 2010-10-27 2012-05-03 Solido Design Automation Inc. Method and system for identifying rare-event failure rates
CN104035330A (zh) * 2013-03-22 2014-09-10 王少夫 一种基于dc-dc变换器的一维离散混沌系统
CN105591706A (zh) * 2014-11-12 2016-05-18 英飞凌科技股份有限公司 用于监视信号路径完整性的单元及方法和信号处理系统
US9524365B1 (en) * 2014-12-23 2016-12-20 Cadence Design Systems, Inc. Efficient monte carlo flow via failure probability modeling

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474999B2 (en) * 2002-12-23 2009-01-06 Cadence Design Systems, Inc. Method for accounting for process variation in the design of integrated circuits
TW200622275A (en) * 2004-09-06 2006-07-01 Mentor Graphics Corp Integrated circuit yield and quality analysis methods and systems
US7538708B2 (en) * 2006-12-30 2009-05-26 Teradyne, Inc. Efficient, selective error reduction for parallel, time-interleaved analog-to-digital converter
US7449911B2 (en) * 2007-02-05 2008-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method for determining electro-migration failure mode
US8155938B2 (en) 2008-03-28 2012-04-10 Carnegie Mellon University Method and apparatus for sampling and predicting rare events in complex electronic devices, circuits and systems
JP2010160787A (ja) 2008-12-11 2010-07-22 Jedat Inc パラメータ情報作成システム、歩留まり算出システム、プログラム及び記録媒体
US8365118B2 (en) * 2009-06-03 2013-01-29 International Business Machines Corporation Broken-spheres methodology for improved failure probability analysis in multi-fail regions
US20120046929A1 (en) * 2010-08-20 2012-02-23 International Business Machines Corporation Statistical Design with Importance Sampling Reuse
US20130253868A1 (en) * 2012-03-23 2013-09-26 International Business Machines Corporation Estimating delay deterioration due to device degradation in integrated circuits
US9323320B2 (en) * 2012-05-18 2016-04-26 Mediatek Singapore Pte. Ltd. Weighted control in a voltage scaling system
US9171226B2 (en) * 2012-09-26 2015-10-27 Carnegie Mellon University Image matching using subspace-based discrete transform encoded local binary patterns
US20140173535A1 (en) 2012-12-17 2014-06-19 International Business Machines Corporation Analysis of chip-mean variation and independent intra-die variation for chip yield determination
US20140214354A1 (en) * 2013-01-28 2014-07-31 Verayo, Inc. System and method of detection and analysis for semiconductor condition prediction
US9460243B2 (en) 2013-03-15 2016-10-04 International Business Machines Corporation Selective importance sampling
US9753441B2 (en) * 2013-05-13 2017-09-05 Massachusetts Institute Of Technology Controlling dynamical systems with bounded probability of failure
KR102061763B1 (ko) * 2013-05-27 2020-01-03 삼성전자 주식회사 시뮬레이션 시스템 및 방법, 상기 시스템을 포함하는 컴퓨팅 시스템
US8806418B1 (en) 2013-06-19 2014-08-12 Freescale Semiconductor, Inc. Scaled sigma sampling
US10531806B2 (en) * 2013-12-17 2020-01-14 University Of Florida Research Foundation, Inc. Brain state advisory system using calibrated metrics and optimal time-series decomposition
US10387596B2 (en) 2014-08-26 2019-08-20 International Business Machines Corporation Multi-dimension variable predictive modeling for yield analysis acceleration

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533173A (en) * 1991-10-21 1996-07-02 Polaroid Corporation Method and apparatus for processing a color map using discrete cosine transforms
JP2003316849A (ja) * 2002-04-26 2003-11-07 Hitachi Ltd 半導体集積回路の設計方法及び半導体集積回路の製造方法
CN101290517A (zh) * 2007-04-17 2008-10-22 中芯国际集成电路制造(上海)有限公司 对离散样本数据进行统计过程控制的方法及其装置
JP2010219285A (ja) * 2009-03-17 2010-09-30 Nuflare Technology Inc 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
WO2012055045A2 (en) * 2010-10-27 2012-05-03 Solido Design Automation Inc. Method and system for identifying rare-event failure rates
TW201237647A (en) * 2010-10-27 2012-09-16 Solido Design Automation Inc Method and system for identifying rare-event failure rates
CN104035330A (zh) * 2013-03-22 2014-09-10 王少夫 一种基于dc-dc变换器的一维离散混沌系统
CN105591706A (zh) * 2014-11-12 2016-05-18 英飞凌科技股份有限公司 用于监视信号路径完整性的单元及方法和信号处理系统
US9524365B1 (en) * 2014-12-23 2016-12-20 Cadence Design Systems, Inc. Efficient monte carlo flow via failure probability modeling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IC缺陷轮廓分形维估计的小波方法;孙晓丽;郝跃;宋国乡;;电子学报(第08期);全文 *

Also Published As

Publication number Publication date
CN108694273A (zh) 2018-10-23
KR20180115208A (ko) 2018-10-22
TW201837702A (zh) 2018-10-16
US20180300288A1 (en) 2018-10-18
KR102396914B1 (ko) 2022-05-11
US11003737B2 (en) 2021-05-11
TWI783965B (zh) 2022-11-21

Similar Documents

Publication Publication Date Title
CN108694273B (zh) 用于评估稀有失效事件的电路良率分析方法及系统
TWI828676B (zh) 用於積體電路剖析及異常檢測之方法和相關的電腦程式產品
US10627446B2 (en) Importance sampling method for multiple failure regions
US8555236B2 (en) Non-invasive leakage power device characterization of integrated circuits using device grouping and compressive sensing
US8195427B2 (en) Methods and systems for high sigma yield estimation using reduced dimensionality
US8204714B2 (en) Method and computer program product for finding statistical bounds, corresponding parameter corners, and a probability density function of a performance target for a circuit
US8219355B2 (en) Methods and systems for high sigma yield estimation
US10713405B2 (en) Parameter generation for semiconductor device trapped-charge modeling
US10678971B2 (en) Space exploration with Bayesian inference
Zhong et al. Regularized quantile regression and robust feature screening for single index models
US9846753B2 (en) Monte Carlo simulation for analyzing yield of an electric circuit
Kumar et al. Efficient statistical model checking of hardware circuits with multiple failure regions
US20120330883A1 (en) Pareto sampling using simplicial refinement by derivative pursuit
US20230055823A1 (en) System and method for dynamic compensation for multiple interference sources in non-volatile memory storage devices
Bach et al. Analyzing classifiers: Fisher vectors and deep neural networks
Agarwal et al. A machine learning model to prune insignificant attributes
Hu Machine Learning Techniques for Rare Failure Detection in Analog and Mixed-Signal Verification and Test
US11669667B2 (en) Automatic test pattern generation (ATPG) for parametric faults
Barke et al. A cross-layer approach to measure the robustness of integrated circuits
US20200302321A1 (en) Machine learning-based adjustments in volume diagnosis procedures for determination of root cause distributions
El-Adawi et al. Regression modeling for subset selection in rare-event statistical circuit simulation
CN117872248A (zh) 一种非线性失真度测量仪的检定方法及系统
Orshansky et al. Statistical Circuit Analysis
Maufront et al. Advanced statistical methodology for 6T-SRAM design
Drmanac Knowledge Discovery in Test: Methods, Models, and Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant