CN108690822B - Genetically engineered bacterium for producing protopanoxadiol and method thereof - Google Patents

Genetically engineered bacterium for producing protopanoxadiol and method thereof Download PDF

Info

Publication number
CN108690822B
CN108690822B CN201710237547.7A CN201710237547A CN108690822B CN 108690822 B CN108690822 B CN 108690822B CN 201710237547 A CN201710237547 A CN 201710237547A CN 108690822 B CN108690822 B CN 108690822B
Authority
CN
China
Prior art keywords
gene
synthase gene
protopanaxadiol
expression vector
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710237547.7A
Other languages
Chinese (zh)
Other versions
CN108690822A (en
Inventor
谢丽萍
胡又佳
刘海元
龚桂花
张伟
韩姝
潘洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Pharmaceutical Industry
China State Institute of Pharmaceutical Industry
Original Assignee
Shanghai Institute of Pharmaceutical Industry
China State Institute of Pharmaceutical Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry filed Critical Shanghai Institute of Pharmaceutical Industry
Priority to CN201710237547.7A priority Critical patent/CN108690822B/en
Publication of CN108690822A publication Critical patent/CN108690822A/en
Application granted granted Critical
Publication of CN108690822B publication Critical patent/CN108690822B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • C12N9/0038Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12N9/0042NADPH-cytochrome P450 reductase (1.6.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/02Oxidoreductases acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12Y106/02004NADPH-hemoprotein reductase (1.6.2.4), i.e. NADP-cytochrome P450-reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/99Miscellaneous (1.14.99)
    • C12Y114/99007Squalene monooxygenase (1.14.99.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01021Squalene synthase (2.5.1.21), i.e. farnesyl-disphosphate farnesyltransferase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a genetically engineered bacterium for producing protopanoxadiol, which is an engineered bacterium for expressing a squalene synthase gene, a2, 3-oxidosqualene synthase gene, a dammarenediol synthase gene, a protopanaxadiol synthase gene and a nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene in Escherichia coli (Escherichia coli). The protopanaxadiol is biosynthesized by utilizing the genetic engineering bacteria, and the method has the advantages of short fermentation time, simple culture medium, capability of meeting the requirements of modern industry, contribution to popularization and application and the like.

Description

Genetically engineered bacterium for producing protopanoxadiol and method thereof
Technical Field
The invention belongs to the technical field of genetic engineering, and particularly relates to a biosynthesis method of protopanoxadiol and a production strain thereof.
Background
Protopanaxadiol (PPD) belongs to tetracyclic triterpenoid, is aglycone of panaxadiol type saponins Ra1, Ra2, Rb1, Rb2, Rc, Rd, Rg3, Rh2 and the like, and is mainly derived from Araliaceae plants such as ginseng, pseudo-ginseng, American ginseng and the like and Cucurbitaceae plants such as gynostemma pentaphylla and the like. Has antitumor, antidepressant, and immunity enhancing effects. At present, the extraction of ginseng plants is mainly caused, the cost is high, the efficiency is low, and the sources of the ginseng plants are limited by natural environments, such as the input amount of land, climate and the like.
Synthetic biology is an emerging engineering subject emerging at the beginning of the 21 st century, is a new research field which is developed rapidly based on engineering and biology and oriented to innovation, and is expected to solve the big problems of biochemical engineering, biological energy, biological materials, biological medicine fields, national civilian relations and the like. The emergence of synthetic biology establishes an effective way for the rapid production of natural plant drugs, is expected to become one of the most promising green and environment-friendly technologies for drug production in the future, and can effectively solve the resource problem possibly caused by the research and development of natural drugs from plants. Biosynthesis of natural plant drugs, such as alkadiene, artemisinin, carotene, etc., has achieved remarkable success. The research not only proves the feasibility of realizing the heterologous biosynthesis of rare plant secondary metabolites through the design of synthetic biology, but also shows the great advantages and application potential of the technology.
At present, the heterologous production of various plant living natural medicines is realized by utilizing the synthetic biology principle to design and transform microbial strains, and the most common microbial hosts are saccharomyces cerevisiae and escherichia coli.
Saccharomyces cerevisiae (Saccharomyces cerevisiae) is a eukaryote that is more suitable for expression of genes of plant secondary metabolites including genes such as P450 oxidase because it has an endomembrane system. At present, many natural plant drugs have been biosynthesized in saccharomyces cerevisiae. Bo-dong (Zhubo Dai) etc. by introducing dammarane synthase, protopanaxadiol synthase and NADPH cytochrome P450 enzyme in Saccharomyces cerevisiae, 0.05mg/g protopanaxadiol was produced; further by introducing truncated 3-hydroxy-3-methylglutaryl coenzyme A, squalene synthase, 2, 3-oxidosqualene synthase and codon optimization of protopanoxadiol synthase, a 262-fold increase in protopanaxadiol is caused; further fermenting for 96h by bidirectional extraction fermentation technology to obtain 8.40mg/g (1189mg/L) of protopanaxadiol and 10.94mg/g (1548mg/L) of dammarenediol. The main disadvantage of this process is the too long fermentation time (patent application CN 102925376A & Zhubo Dai Yiiliu Xiana Zhang et al. Metabolic Engineering of Saccharomyces cerevisiae for production of enzymes [ J ]. Metabolic Engineering,2013,20146-. However, when the saccharomyces cerevisiae is used as an eukaryote and used for biosynthesis of a target substance, the saccharomyces cerevisiae has the defects of long fermentation period, complex genetic operation, difficulty in high-density fermentation and the like, and the application of the saccharomyces cerevisiae in biosynthesis of a plant secondary metabolite is limited.
Coli is the earliest and most mature one of all engineering bacteria, and has the advantages of high growth speed, short fermentation time, simple culture medium and the like, so that escherichia coli has incomparable advantages of saccharomyces cerevisiae in industrial production, and is more energy-saving and more efficient; and the Escherichia coli genome is small, the genetic tools, the technology and related knowledge are very clear, the requirements of modern industry are met, and the advantages are incomparable with the Saccharomyces cerevisiae, so that the strain becomes the preferred host bacterium in the research of plant secondary metabolite synthesis biology. At present, almost all kinds of natural products, such as polyketides (such as erythromycin), nonribosomal peptides (such as epothilone), terpenoids (such as taxadiene), phenylpropanoids (such as resveratrol), alkaloids ((S) -reticuline), and other compounds, are successfully reported to be synthesized heterologously in escherichia coli. Since Escherichia coli does not contain related genes such as squalene synthase, 2, 3-oxidosqualene synthase, dammarendiol synthase, protopanaxadiol synthase, and nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase, which are required for protopanaxadiol biosynthesis, it is necessary to introduce related genes such as squalene synthase, 2, 3-oxidosqualene synthase, dammarendiol synthase, protopanaxadiol synthase, and nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase into Escherichia coli for biosynthesis of protopanaxadiol by Escherichia coli, and finally obtain protopanaxadiol-producing Escherichia coli by fermentation.
The protopanoxadiol is biosynthesized in escherichia coli, has great economic value and academic value, not only realizes green production for industrial production of PPD, but also provides ideas and methods for realizing green production of active ingredients of traditional Chinese medicines and natural medicines through the escherichia coli.
Disclosure of Invention
The invention aims to solve the technical problems of low yeast growth speed, long fermentation time, complex culture medium, inconvenience for industrial production and the like in the prior art for biosynthesis of protopanoxadiol by using yeast, and provides an escherichia coli engineering bacterium capable of producing protopanoxadiol, a corresponding enzyme gene, a recombinant vector and a method for preparing protopanoxadiol. The protopanaxadiol is biosynthesized by utilizing the genetic engineering bacteria, and the method has the advantages of short fermentation time, simple culture medium, capability of meeting the requirements of modern industry, contribution to popularization and application and the like.
Through a plurality of attempts and researches, the inventor screens exogenous squalene synthase and 2, 3-oxidosqualene synthase from a plurality of enzymes for synthesizing protopanoxadiol, clones the exogenous squalene synthase and the 2, 3-oxidosqualene synthase, and simultaneously transfers the cloned exogenous squalene synthase and the genes of dammaradiene synthase, protopanaxadiol synthase and NADPH cytochrome P450 enzyme into escherichia coli, and finally successfully expresses five heterologous genes in escherichia coli.
One of the technical solutions for solving the above technical problems of the present invention is: a genetically engineered bacterium for producing protopanoxadiol is an engineered bacterium for expressing a squalene synthase gene, a2, 3-oxidosqualene synthase gene, a dammarendiol synthase gene, a protopanaxadiol synthase gene and a nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene in Escherichia coli (Escherichia coli).
Wherein the squalene synthase gene, the 2, 3-oxidosqualene synthase gene, the dammarendiol synthase gene, the protopanoxadiol synthase gene and the nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene may be cloned on the same vector for expression, or may be cloned on more than one vector for expression.
In order to take account of cost, preparation efficiency, better function of each gene and expression quantity of final products, preferably, the squalene synthase gene and the 2, 3-oxidosqualene synthase gene are cloned into an expression vector 1, and the skeleton of the expression vector 1 is preferably a plasmid pCDFDuet-1; cloning the dammarenediol synthase gene, the protopanaxadiol synthase gene and the nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene into an expression vector 2, wherein the skeleton of the expression vector 2 is preferably a plasmid pACYCDuet-1; more preferably, said expression vector 2 contains two of said nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase genes for better supplying electrons to dammarenediol synthase and protopanaxadiol synthase.
In order to overcome the defect that Escherichia coli lacks endoplasmic reticulum omentum required by P450 enzyme gene localization, the invention takes dammaradiene synthase (DDS, accession number: AB265170), protopanaxadiol synthase (PPDS, accession number: JN604537) and NADPH cytochrome P450 enzyme (AtCPR1, accession number: X66016) as templates to respectively optimize Escherichia coli codons and modify gene sequences, so that 5 exogenous genes can be simultaneously expressed in Escherichia coli cells and have synergistic effect. Wherein the dammarenediol synthase gene can catalyze 2, 3-oxidosqualene to synthesize dammaradiene, and preferably, the nucleotide sequence is shown as SEQ ID NO. 3; the protopanaxadiol synthase gene can catalyze dammarane to synthesize protopanaxadiol, and preferably, the nucleotide sequence of the protopanaxadiol synthase gene is shown as SEQ ID No. 4; the nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene can provide electrons for dammarane synthase and protopanaxadiol synthase, and preferably, the nucleotide sequence of the nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene is shown as SEQ ID NO. 5.
More preferably still, said dammarenediol synthase gene and protopanaxadiol synthase gene are each adjacent to one of said nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase genes; the nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase genes are preferably both located downstream of the dammarenediol synthase gene or the protopanaxadiol synthase gene. Optimally, in order to overcome the problem that the cytochrome P450 enzyme gene and cytochrome P450 reductase gene derived from eukaryotic cells are difficult to express in Escherichia coli, the nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene and the dammarendiol synthase gene or the protopanaxadiol synthase gene respectively form fusion genes, and the nucleotide sequences thereof are preferably shown as SEQ ID No.6 or SEQ ID No.7 respectively.
The squalene synthase gene can catalyze farnesyl pyrophosphate (FPP) to synthesize a squalene compound; preferably, it is derived from Saccharomyces cerevisiae; more preferably, the nucleotide sequence is shown in SEQ ID NO. 1.
The 2, 3-oxidosqualene synthase gene can catalyze squalene to synthesize 2, 3-oxidosqualene; preferably, a2, 3-oxidosqualene synthase gene derived from Saccharomyces cerevisiae (Saccharomyces cerevisiae) is selected; more preferably, the nucleotide sequence is shown in SEQ ID NO. 2.
The second technical scheme for solving the technical problems is as follows: a gene, which is a dammarenediol synthase gene, and the nucleotide sequence of the gene is shown in SEQ ID NO. 3;
it is a protopanaxadiol synthase gene, and the nucleotide sequence of the protopanaxadiol synthase gene is shown in SEQ ID NO. 4;
it is a nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene, and the nucleotide sequence of the gene is shown as SEQ ID NO. 5;
it is a fusion gene 1 of dammarenediol synthase gene and nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene, and the nucleotide sequence is shown as SEQ ID NO. 6; alternatively, the first and second electrodes may be,
it is a fusion gene 2 of the protopanaxadiol synthase gene and a nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene, and the nucleotide sequence of the fusion gene is shown as SEQ ID NO. 7.
The third technical scheme for solving the technical problems is as follows: an expression vector (expression vector 1) comprising the squalene synthase gene and a2, 3-oxidosqualene synthase gene. Preferably, the backbone of the expression vector is plasmid pCDFDuet-1.
The fourth technical scheme for solving the technical problems is as follows: an expression vector (expression vector 2) comprising the dammarenediol synthase gene, the protopanaxadiol synthase gene and the nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene; preferably, the expression vector comprises the fusion gene 1 and the fusion gene 2. More preferably, the backbone of the expression vector is preferably plasmid pACYCDuet-1.
The fifth technical scheme for solving the technical problems is as follows: a method for preparing protopanaxadiol comprises fermenting the above genetically engineered bacteria, and obtaining protopanaxadiol from the fermentation broth.
The sixth technical scheme for solving the technical problems of the invention is as follows: a preparation method of the genetic engineering bacteria comprises the following steps:
1) constructing an expression vector 1 containing a squalene synthase gene and a2, 3-oxidosqualene synthase gene, and an expression vector 2 containing a dammarendiol synthase gene, a protopanaxadiol synthase gene and two nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase genes;
2) escherichia coli (Escherichia coli) is used as a host strain, and the expression vector 1 and the expression vector 2 obtained in the step 1) are simultaneously transformed to obtain the Escherichia coli genetic engineering bacteria for recombinant expression of protopanoxadiol. The Escherichia coli is conventional in the art.
Preferably, the Escherichia coli strain of the present invention is preferably BL21(DE3) strain.
It is to be understood that "1" and "2" in "expression vector 1" and "expression vector 2" and "fusion gene 1" and "fusion gene 2" of the present invention have no practical meaning, but are merely intended to distinguish the same terms.
On the basis of the common knowledge in the field, the above preferred conditions can be combined randomly to obtain the preferred embodiments of the invention.
The reagents and starting materials used in the present invention are commercially available.
The positive progress effects of the invention are as follows:
the genetic engineering bacteria of the invention are utilized to biologically synthesize protopanaxadiol, the fermentation time is short, the culture medium is simple, the genome of escherichia coli is small, the genetic tools, the technology and the related knowledge are very clear, the requirements of modern industry are met, and the popularization and the application are facilitated; and the protopanoxadiol is biosynthesized in escherichia coli, has great economic value and academic value, not only realizes 'green' for industrial production of PPD, but also provides thinking and a method for realizing 'green' production of active ingredients of traditional Chinese medicines and natural medicines through escherichia coli.
Drawings
FIG. 1 is a schematic diagram of plasmid pCDFDuet-1SSSE construction.
FIG. 2 is a schematic diagram of the construction of plasmid pACYCDuet-1D612C46P72C 46.
FIG. 3 is a schematic diagram of the construction of plasmid pACYCDuet-1D612C46P1C 46.
FIG. 4 is an electrophoretogram of the Saccharomyces cerevisiae genome.
FIG. 5 is an electrophoretogram of SS gene and SE gene from Saccharomyces cerevisiae.
FIG. 6 shows the electrophoresis chart of pCDFDuet-1 and SS gene double-enzyme gel-cutting recovery.
FIG. 7 shows PCR verification of pCDFDuet-1SS plasmid.
FIG. 8 shows the electrophoresis of pCDFDuet-1SS and SE gene double-enzyme gel-cutting recovery.
FIG. 9 shows PCR verification of pCDFDuet-1SSSE plasmid.
FIG. 10 shows electrophoretograms of the D612, C46 and D612C46 genes.
FIG. 11 shows the electrophoretograms of the P72, C46 and P72C46 genes.
FIG. 12 shows the electrophoresis of P1, C46 and P1C46 genes.
FIG. 13 is the electrophoresis chart of the double-enzyme gel-cutting recovery of pACYDuet-1 and D612C46 genes.
FIG. 14 shows PCR verification of pACYDuet-1D612C46 plasmid liquid.
FIG. 15 is the electrophoresis diagram of the recovery of the double-enzyme gel of pACYDuet-1D612C46 and P72C46 genes.
FIG. 16 shows PCR verification of pACYDuet-1D612C46P72C46 plasmid.
FIG. 17 is the electrophoresis diagram of the recovery of the pACYDuet-1D612C46 and P1C46 gene double-enzyme gel.
FIG. 18 shows PCR verification of pACYDuet-1D612C46P1C46 plasmid.
FIGS. 19A-19E liquid chromatogram and product fragment ion diagram of protopanaxadiol and sample.
Detailed Description
The invention is further illustrated by the following examples, which are not intended to limit the scope of the invention. The experimental methods without specifying specific conditions in the following examples were selected according to the conventional methods and conditions, or according to the commercial instructions.
2 × Taq Master Mix (Dye Plus) was purchased from Novowed Biotechnology Inc.;
coli BL21(DE3) and DH 5. alpha. competent cells were purchased from Shanghai Diego Biotech Ltd
The enzymes used: nde I, Kpn I, BamH I, Hind III, Bgl II, T4 ligase and
Figure BDA0001268451790000071
max DNA polymerases are available from Dalibao Bio Inc. (TaKaRa, Dalian, China);
streptomycin and chloramphenicol were purchased from Shanghai Biotechnology, Inc.;
the DNA recovery kit is purchased from Shanghai Czeri bioengineering, Inc.;
sequencing company is Shanghai Ruidi Biotech, Inc.
EXAMPLE 1 plasmid pCDFDuet-1SSSE construction
(1) Saccharomyces cerevisiae Squalene Synthase (SS) gene cloning
Extracting Saccharomyces cerevisiae ATCC 204508 (purchased from ATCC) genome by fungal genome DNA extraction kit (Beijing Soilebao technologies, Ltd.), as electrophoretogram 4; the extracted Saccharomyces cerevisiae genome DNA is used as a template, and primers on SS and under SS are used for amplifying SS genes (GenBank accession number: EU675328), and the sequence is shown as SEQ ID NO. 1.
Amplification primer sequences:
on SS: CGGGATCCGATGGGAAAGCTATTACAATTG (see SEQ ID NO.11 for details);
under SS: CCAAGCTTTCACGCTCTGTGTAAAGTGTATATATAATAAAAC (see SEQ ID NO.12 for details).
Amplification system:
Figure BDA0001268451790000081
Max DNA polymerase:25μL;
primer (10 μ M): 2 μ L each;
S288C genomic DNA (template): 2 mu L of the solution;
distilled water was added to 50. mu.L.
Amplification conditions:
1) pre-denaturation at 98 ℃ for 10 s; 2) denaturation at 98 ℃ for 10 s; 3) annealing at 62 ℃ for 10 s; 4) extension at 72 ℃ for 10 s; 2) -4)35 cycles; 5) extension at 72 ℃ for 10 min.
And recovering the target gene fragment by using the thin agarose gel DNA recovery kit gel, such as an electrophoresis chart 5.
(2) Saccharomyces cerevisiae 2, 3-oxidosqualene Synthase (SE) Gene cloning
The extracted Saccharomyces cerevisiae genome DNA is used as a template, and primers of 'SE upper' and 'SE lower' are used for amplifying a SE gene (GenBank accession number: NC 001139), and the sequence is shown as SEQ ID NO. 2.
Amplification primer sequences:
on SE: GAAGATCTCATGTCTGCTGTTAACGTTGCAC (see SEQ ID NO.13 for details);
at SE: GGGGTACCTTAACCAATCAACTCACCAAAC (see SEQ ID NO.14 for details).
Amplification system:
Figure BDA0001268451790000082
Max DNA polymerase:25μL;
primer (10 μ M): 2 μ L each;
S288C genomic DNA (template): 2 mu L of the solution;
distilled water was added to 50. mu.L.
Amplification conditions:
1) pre-denaturation at 98 ℃ for 10 s; 2) denaturation at 98 ℃ for 10 s; 3) annealing at 62 ℃ for 10 s; 4) extension at 72 ℃ for 10 s; 2) -4)35 cycles; 5) extension at 72 ℃ for 10 min.
Then, the thin agarose gel DNA recovery kit gel is used for recovering the target gene fragment, as shown in the electrophoresis chart 5.
(3) Expression vector construction
pCDFDuet-1SS vector construction
The recovered SS gene and the vector pCDFDuet-1(Novagen) were subjected to double digestion with BamH I and Hind III, respectively, as shown in FIG. 6, the vector pCDFDuet-1 and the SS fragment were ligated with T4 ligase at 16 ℃ overnight at a molar ratio of 1:5, the ligation product was transformed into E.coli DH 5. alpha. and then spread on LB (peptone 10%, yeast extract 5%, NaCl 10%, agarose 12%) solid plates containing 100. mu.g/mL streptomycin, transformants were picked up and cultured overnight, and the bacterial solution was screened for positive clones by PCR with 2 XTAQ Master Mix (Dye Plus) as shown in FIG. 7, and the sequencing was verified to match the expected base sequence.
pCDFDuet-1SSSE vector construction
The recovered SE gene and the vector pCDFDuet-1SS were subjected to double digestion with Bgl II and Kpn I, respectively, as shown in FIG. 8, the vector pCDFDuet-1SS and the exogenous fragment SE were ligated with T4 ligase at 16 ℃ overnight in a molar ratio of 1:5, the ligation product was transformed into E.coli DH 5. alpha. and then spread on LB (peptone 10%, yeast extract 5%, NaCl 10%, agarose 12%) solid plate containing 100. mu.g/mL streptomycin, transformants were picked up, cultured overnight, and the bacterial solution was screened for positive clones by PCR with 2 XTAQ Master Mix (Dye Plus) as shown in FIG. 9, and the sequencing results were completely matched with the expected base sequences. The map of the resulting plasmid pCDFDuet-1SSSE is shown in FIG. 1.
EXAMPLE 2 construction of plasmid pACYCDuet-1D612C46P72C46
(1) Cloning of the D612C46 Gene
A. Using a dammarane synthase gene (DDS, accession number: AB265170) as a template, carrying out codon optimization by escherichia coli, chemically synthesizing a D gene (the sequence is shown as SEQ ID NO. 8), using the D gene as the template, carrying out hydrophobicity analysis, removing an amino acid sequence after the 612 th amino acid sequence, and amplifying the D612 gene by using 'upper D' and 'lower D' as primers, wherein the sequence of the D612 gene is shown as SEQ ID NO. 3.
Amplification primer sequences:
d, the last step: CGCGGATCCGATGTGGAAGCAGAAGGGCGCACAG (see SEQ ID NO.15 for details);
d, the following steps: GTGGTCTTCTTCCATGTCGACCCAGAGCCATCCGGCATCTGGTTGC (see SEQ ID NO.16 for details).
Amplification system:
Figure BDA0001268451790000101
Max DNA polymerase:25μL;
primer (10 μ M): 2 μ L each;
d gene (template): 2 mu L of the solution;
distilled water was added to 50. mu.L.
Amplification conditions:
1) pre-denaturation at 98 ℃ for 10 s; 2) denaturation at 98 ℃ for 10 s; 3) annealing at 62 ℃ for 10 s; 4) extension at 72 ℃ for 20 s; 2) -4)35 cycles; 5) extension at 72 ℃ for 10 min.
The target gene fragment was recovered using a thin agarose gel DNA recovery kit gel, as shown in FIG. 10.
B. Nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene (AtCPR1, accession number: X66016) is used as a template, a C gene (the sequence is shown as SEQ ID NO. 10) is chemically synthesized through codon optimization of escherichia coli, the C gene is used as the template, the front 46 amino acid sequence is removed through hydrophobicity analysis, the C46 gene is amplified by using primers on DC and under DC, and the sequence of the C46 gene is shown as SEQ ID NO. 5.
Amplification primer sequences:
on DC:
GCCGGATGGCTCTGGGTCGACATGGAAGAAGACCACCGCGGACC
(see SEQ ID NO.17 for details);
under DC: CCCAAGCTTTTACCACACATCACGCAGGTAGC (see SEQ ID NO.18 for details).
Amplification system:
Figure BDA0001268451790000111
max DNA polymerase: mu.L of 25. mu.L of each primer (10. mu.M) and 2. mu.L of C gene as a template, and distilled water was added to 50. mu.L.
Amplification conditions:
1) pre-denaturation at 98 ℃ for 10 s; 2) denaturation at 98 ℃ for 10 s; 3) annealing at 62 ℃ for 10 s; 4) extension at 72 ℃ for 20 s; 2) -4)35 cycles; 5) extension at 72 ℃ for 10 min.
The target gene fragment was recovered using a thin agarose gel DNA recovery kit gel, as shown in FIG. 10.
C. The D612C46 fusion gene is amplified by taking the D612 gene and the C46 gene as templates and taking the 'upper D' and 'lower DC' as primers, and the nucleotide sequence of the fusion gene is shown as SEQ ID NO. 6.
Amplification primer sequences:
d, the last step: CGCGGATCCGATGTGGAAGCAGAAGGGCGCACAG, respectively;
under DC: CCCAAGCTTTTACCACACATCACGCAGGTAGC are provided.
Amplification system:
Figure BDA0001268451790000112
Max DNA polymerase:25μL;
primer (10 μ M): 2 μ L each;
d612 gene, C46 gene (template): 2 μ L each;
distilled water was added to 50. mu.L.
Amplification conditions:
1) pre-denaturation at 98 ℃ for 10 s; 2) denaturation at 98 ℃ for 10 s; 3) annealing at 62 ℃ for 10 s; 4) extension at 72 ℃ for 40 s; 2) -4)35 cycles; 5) extension at 72 ℃ for 10 min.
The target gene fragment was recovered using a thin agarose gel DNA recovery kit gel, as shown in FIG. 10.
(2) Cloning of the P72C46 Gene
A. The method comprises the steps of using a protopanaxadiol synthase gene (PPDS, accession number: JN604537) as a template, carrying out codon optimization through escherichia coli, chemically synthesizing a P gene (the sequence is shown as SEQ ID NO. 9), removing the front 72 amino acid sequence through hydrophobicity analysis, amplifying the P72 gene by using 'P upper' and 'P lower' as primers, and using the sequence of a P72 gene as SEQ ID NO. 4.
Amplification primer sequences:
p, on: GGAATTCCATATGATGAAACGTATCCCGCAGAAGG (see SEQ ID NO.19 for details);
p is as follows: GGTCTTCTTCCATGTCGACCCGTTGTGCGGGTGCAGGTGAATC (see SEQ ID NO.20 for details).
Secondly, the amplification system is:
Figure BDA0001268451790000121
Max DNA polymerase:25μL;
primer (10 μ M): 2 mu L of the solution;
p gene (template): 2 mu L of the solution;
distilled water was added to 50. mu.L.
Amplification conditions:
1) pre-denaturation at 98 ℃ for 10 s; 2) denaturation at 98 ℃ for 10 s; 3) annealing at 62 ℃ for 10 s; 4) extension at 72 ℃ for 20 s; 2) -4)35 cycles; 5) extension at 72 ℃ for 10 min.
The target gene fragment was recovered using a thin agarose gel DNA recovery kit gel, as shown in FIG. 11.
B. The C gene optimized and chemically synthesized by the escherichia coli codon is used as a template, and the front 46 amino acid sequence is removed through hydrophobicity analysis, and PCR amplification is carried out to obtain the C46 gene.
The sequence of the amplification primer is as follows:
on PC: GCACCCGCACAACGGGTCGACATGGAAGAAGACCACCGCGGACCG (see SEQ ID NO.21 for details);
under PC: GGGGTACCTTACCACACATCACGCAGGTAGC (see SEQ ID NO.22 for details).
Amplification system:
Figure BDA0001268451790000122
Max DNA polymerase:25μL;
primer (10 μ M): 2 μ L each;
p gene (template): 2 mu L of the solution;
distilled water was added to 50. mu.L.
Amplification conditions:
1) pre-denaturation at 98 ℃ for 10 s; 2) denaturation at 98 ℃ for 10 s; 3) annealing at 62 ℃ for 10 s; 4) extension at 72 ℃ for 20 s; 2) -4)35 cycles; 5) extension at 72 ℃ for 10 min.
The target gene fragment was recovered using a thin agarose gel DNA recovery kit gel, as shown in FIG. 11.
C. The P72 gene and the C46 gene are used as templates to carry out overlapping PCR amplification to obtain the P72C46 fusion gene, and the nucleotide sequence of the fusion gene is shown as SEQ ID NO. 7.
Amplification primer sequences:
p, on: GGAATTCCATATGATGAAACGTATCCCGCAGAAGG, respectively;
under PC: GGGGTACCTTACCACACATCACGCAGGTAGC are provided.
Amplification system:
Figure BDA0001268451790000131
Max DNA polymerase:25μL;
primer (10 μ M): 2 μ L each;
p72 gene, C46 gene (template): 2 μ L each;
distilled water was added to 50. mu.L.
Amplification conditions:
1) pre-denaturation at 98 ℃ for 10 s; 2) denaturation at 98 ℃ for 10 s; 3) annealing at 62 ℃ for 10 s; 4) extension at 72 ℃ for 40 s; 2) -4)35 cycles; 5) extension at 72 ℃ for 10 min.
The thin agarose gel DNA recovery kit gel was used to recover the target gene fragment as shown in FIG. 11.
(3) pACYCDuet-1D612C46P72C46 vector construction
A. The recovered D612C46 gene and the pACYCDuet-1 vector (Novagen) were subjected to double digestion with BamHI and Hind III, respectively, as shown in FIG. 13. The vector pACYCDuet-1 and the exogenous fragment are connected by T4 ligase at 16 ℃ overnight according to the molar ratio of 1:5, the connection product is used for transforming Escherichia coli DH5 alpha, then LB (peptone 10%, yeast extract 5%, NaCl 10%, agarose 12%) solid plates containing 30 mu g/mL chloramphenicol are coated, transformants are picked up and cultured overnight, the bacterial liquid is used for screening positive clones by 2 xTaq Master Mix (Dye Plus) PCR, and the electrophoresis chart 14 is used for carrying out sequencing verification, and the sequencing result is completely matched with the expected base sequence.
B. The recovered P72C46 gene and the vector pACYDuet-1D612C46 were subjected to double digestion with Nde I and Kpn I, respectively, as shown in FIG. 15, the vector pACYDuet-1D612C46 and the exogenous fragment P72C46 were ligated with T4 ligase at 16 ℃ overnight in a molar ratio of 1:5, the ligation product was transformed into E.coli DH 5. alpha. which was then spread on LB (peptone 10%, yeast extract 5%, NaCl 10%, agarose 12%) solid plate containing 30. mu.g/mL chloramphenicol), transformants were picked and cultured overnight, and the bacterial solution was subjected to 2 XTAQQ Master Mix (Dye Plus) PCR to select positive clones, as shown in FIG. 16, and subjected to sequencing verification, with the sequencing result completely matching the expected base sequence. The map of the resulting plasmid pACYCDuet-1D612C46P72C46 is shown in FIG. 2.
Example 3 construction of recombinant Strain pCDFDuet-1SSSE pACYCDuet-1D612C46P72C46BL21(DE3)
Plasmid pCDFDuet-1SSSE was transformed into E.coli BL21(DE3) competent cells simultaneously with plasmid pACYDuet-1D612C46P72C46, plated on LB (peptone 10%, yeast extract 5%, NaCl 10%, agarose 12%) solid plates containing 100. mu.g/mL streptomycin and 30. mu.g/mL chloramphenicol, and positive clones were selected with 2 XTAQ Master Mix (Dye Plus), thereby obtaining recombinant strain SSSEDSDFDuet-1 SSSEPADYD 612C46P72C46BL21(DE 3).
EXAMPLE 4 fermentation of recombinant strains
The recombinant strain pCDFDuet-1SSSE pACYCDuet-1D612C46P72C46BL21(DE3) was inoculated in LB liquid medium (peptone 10g/L, yeast extract 5g/L, NaCl 10g/L) in an amount of 10. mu.L/2 mL, cultured at 37 ℃ and 220 rpm overnight, respectively. The next day TB liquid medium (1.2% (W/V) peptone, 2.4% (W/V) yeast extract, 17mM KH2PO4,72mM K2HPO410g/L glucose), the inoculum size was 2mL/200mL, cultured at 30 ℃ for about 3h at 250 rpm, and when the OD600 became about 0.6 to 0.9, an inducer IPTG was added to the medium to a final concentration of 0.5mmol/L for induction. After 48 hours of incubation, the fermentation product was centrifuged at 8000 rpm for 5 minutes, the supernatant was removed,the precipitate was extracted with 10mL of acetone by sonication for 30min for 2 times, the acetone extracts were mixed and dried to obtain a crude fermented extract, which was dissolved in 200. mu.L of methanol, and then sampled for UPLC-MS/MS measurement (chemical reagents used were from national institute of medicine chemical Co.) (peptone, yeast extract and agarose were purchased from OXOID, UK).
Example 5UPLC-MS/MS assay
(1) Protopanaxadiol standard preparation
Accurately weighing 2.5mg of protopanaxadiol reference substance, placing in a 25mL volumetric flask, adding methanol to dissolve, fixing the volume to scale, and refrigerating for later use.
(2) Chromatographic conditions
Analyzing a chromatographic column: CORTECSTM
Figure BDA0001268451790000151
Column (column) C18 (2.1X 100mm,1.6 μm), guard column: CORTECSTMUPLC C18VanGuard Pre-column (column) (2.1X 5mm,1.6 μm); mobile phase: acetonitrile (a) with 0.1% formic acid (B), gradient elution: 0-3 min, 30-90% of A; 3-6 min, 90% A-90% A; 6-6.1 min, 90-30% A; 6.1-8 min, 30-30% A. Sample introduction amount: 2 mu L of the solution; flow rate: 0.
25 mL/min; column temperature: at 45 ℃.
(3) Conditions of Mass Spectrometry
ESI ionization source, using positive ion detection mode, mass spectrum parameters as follows: residence time(s): 0.003 s; capillary voltage: 3.5 kv; drying gas: n is a radical of2(ii) a Collision gas: ar; source temperature: 150 ℃; extracting the voltage of the taper hole: 3.00V; desolventizing gas flow: 900 L.h-1(ii) a Taper hole airflow: 50 L.h-1(ii) a Desolventizing temperature: at 500 ℃.
As shown in FIG. 19, the retention times of the peaks of the liquid chromatogram target of the protopanaxadiol standard (FIG. 19A) and the sample (crude extract of example 4) (FIG. 19B) are consistent and both are 4.97 min; meanwhile, the fragment-ion graphs (m/z 407.69/425.09/443.43) of the products of the protopanaxadiol standard (FIG. 19D) and the sample (FIG. 19E) (the crude extract of example 4) are completely consistent, and the fact that the fermentation product of the sample contains the protopanaxadiol is proved, which indicates that the recombinant strain pCDFDuet-1 SSSEPCYDuet-1D 612C46P72C46(DE3) can produce the protopanaxadiol with the yield of 25 ng/L.
And (3) configuring a standard product: 1.26mg of protopanaxadiol standard (purchased from Shanghai Aladdin Biotechnology Co., Ltd.) was weighed into a 5mL volumetric flask, and methanol was added to the volume to a predetermined scale.
Construction of recombinant Strain pCDFDuet-1 SSSEPOCCUet-1D 612C46P1C46(DE3)
(1) Cloning of the D612C46 Gene
The same as in example 2.
(2) Cloning of the P1C46 Gene
A. The P1 gene was amplified using primers "above P1" and "below P" as templates from the codon-optimized and chemically synthesized P gene of example 2.
Amplification primer sequences:
on P1: GGAATTCCATATG ATGGTTCTGTTTTTCTCTCTG (SEQ ID NO. 23);
p is as follows: GGTCTTCTTCCATGTCGACCCGTTGTGCGGGTGCAGGTGAATC are provided.
Amplification system:
Figure BDA0001268451790000161
Max DNA polymerase:25μL;
primer (10 μ M): 2 μ L each;
p gene (template): 2 μ L each;
distilled water was added to 50. mu.L.
Amplification conditions:
1) pre-denaturation at 98 ℃ for 10 s; 2) denaturation at 98 ℃ for 10 s; 3) annealing at 62 ℃ for 10 s; 4) extension at 72 ℃ for 40 s; 2) -4)35 cycles; 5) extension at 72 ℃ for 10 min.
The target gene fragment was recovered using a thin agarose gel DNA recovery kit gel, as shown in FIG. 12.
B. The C gene (AtCPR1, accession number: X66016) is used as a template, the C gene is chemically synthesized through codon optimization of escherichia coli, the C gene is used as a template, the front 46 amino acid sequence is removed through hydrophobicity analysis, and the C46 gene is amplified through primers on and under PC.
Amplification primer sequences:
on PC: GCACCCGCACAACGGGTCGACATGGAAGAAGACCACCGCGGACCG, respectively;
under PC: GGGGTACCTTACCACACATCACGCAGGTAGC are provided.
Amplification system:
Figure BDA0001268451790000162
Max DNA polymerase:25μL;
primer (10 μ M): 2 μ L each;
c46 gene (template): 2 μ L each;
distilled water was added to 50. mu.L.
Amplification conditions:
1) pre-denaturation at 98 ℃ for 10 s; 2) denaturation at 98 ℃ for 10 s; 3) annealing at 62 ℃ for 10 s; 4) extension at 72 ℃ for 40 s; 2) -4)35 cycles; 5) extension at 72 ℃ for 10 min.
The target gene fragment was recovered using a thin agarose gel DNA recovery kit gel, as shown in FIG. 12.
C. The P1C46 fusion gene is amplified by primers on P1 and under PC, and the nucleotide sequence of the fusion gene is shown as SEQ ID NO.24 in the sequence table.
Amplification primer sequences:
on P1: GGAATTCCATATG ATGGTTCTGTTTTTCTCTCTG, respectively;
under PC: GGGGTACCTTACCACACATCACGCAGGTAGC are provided.
Amplification system:
Figure BDA0001268451790000171
Max DNA polymerase:25μL;
primer (10 μ M): 2 μ L each;
p1 gene and C46 gene (template): 2 μ L each;
distilled water was added to 50. mu.L.
Amplification conditions:
1) pre-denaturation at 98 ℃ for 10s 2; 2) denaturation at 98 ℃ for 10 s; 3) annealing at 62 ℃ for 10 s; 4) extension at 72 ℃ for 40 s; 2) -4)35 cycles; 5) extension at 72 ℃ for 10 min.
The target gene fragment was recovered using a thin agarose gel DNA recovery kit gel, as shown in FIG. 12.
(3) pACYDuet-1D612C46P1C46 vector construction
The recovered P1C46 gene and the vector pACYCDuet-1D612C46 were subjected to double digestion with Nde I and Kpn I, respectively, as shown in FIG. 17, the vector pACYCDuet-1D612C46 and the exogenous fragment P1C46 were ligated with T4 ligase at a molar ratio of 1:5 overnight at 16 ℃, the ligation product was transformed into E.coli DH 5. alpha. and then spread on LB (peptone 10%, yeast extract 5%, NaCl 10%, agarose 12%) solid plate containing 30. mu.g/mL chloramphenicol), transformants were picked up and cultured overnight, and the bacterial solution was subjected to 2 XTAQQ Master Mix (Dye Plus) PCR to select positive clones, FIG. 18, and sequencing was verified to obtain a complete match with the expected base sequence. A map of the resulting plasmid pACYCDuet-1D612C46P1C46 is shown in FIG. 3.
(4) Construction of recombinant Strain pCDFDuet-1 SSSEPOCCUet-1D 612C46P1C46(DE3)
Plasmid pCDFDuet-1SSSE was transformed into E.coli BL21(DE3) competent cells simultaneously with plasmid pACYDuet-1D612C46P1C46, plated on LB (peptone 10%, yeast extract 5%, NaCl 10%, agarose 12%) solid plates containing 100. mu.g/mL streptomycin and 30. mu.g/mL chloramphenicol, and positive clones were selected with 2 XTAQ Master Mix (Dye Plus), thereby obtaining recombinant strain SSSEDFDuet-1 SSSEPAGACYD-1D 612C46P1C46BL21(DE 3).
(5) Recombinant strain fermentation and UPLC-MS/MS assay
The same as in examples 4 and 5.
As shown in FIG. 19, no target peak consistent with the retention time of the liquid chromatogram of the protopanaxadiol standard (FIG. 19A) and the sample (FIG. 19C) was found by UPLC-MS/MS detection, which proves that the fermentation product of the sample does not contain protopanaxadiol, indicating that the recombinant strain pCDFDuet-1 SSSEPCYDuet-1D 612C46P1C46(DE3) can not produce protopanaxadiol.
<110> Shanghai institute for pharmaceutical industry, and institute for pharmaceutical industry of China
<120> a genetically engineered bacterium for producing protopanoxadiol and method thereof
<130> P1710076C
<160> 24
<170> PatentIn version 3.5
<210> 1
<211> 1335
<212> DNA
<213> Saccharomyces cerevisiae
<400> 1
atgggaaagc tattacaatt ggcattgcat ccggtcgaga tgaaggcagc tttgaagctg 60
aagttttgca gaacaccgct attctccatc tatgatcagt ccacgtctcc atatctcttg 120
cactgtttcg aactgttgaa cttgacctcc agatcgtttg ctgctgtgat cagagagctg 180
catccagaat tgagaaactg tgttactctc ttttatttga ttttaagggc tttggatacc 240
atcgaagacg atatgtccat cgaacacgat ttgaaaattg acttgttgcg tcacttccac 300
gagaaattgt tgttaactaa atggagtttc gacggaaatg cccccgatgt gaaggacaga 360
gccgttttga cagatttcga atcgattctt attgaattcc acaaattgaa accagaatat 420
caagaagtca tcaaggagat caccgagaaa atgggtaatg gtatggccga ctacatctta 480
gatgaaaatt acaacttgaa tgggttgcaa accgtccacg actacgacgt gtactgtcac 540
tacgtagctg gtttggtcgg tgatggtttg acccgtttga ttgtcattgc caagtttgcc 600
aacgaatctt tgtattctaa tgagcaattg tatgaaagca tgggtctttt cctacaaaaa 660
accaacatca tcagagatta caatgaagat ttggtcgatg gtagatcctt ctggcccaag 720
gaaatctggt cacaatacgc tcctcagttg aaggacttca tgaaacctga aaacgaacaa 780
ctggggttgg actgtataaa ccacctcgtc ttaaacgcat tgagtcatgt tatcgatgtg 840
ttgacttatt tggccggtat ccacgagcaa tccactttcc aattttgtgc cattccccaa 900
gttatggcca ttgcaacctt ggttttggta ttcaacaacc gtgaagtgct acatggcaat 960
gtaaagattc gtaagggtac tacctgctat ttaattttga aatcaaggac tttgcgtggc 1020
tgtgtcgaga tttttgacta ttacttacgt gatatcaaat ctaaattggc tgtgcaagat 1080
ccaaatttct taaaattgaa cattcaaatc tccaagatcg aacagtttat ggaagaaatg 1140
taccaggata aattacctcc taacgtgaag ccaaatgaaa ctccaatttt cttgaaagtt 1200
aaagaaagat ccagatacga tgatgaattg gttccaaccc aacaagaaga agagtacaag 1260
ttcaatatgg ttttatctat catcttgtcc gttcttcttg ggttttatta tatatacact 1320
ttacacagag cgtga 1335
<210> 2
<211> 1491
<212> DNA
<213> Saccharomyces cerevisiae
<400> 2
atgtctgctg ttaacgttgc acctgaattg attaatgccg acaacacaat tacctacgat 60
gcgattgtca tcggtgctgg tgttatcggt ccatgtgttg ctactggtct agcaagaaag 120
ggtaagaaag ttcttatcgt agaacgtgac tgggctatgc ctgatagaat tgttggtgaa 180
ttgatgcaac caggtggtgt tagagcattg agaagtctgg gtatgattca atctatcaac 240
aacatcgaag catatcctgt taccggttat accgtctttt tcaacggcga acaagttgat 300
attccatacc cttacaaggc cgatatccct aaagttgaaa aattgaagga cttggtcaaa 360
gatggtaatg acaaggtctt ggaagacagc actattcaca tcaaggatta cgaagatgat 420
gaaagagaaa ggggtgttgc ttttgttcat ggtagattct tgaacaactt gagaaacatt 480
actgctcaag agccaaatgt tactagagtg caaggtaact gtattgagat attgaaggat 540
gaaaagaatg aggttgttgg tgccaaggtt gacattgatg gccgtggcaa ggtggaattc 600
aaagcccact tgacatttat ctgtgacggt atcttttcac gtttcagaaa ggaattgcac 660
ccagaccatg ttccaactgt cggttcttcg tttgtcggta tgtctttgtt caatgctaag 720
aatcctgctc ctatgcacgg tcacgttatt cttggtagtg atcatatgcc aatcttggtt 780
taccaaatca gtccagaaga aacaagaatc ctttgtgctt acaactctcc aaaggtccca 840
gctgatatca agagttggat gattaaggat gtccaacctt tcattccaaa gagtctacgt 900
ccttcatttg atgaagccgt cagccaaggt aaatttagag ctatgccaaa ctcctacttg 960
ccagctagac aaaacgacgt cactggtatg tgtgttatcg gtgacgctct aaatatgaga 1020
catccattga ctggtggtgg tatgactgtc ggtttgcatg atgttgtctt gttgattaag 1080
aaaataggtg acctagactt cagcgaccgt gaaaaggttt tggatgaatt actagactac 1140
catttcgaaa gaaagagtta cgattccgtt attaacgttt tgtcagtggc tttgtattct 1200
ttgttcgctg ctgacagcga taacttgaag gcattacaaa aaggttgttt caaatatttc 1260
caaagaggtg gcgattgtgt caacaaaccc gttgaatttc tgtctggtgt cttgccaaag 1320
cctttgcaat tgaccagggt tttcttcgct gtcgcttttt acaccattta cttgaacatg 1380
gaagaacgtg gtttcttggg attaccaatg gctttattgg aaggtattat gattttgatc 1440
acagctatta gagtattcac cccatttttg tttggtgagt tgattggtta a 1491
<210> 3
<211> 1833
<212> DNA
<213> Artificial Sequence
<220>
<223> truncated E.coli codon-optimized dammarenediol synthase gene (D612)
<400> 3
atgtggaagc agaagggcgc acagggtaac gacccgtacc tgtactccac taacaacttc 60
gtgggtcgcc agtattggga gtttcagccg gacgctggca ccccggaaga gcgtgaagag 120
gttgaaaaag cgcgtaaaga ttatgtgaac aacaagaagc tgcatggtat tcatccgtgc 180
tctgacatgc tgatgcgccg tcagctgatt aaggagagcg gtattgacct gctgagcatt 240
ccgccgctgc gtctggatga aaacgagcag gttaactacg atgctgttac cactgctgtg 300
aaaaaagctc tgcgtctgaa ccgtgcgatt caggctcacg acggccactg gccggcagaa 360
aacgctggct ccctgctgta cactccgccg ctgatcatcg ctctgtatat ctccggcacc 420
attgacacca tcctgactaa gcagcacaaa aaggaactga tccgttttgt gtacaaccac 480
cagaacgaag atggcggttg gggttcttac attgaaggtc actctaccat gatcggttct 540
gttctgtctt acgtgatgct gcgcctgctg ggtgagggtc tggctgaatc tgatgatggt 600
aacggtgcgg tggagcgtgg ccgcaagtgg attctggacc acggtggtgc ggcaggtatt 660
ccgagctggg gtaagactta cctggcagtt ctgggtgttt atgaatggga gggctgtaac 720
ccgctgccgc cggagttttg gctgttcccg tctagctttc cgtttcaccc ggctaagatg 780
tggatctact gccgctgtac ttatatgccg atgtcttatc tgtatggtaa gcgctatcac 840
ggtccgatca ccgatctggt gctgtccctg cgtcaggaga tctataacat cccgtacgaa 900
cagattaaat ggaaccagca gcgtcacaac tgttgtaagg aagacctgta ttacccgcac 960
accctggttc aggacctggt ttgggatggc ctgcactatt ttagcgaacc gtttctgaag 1020
cgttggccgt tcaacaaact gcgtaaacgc ggcctgaaac gtgttgttga gctgatgcgt 1080
tatggcgcga ccgagacccg ttttatcact accggcaacg gcgagaaagc gctgcagatc 1140
atgagctggt gggcggagga cccgaacggt gacgagttca agcaccatct ggctcgcatc 1200
ccggattttc tgtggattgc ggaagacggt atgaccgttc agtctttcgg tagccagctg 1260
tgggattgta ttctggcaac tcaggcgatt attgcgacca acatggttga ggaatatggc 1320
gactccctga agaaagctca cttcttcatc aaggagtccc agatcaaaga gaacccgcgt 1380
ggtgacttcc tgaaaatgtg ccgccagttc actaaaggtg cgtggacctt ctctgaccag 1440
gaccacggct gcgttgtgag cgactgcacc gcagaagcac tgaagtgtct gctgctgctg 1500
tctcagatgc cgcaggatat cgttggcgaa aagccggaag ttgagcgcct gtacgaagca 1560
gttaacgttc tgctgtacct gcagtctcgt gttagcggtg gctttgcggt gtgggaaccg 1620
ccggttccga agccgtatct ggagatgctg aacccgtctg agattttcgc ggatattgtg 1680
gtggaacgtg aacacatcga atgtaccgcg tctgttatca aaggtctgat ggcgttcaaa 1740
tgtctgcatc cgggtcatcg tcagaaagaa atcgaagact ctgttgcgaa agcgatccgc 1800
tacctggaac gcaaccagat gccggatggc tct 1833
<210> 4
<211> 1380
<212> DNA
<213> Artificial Sequence
<220>
<223> truncated, E.coli codon-optimized protopanaxadiol synthase gene (P72)
<400> 4
atgaaacgta tcccgcagaa ggagaacgac tctaaagctc cgctgccgcc gggtcagacc 60
ggctggccgc tgatcggtga aaccctgaac tatctgtctt gcgttaaatc tggtgtttct 120
gagaacttcg ttaagtaccg taaagagaag tatagcccga aggtttttcg taccagcctg 180
ctgggcgaac cgatggcgat cctgtgtggc ccggaaggta acaaatttct gtactctacc 240
gaaaagaagc tggttcaggt ttggttcccg tcctctgtgg aaaaaatgtt cccgcgctct 300
cacggcgaat ctaacgctga taacttttct aaagttcgtg gtaagatgat gttcctgctg 360
aaagttgatg gtatgaaaaa gtatgttggc ctgatggacc gtgtgatgaa gcagtttctg 420
gagactgact ggaaccgcca gcagcagatt aacgtgcaca acactgttaa gaaatatact 480
gttaccatgt cttgtcgtgt tttcatgtct attgacgacg aggaacaggt tactcgtctg 540
ggtagctcta tccagaacat cgaagcgggt ctgctggcag ttccgatcaa cattccgggc 600
accgctatga accgtgctat caaaaccgtt aagctgctga ctcgcgaagt tgaagcggtt 660
atcaagcagc gtaaggttga cctgctggag aacaagcagg cgtctcagcc gcaggacctg 720
ctgtcccatc tgctgctgac cgcgaaccag gacggtcagt tcctgtctga atctgacatc 780
gcgagccacc tgattggtct gatgcagggc ggctacacta ctctgaacgg caccattact 840
tttgttctga actacctggc ggagttcccg gatgtttaca accaggtgct gaaggagcag 900
gttgaaatcg cgaactctaa gcatccgaaa gaactgctga actgggaaga tctgcgcaaa 960
atgaaatact cttggaacgt tgctcaggaa gtgctgcgca tcattccgcc gggtgttggt 1020
actttccgtg aggcgatcac cgacttcacc tacgctggct acctgatccc gaaaggttgg 1080
aaaatgcatc tgattccgca tgacacccac aaaaacccga cttacttccc gagcccggag 1140
aaattcgacc cgacccgttt cgaaggcaac ggtccggctc cgtatacctt tactccgttc 1200
ggcggtggtc cgcgtatgtg cccgggtatc gaatatgcgc gtctggttat tctgatcttc 1260
atgcataacg tggttactaa ctttcgttgg gaaaaactga ttccgaacga gaaaatcctg 1320
accgatccga tcccgcgttt cgcgcacggt ctgccgattc acctgcaccc gcacaactaa 1380
<210> 5
<211> 1941
<212> DNA
<213> Artificial Sequence
<220>
<223> truncated, E.coli codon-optimized nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene (C46)
<400> 5
tggaagaaga ccaccgcgga ccgctccggc gaactgaagc cgctgatgat tccgaagtct 60
ctgatggcta aagacgaaga tgatgatctg gacctgggca gcggcaaaac tcgtgtgtct 120
attttctttg gtactcagac tggtactgcg gagggttttg ctaaggcgct gtccgaggaa 180
atcaaagcgc gttatgaaaa ggcagctgtg aaagtgattg acctggatga ctatgcggca 240
gacgacgacc agtacgaaga aaaactgaaa aaagagaccc tggcgttctt ttgtgttgcg 300
acctacggcg atggcgagcc gaccgacaac gctgcacgct tttccaaatg gttcactgag 360
gagaacgaac gcgacattaa actgcagcag ctggcatacg gcgtgttcgc actgggcaac 420
cgtcagtatg aacactttaa caaaattggt atcgtgctgg acgaggaact gtgtaaaaaa 480
ggcgcaaaac gtctgattga agtgggtctg ggcgatgacg atcagtctat tgaggacgat 540
ttcaacgcgt ggaaggaatc cctgtggtcc gaactggata agctgctgaa ggatgaagac 600
gataagtctg tggctacccc gtataccgca gttatcccgg aataccgtgt tgtgactcat 660
gacccgcgct tcaccaccca gaagtctatg gagtctaacg ttgctaacgg taacaccacc 720
attgacatcc atcacccgtg ccgtgtggac gtggctgttc agaaggagct gcatacccac 780
gagagcgacc gttcttgcat ccacctggag ttcgacatct ctcgcaccgg catcacctat 840
gaaaccggtg accatgttgg cgtttatgct gagaaccacg ttgagatcgt tgaggaggca 900
ggcaaactgc tgggccactc cctggatctg gtgtttagca ttcacgcgga caaggaagat 960
ggcagcccgc tggaaagcgc agttccgccg ccgtttccgg gtccgtgtac cctgggcacc 1020
ggcctggctc gttatgcgga tctgctgaac ccgccgcgta aatctgcgct ggttgcactg 1080
gcggcgtatg cgactgaacc gagcgaggca gagaagctga aacatctgac ttctccggac 1140
ggtaaggacg aatactctca gtggatcgtg gcatcccagc gctccctgct ggaagttatg 1200
gctgcgttcc cgagcgctaa accgccgctg ggtgtgtttt ttgcagcgat tgctccgcgc 1260
ctgcagccgc gttactattc tatttcttct tgccaggact gggctccgtc ccgtgttcac 1320
gttacctctg ctctggttta cggtccgacc ccgaccggcc gtatccacaa gggcgtttgt 1380
tctacttgga tgaaaaacgc ggttccggcg gagaaatctc atgaatgcag cggtgcgccg 1440
atctttatcc gtgcgtccaa cttcaagctg ccgtctaacc cgtctactcc gattgttatg 1500
gttggtccgg gcaccggtct ggcaccgttc cgtggttttc tgcaggagcg tatggctctg 1560
aaagaggacg gtgaagaact gggttctagc ctgctgtttt tcggttgtcg taaccgccag 1620
atggatttta tctacgagga tgagctgaac aacttcgtgg accagggtgt tatcagcgag 1680
ctgattatgg cattttctcg cgaaggtgcg cagaaagagt atgtgcagca caaaatgatg 1740
gagaaagcgg cgcaggtgtg ggacctgatt aaagaagagg gttatctgta tgtttgcggc 1800
gacgcaaaag gtatggcacg tgacgtgcat cgcactctgc acaccatcgt tcaggaacag 1860
gaaggcgttt cttcctctga agcagaagcg attgttaaaa agctgcagac tgaaggtcgc 1920
tacctgcgtg atgtgtggta a 1941
<210> 6
<211> 3783
<212> DNA
<213> Artificial Sequence
<220>
<223> fusion gene D612C46
<400> 6
atgtggaagc agaagggcgc acagggtaac gacccgtacc tgtactccac taacaacttc 60
gtgggtcgcc agtattggga gtttcagccg gacgctggca ccccggaaga gcgtgaagag 120
gttgaaaaag cgcgtaaaga ttatgtgaac aacaagaagc tgcatggtat tcatccgtgc 180
tctgacatgc tgatgcgccg tcagctgatt aaggagagcg gtattgacct gctgagcatt 240
ccgccgctgc gtctggatga aaacgagcag gttaactacg atgctgttac cactgctgtg 300
aaaaaagctc tgcgtctgaa ccgtgcgatt caggctcacg acggccactg gccggcagaa 360
aacgctggct ccctgctgta cactccgccg ctgatcatcg ctctgtatat ctccggcacc 420
attgacacca tcctgactaa gcagcacaaa aaggaactga tccgttttgt gtacaaccac 480
cagaacgaag atggcggttg gggttcttac attgaaggtc actctaccat gatcggttct 540
gttctgtctt acgtgatgct gcgcctgctg ggtgagggtc tggctgaatc tgatgatggt 600
aacggtgcgg tggagcgtgg ccgcaagtgg attctggacc acggtggtgc ggcaggtatt 660
ccgagctggg gtaagactta cctggcagtt ctgggtgttt atgaatggga gggctgtaac 720
ccgctgccgc cggagttttg gctgttcccg tctagctttc cgtttcaccc ggctaagatg 780
tggatctact gccgctgtac ttatatgccg atgtcttatc tgtatggtaa gcgctatcac 840
ggtccgatca ccgatctggt gctgtccctg cgtcaggaga tctataacat cccgtacgaa 900
cagattaaat ggaaccagca gcgtcacaac tgttgtaagg aagacctgta ttacccgcac 960
accctggttc aggacctggt ttgggatggc ctgcactatt ttagcgaacc gtttctgaag 1020
cgttggccgt tcaacaaact gcgtaaacgc ggcctgaaac gtgttgttga gctgatgcgt 1080
tatggcgcga ccgagacccg ttttatcact accggcaacg gcgagaaagc gctgcagatc 1140
atgagctggt gggcggagga cccgaacggt gacgagttca agcaccatct ggctcgcatc 1200
ccggattttc tgtggattgc ggaagacggt atgaccgttc agtctttcgg tagccagctg 1260
tgggattgta ttctggcaac tcaggcgatt attgcgacca acatggttga ggaatatggc 1320
gactccctga agaaagctca cttcttcatc aaggagtccc agatcaaaga gaacccgcgt 1380
ggtgacttcc tgaaaatgtg ccgccagttc actaaaggtg cgtggacctt ctctgaccag 1440
gaccacggct gcgttgtgag cgactgcacc gcagaagcac tgaagtgtct gctgctgctg 1500
tctcagatgc cgcaggatat cgttggcgaa aagccggaag ttgagcgcct gtacgaagca 1560
gttaacgttc tgctgtacct gcagtctcgt gttagcggtg gctttgcggt gtgggaaccg 1620
ccggttccga agccgtatct ggagatgctg aacccgtctg agattttcgc ggatattgtg 1680
gtggaacgtg aacacatcga atgtaccgcg tctgttatca aaggtctgat ggcgttcaaa 1740
tgtctgcatc cgggtcatcg tcagaaagaa atcgaagact ctgttgcgaa agcgatccgc 1800
tacctggaac gcaaccagat gccggatggc tctgggtcga catggaagaa gaccaccgcg 1860
gaccgctccg gcgaactgaa gccgctgatg attccgaagt ctctgatggc taaagacgaa 1920
gatgatgatc tggacctggg cagcggcaaa actcgtgtgt ctattttctt tggtactcag 1980
actggtactg cggagggttt tgctaaggcg ctgtccgagg aaatcaaagc gcgttatgaa 2040
aaggcagctg tgaaagtgat tgacctggat gactatgcgg cagacgacga ccagtacgaa 2100
gaaaaactga aaaaagagac cctggcgttc ttttgtgttg cgacctacgg cgatggcgag 2160
ccgaccgaca acgctgcacg cttttccaaa tggttcactg aggagaacga acgcgacatt 2220
aaactgcagc agctggcata cggcgtgttc gcactgggca accgtcagta tgaacacttt 2280
aacaaaattg gtatcgtgct ggacgaggaa ctgtgtaaaa aaggcgcaaa acgtctgatt 2340
gaagtgggtc tgggcgatga cgatcagtct attgaggacg atttcaacgc gtggaaggaa 2400
tccctgtggt ccgaactgga taagctgctg aaggatgaag acgataagtc tgtggctacc 2460
ccgtataccg cagttatccc ggaataccgt gttgtgactc atgacccgcg cttcaccacc 2520
cagaagtcta tggagtctaa cgttgctaac ggtaacacca ccattgacat ccatcacccg 2580
tgccgtgtgg acgtggctgt tcagaaggag ctgcataccc acgagagcga ccgttcttgc 2640
atccacctgg agttcgacat ctctcgcacc ggcatcacct atgaaaccgg tgaccatgtt 2700
ggcgtttatg ctgagaacca cgttgagatc gttgaggagg caggcaaact gctgggccac 2760
tccctggatc tggtgtttag cattcacgcg gacaaggaag atggcagccc gctggaaagc 2820
gcagttccgc cgccgtttcc gggtccgtgt accctgggca ccggcctggc tcgttatgcg 2880
gatctgctga acccgccgcg taaatctgcg ctggttgcac tggcggcgta tgcgactgaa 2940
ccgagcgagg cagagaagct gaaacatctg acttctccgg acggtaagga cgaatactct 3000
cagtggatcg tggcatccca gcgctccctg ctggaagtta tggctgcgtt cccgagcgct 3060
aaaccgccgc tgggtgtgtt ttttgcagcg attgctccgc gcctgcagcc gcgttactat 3120
tctatttctt cttgccagga ctgggctccg tcccgtgttc acgttacctc tgctctggtt 3180
tacggtccga ccccgaccgg ccgtatccac aagggcgttt gttctacttg gatgaaaaac 3240
gcggttccgg cggagaaatc tcatgaatgc agcggtgcgc cgatctttat ccgtgcgtcc 3300
aacttcaagc tgccgtctaa cccgtctact ccgattgtta tggttggtcc gggcaccggt 3360
ctggcaccgt tccgtggttt tctgcaggag cgtatggctc tgaaagagga cggtgaagaa 3420
ctgggttcta gcctgctgtt tttcggttgt cgtaaccgcc agatggattt tatctacgag 3480
gatgagctga acaacttcgt ggaccagggt gttatcagcg agctgattat ggcattttct 3540
cgcgaaggtg cgcagaaaga gtatgtgcag cacaaaatga tggagaaagc ggcgcaggtg 3600
tgggacctga ttaaagaaga gggttatctg tatgtttgcg gcgacgcaaa aggtatggca 3660
cgtgacgtgc atcgcactct gcacaccatc gttcaggaac aggaaggcgt ttcttcctct 3720
gaagcagaag cgattgttaa aaagctgcag actgaaggtc gctacctgcg tgatgtgtgg 3780
taa 3783
<210> 7
<211> 3327
<212> DNA
<213> Artificial Sequence
<220>
<223> fusion gene P72C46
<400> 7
atgaaacgta tcccgcagaa ggagaacgac tctaaagctc cgctgccgcc gggtcagacc 60
ggctggccgc tgatcggtga aaccctgaac tatctgtctt gcgttaaatc tggtgtttct 120
gagaacttcg ttaagtaccg taaagagaag tatagcccga aggtttttcg taccagcctg 180
ctgggcgaac cgatggcgat cctgtgtggc ccggaaggta acaaatttct gtactctacc 240
gaaaagaagc tggttcaggt ttggttcccg tcctctgtgg aaaaaatgtt cccgcgctct 300
cacggcgaat ctaacgctga taacttttct aaagttcgtg gtaagatgat gttcctgctg 360
aaagttgatg gtatgaaaaa gtatgttggc ctgatggacc gtgtgatgaa gcagtttctg 420
gagactgact ggaaccgcca gcagcagatt aacgtgcaca acactgttaa gaaatatact 480
gttaccatgt cttgtcgtgt tttcatgtct attgacgacg aggaacaggt tactcgtctg 540
ggtagctcta tccagaacat cgaagcgggt ctgctggcag ttccgatcaa cattccgggc 600
accgctatga accgtgctat caaaaccgtt aagctgctga ctcgcgaagt tgaagcggtt 660
atcaagcagc gtaaggttga cctgctggag aacaagcagg cgtctcagcc gcaggacctg 720
ctgtcccatc tgctgctgac cgcgaaccag gacggtcagt tcctgtctga atctgacatc 780
gcgagccacc tgattggtct gatgcagggc ggctacacta ctctgaacgg caccattact 840
tttgttctga actacctggc ggagttcccg gatgtttaca accaggtgct gaaggagcag 900
gttgaaatcg cgaactctaa gcatccgaaa gaactgctga actgggaaga tctgcgcaaa 960
atgaaatact cttggaacgt tgctcaggaa gtgctgcgca tcattccgcc gggtgttggt 1020
actttccgtg aggcgatcac cgacttcacc tacgctggct acctgatccc gaaaggttgg 1080
aaaatgcatc tgattccgca tgacacccac aaaaacccga cttacttccc gagcccggag 1140
aaattcgacc cgacccgttt cgaaggcaac ggtccggctc cgtatacctt tactccgttc 1200
ggcggtggtc cgcgtatgtg cccgggtatc gaatatgcgc gtctggttat tctgatcttc 1260
atgcataacg tggttactaa ctttcgttgg gaaaaactga ttccgaacga gaaaatcctg 1320
accgatccga tcccgcgttt cgcgcacggt ctgccgattc acctgcaccc gcacaacggg 1380
tcgacatgga agaagaccac cgcggaccgc tccggcgaac tgaagccgct gatgattccg 1440
aagtctctga tggctaaaga cgaagatgat gatctggacc tgggcagcgg caaaactcgt 1500
gtgtctattt tctttggtac tcagactggt actgcggagg gttttgctaa ggcgctgtcc 1560
gaggaaatca aagcgcgtta tgaaaaggca gctgtgaaag tgattgacct ggatgactat 1620
gcggcagacg acgaccagta cgaagaaaaa ctgaaaaaag agaccctggc gttcttttgt 1680
gttgcgacct acggcgatgg cgagccgacc gacaacgctg cacgcttttc caaatggttc 1740
actgaggaga acgaacgcga cattaaactg cagcagctgg catacggcgt gttcgcactg 1800
ggcaaccgtc agtatgaaca ctttaacaaa attggtatcg tgctggacga ggaactgtgt 1860
aaaaaaggcg caaaacgtct gattgaagtg ggtctgggcg atgacgatca gtctattgag 1920
gacgatttca acgcgtggaa ggaatccctg tggtccgaac tggataagct gctgaaggat 1980
gaagacgata agtctgtggc taccccgtat accgcagtta tcccggaata ccgtgttgtg 2040
actcatgacc cgcgcttcac cacccagaag tctatggagt ctaacgttgc taacggtaac 2100
accaccattg acatccatca cccgtgccgt gtggacgtgg ctgttcagaa ggagctgcat 2160
acccacgaga gcgaccgttc ttgcatccac ctggagttcg acatctctcg caccggcatc 2220
acctatgaaa ccggtgacca tgttggcgtt tatgctgaga accacgttga gatcgttgag 2280
gaggcaggca aactgctggg ccactccctg gatctggtgt ttagcattca cgcggacaag 2340
gaagatggca gcccgctgga aagcgcagtt ccgccgccgt ttccgggtcc gtgtaccctg 2400
ggcaccggcc tggctcgtta tgcggatctg ctgaacccgc cgcgtaaatc tgcgctggtt 2460
gcactggcgg cgtatgcgac tgaaccgagc gaggcagaga agctgaaaca tctgacttct 2520
ccggacggta aggacgaata ctctcagtgg atcgtggcat cccagcgctc cctgctggaa 2580
gttatggctg cgttcccgag cgctaaaccg ccgctgggtg tgttttttgc agcgattgct 2640
ccgcgcctgc agccgcgtta ctattctatt tcttcttgcc aggactgggc tccgtcccgt 2700
gttcacgtta cctctgctct ggtttacggt ccgaccccga ccggccgtat ccacaagggc 2760
gtttgttcta cttggatgaa aaacgcggtt ccggcggaga aatctcatga atgcagcggt 2820
gcgccgatct ttatccgtgc gtccaacttc aagctgccgt ctaacccgtc tactccgatt 2880
gttatggttg gtccgggcac cggtctggca ccgttccgtg gttttctgca ggagcgtatg 2940
gctctgaaag aggacggtga agaactgggt tctagcctgc tgtttttcgg ttgtcgtaac 3000
cgccagatgg attttatcta cgaggatgag ctgaacaact tcgtggacca gggtgttatc 3060
agcgagctga ttatggcatt ttctcgcgaa ggtgcgcaga aagagtatgt gcagcacaaa 3120
atgatggaga aagcggcgca ggtgtgggac ctgattaaag aagagggtta tctgtatgtt 3180
tgcggcgacg caaaaggtat ggcacgtgac gtgcatcgca ctctgcacac catcgttcag 3240
gaacaggaag gcgtttcttc ctctgaagca gaagcgattg ttaaaaagct gcagactgaa 3300
ggtcgctacc tgcgtgatgt gtggtaa 3327
<210> 8
<211> 2310
<212> DNA
<213> Artificial Sequence
<220>
<223> E.coli codon-optimized dammaradiene synthase
<400> 8
atgtggaagc agaagggcgc acagggtaac gacccgtacc tgtactccac taacaacttc 60
gtgggtcgcc agtattggga gtttcagccg gacgctggca ccccggaaga gcgtgaagag 120
gttgaaaaag cgcgtaaaga ttatgtgaac aacaagaagc tgcatggtat tcatccgtgc 180
tctgacatgc tgatgcgccg tcagctgatt aaggagagcg gtattgacct gctgagcatt 240
ccgccgctgc gtctggatga aaacgagcag gttaactacg atgctgttac cactgctgtg 300
aaaaaagctc tgcgtctgaa ccgtgcgatt caggctcacg acggccactg gccggcagaa 360
aacgctggct ccctgctgta cactccgccg ctgatcatcg ctctgtatat ctccggcacc 420
attgacacca tcctgactaa gcagcacaaa aaggaactga tccgttttgt gtacaaccac 480
cagaacgaag atggcggttg gggttcttac attgaaggtc actctaccat gatcggttct 540
gttctgtctt acgtgatgct gcgcctgctg ggtgagggtc tggctgaatc tgatgatggt 600
aacggtgcgg tggagcgtgg ccgcaagtgg attctggacc acggtggtgc ggcaggtatt 660
ccgagctggg gtaagactta cctggcagtt ctgggtgttt atgaatggga gggctgtaac 720
ccgctgccgc cggagttttg gctgttcccg tctagctttc cgtttcaccc ggctaagatg 780
tggatctact gccgctgtac ttatatgccg atgtcttatc tgtatggtaa gcgctatcac 840
ggtccgatca ccgatctggt gctgtccctg cgtcaggaga tctataacat cccgtacgaa 900
cagattaaat ggaaccagca gcgtcacaac tgttgtaagg aagacctgta ttacccgcac 960
accctggttc aggacctggt ttgggatggc ctgcactatt ttagcgaacc gtttctgaag 1020
cgttggccgt tcaacaaact gcgtaaacgc ggcctgaaac gtgttgttga gctgatgcgt 1080
tatggcgcga ccgagacccg ttttatcact accggcaacg gcgagaaagc gctgcagatc 1140
atgagctggt gggcggagga cccgaacggt gacgagttca agcaccatct ggctcgcatc 1200
ccggattttc tgtggattgc ggaagacggt atgaccgttc agtctttcgg tagccagctg 1260
tgggattgta ttctggcaac tcaggcgatt attgcgacca acatggttga ggaatatggc 1320
gactccctga agaaagctca cttcttcatc aaggagtccc agatcaaaga gaacccgcgt 1380
ggtgacttcc tgaaaatgtg ccgccagttc actaaaggtg cgtggacctt ctctgaccag 1440
gaccacggct gcgttgtgag cgactgcacc gcagaagcac tgaagtgtct gctgctgctg 1500
tctcagatgc cgcaggatat cgttggcgaa aagccggaag ttgagcgcct gtacgaagca 1560
gttaacgttc tgctgtacct gcagtctcgt gttagcggtg gctttgcggt gtgggaaccg 1620
ccggttccga agccgtatct ggagatgctg aacccgtctg agattttcgc ggatattgtg 1680
gtggaacgtg aacacatcga atgtaccgcg tctgttatca aaggtctgat ggcgttcaaa 1740
tgtctgcatc cgggtcatcg tcagaaagaa atcgaagact ctgttgcgaa agcgatccgc 1800
tacctggaac gcaaccagat gccggatggc tcttggtacg gtttttgggg tatttgcttt 1860
ctgtacggca ccttctttac tctgagcggt ttcgcgtccg ctggccgtac ttacgacaac 1920
agcgaggcag tgcgcaaagg cgttaaattc ttcctgtcca ctcagaacga agaaggcggc 1980
tggggcgagt ctctggaatc ttgtccgagc gaaaaattca ccccgctgaa aggtaaccgc 2040
actaacctgg tgcagacctc ttgggcaatg ctgggcctga tgttcggtgg ccaggcggaa 2100
cgcgacccga ctccgctgca tcgcgctgcg aaactgctga tcaacgcgca gatggacaac 2160
ggcgactttc cgcagcagga aatcactggt gtgtattgca agaactccat gctgcattac 2220
gctgagtatc gtaacatctt cccgctgtgg gctctgggcg aataccgtaa gcgtgtgtgg 2280
ctgccgaaac accagcagct gaagatctaa 2310
<210> 9
<211> 1449
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli codon-optimized protopanaxadiol synthase
<400> 9
atggttctgt ttttctctct gtccctgctg ctgctgccgc tgctgctgct gtttgcttat 60
ttctcttaca ccaaacgtat cccgcagaag gagaacgact ctaaagctcc gctgccgccg 120
ggtcagaccg gctggccgct gatcggtgaa accctgaact atctgtcttg cgttaaatct 180
ggtgtttctg agaacttcgt taagtaccgt aaagagaagt atagcccgaa ggtttttcgt 240
accagcctgc tgggcgaacc gatggcgatc ctgtgtggcc cggaaggtaa caaatttctg 300
tactctaccg aaaagaagct ggttcaggtt tggttcccgt cctctgtgga aaaaatgttc 360
ccgcgctctc acggcgaatc taacgctgat aacttttcta aagttcgtgg taagatgatg 420
ttcctgctga aagttgatgg tatgaaaaag tatgttggcc tgatggaccg tgtgatgaag 480
cagtttctgg agactgactg gaaccgccag cagcagatta acgtgcacaa cactgttaag 540
aaatatactg ttaccatgtc ttgtcgtgtt ttcatgtcta ttgacgacga ggaacaggtt 600
actcgtctgg gtagctctat ccagaacatc gaagcgggtc tgctggcagt tccgatcaac 660
attccgggca ccgctatgaa ccgtgctatc aaaaccgtta agctgctgac tcgcgaagtt 720
gaagcggtta tcaagcagcg taaggttgac ctgctggaga acaagcaggc gtctcagccg 780
caggacctgc tgtcccatct gctgctgacc gcgaaccagg acggtcagtt cctgtctgaa 840
tctgacatcg cgagccacct gattggtctg atgcagggcg gctacactac tctgaacggc 900
accattactt ttgttctgaa ctacctggcg gagttcccgg atgtttacaa ccaggtgctg 960
aaggagcagg ttgaaatcgc gaactctaag catccgaaag aactgctgaa ctgggaagat 1020
ctgcgcaaaa tgaaatactc ttggaacgtt gctcaggaag tgctgcgcat cattccgccg 1080
ggtgttggta ctttccgtga ggcgatcacc gacttcacct acgctggcta cctgatcccg 1140
aaaggttgga aaatgcatct gattccgcat gacacccaca aaaacccgac ttacttcccg 1200
agcccggaga aattcgaccc gacccgtttc gaaggcaacg gtccggctcc gtataccttt 1260
actccgttcg gcggtggtcc gcgtatgtgc ccgggtatcg aatatgcgcg tctggttatt 1320
ctgatcttca tgcataacgt ggttactaac tttcgttggg aaaaactgat tccgaacgag 1380
aaaatcctga ccgatccgat cccgcgtttc gcgcacggtc tgccgattca cctgcacccg 1440
cacaactaa 1449
<210> 10
<211> 2079
<212> DNA
<213> Artificial Sequence
<220>
<223> codon-optimized nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene of E.coli
<400> 10
atgactagcg cactgtacgc atccgatctg ttcaaacagc tgaagtccat tatgggtact 60
gattccctgt ctgacgatgt ggtgctggtg atcgcgacca ccagcctggc actggtggcg 120
ggcttcgttg ttctgctgtg gaagaagacc accgcggacc gctccggcga actgaagccg 180
ctgatgattc cgaagtctct gatggctaaa gacgaagatg atgatctgga cctgggcagc 240
ggcaaaactc gtgtgtctat tttctttggt actcagactg gtactgcgga gggttttgct 300
aaggcgctgt ccgaggaaat caaagcgcgt tatgaaaagg cagctgtgaa agtgattgac 360
ctggatgact atgcggcaga cgacgaccag tacgaagaaa aactgaaaaa agagaccctg 420
gcgttctttt gtgttgcgac ctacggcgat ggcgagccga ccgacaacgc tgcacgcttt 480
tccaaatggt tcactgagga gaacgaacgc gacattaaac tgcagcagct ggcatacggc 540
gtgttcgcac tgggcaaccg tcagtatgaa cactttaaca aaattggtat cgtgctggac 600
gaggaactgt gtaaaaaagg cgcaaaacgt ctgattgaag tgggtctggg cgatgacgat 660
cagtctattg aggacgattt caacgcgtgg aaggaatccc tgtggtccga actggataag 720
ctgctgaagg atgaagacga taagtctgtg gctaccccgt ataccgcagt tatcccggaa 780
taccgtgttg tgactcatga cccgcgcttc accacccaga agtctatgga gtctaacgtt 840
gctaacggta acaccaccat tgacatccat cacccgtgcc gtgtggacgt ggctgttcag 900
aaggagctgc atacccacga gagcgaccgt tcttgcatcc acctggagtt cgacatctct 960
cgcaccggca tcacctatga aaccggtgac catgttggcg tttatgctga gaaccacgtt 1020
gagatcgttg aggaggcagg caaactgctg ggccactccc tggatctggt gtttagcatt 1080
cacgcggaca aggaagatgg cagcccgctg gaaagcgcag ttccgccgcc gtttccgggt 1140
ccgtgtaccc tgggcaccgg cctggctcgt tatgcggatc tgctgaaccc gccgcgtaaa 1200
tctgcgctgg ttgcactggc ggcgtatgcg actgaaccga gcgaggcaga gaagctgaaa 1260
catctgactt ctccggacgg taaggacgaa tactctcagt ggatcgtggc atcccagcgc 1320
tccctgctgg aagttatggc tgcgttcccg agcgctaaac cgccgctggg tgtgtttttt 1380
gcagcgattg ctccgcgcct gcagccgcgt tactattcta tttcttcttg ccaggactgg 1440
gctccgtccc gtgttcacgt tacctctgct ctggtttacg gtccgacccc gaccggccgt 1500
atccacaagg gcgtttgttc tacttggatg aaaaacgcgg ttccggcgga gaaatctcat 1560
gaatgcagcg gtgcgccgat ctttatccgt gcgtccaact tcaagctgcc gtctaacccg 1620
tctactccga ttgttatggt tggtccgggc accggtctgg caccgttccg tggttttctg 1680
caggagcgta tggctctgaa agaggacggt gaagaactgg gttctagcct gctgtttttc 1740
ggttgtcgta accgccagat ggattttatc tacgaggatg agctgaacaa cttcgtggac 1800
cagggtgtta tcagcgagct gattatggca ttttctcgcg aaggtgcgca gaaagagtat 1860
gtgcagcaca aaatgatgga gaaagcggcg caggtgtggg acctgattaa agaagagggt 1920
tatctgtatg tttgcggcga cgcaaaaggt atggcacgtg acgtgcatcg cactctgcac 1980
accatcgttc aggaacagga aggcgtttct tcctctgaag cagaagcgat tgttaaaaag 2040
ctgcagactg aaggtcgcta cctgcgtgat gtgtggtaa 2079
<210> 11
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> on primer SS
<400> 11
cgggatccga tgggaaagct attacaattg 30
<210> 12
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> primer SS
<400> 12
ccaagctttc acgctctgtg taaagtgtat atataataaa ac 42
<210> 13
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> on primer SE
<400> 13
gaagatctca tgtctgctgt taacgttgca c 31
<210> 14
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> primer SE
<400> 14
ggggtacctt aaccaatcaa ctcaccaaac 30
<210> 15
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> primer D
<400> 15
cgcggatccg atgtggaagc agaagggcgc acag 34
<210> 16
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> primer D
<400> 16
gtggtcttct tccatgtcga cccagagcca tccggcatct ggttgc 46
<210> 17
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> primer on DC
<400> 17
gccggatggc tctgggtcga catggaagaa gaccaccgcg gacc 44
<210> 18
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> primer DC
<400> 18
cccaagcttt taccacacat cacgcaggta gc 32
<210> 19
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> on primer P
<400> 19
ggaattccat atgatgaaac gtatcccgca gaagg 35
<210> 20
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> primer P
<400> 20
ggtcttcttc catgtcgacc cgttgtgcgg gtgcaggtga atc 43
<210> 21
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> on primer PC
<400> 21
gcacccgcac aacgggtcga catggaagaa gaccaccgcg gaccg 45
<210> 22
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> primer PC
<400> 22
ggggtacctt accacacatc acgcaggtag c 31
<210> 23
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> primer P1
<400> 23
ggaattccat atgatggttc tgtttttctc tctg 34
<210> 24
<211> 3396
<212> DNA
<213> Artificial Sequence
<220>
<223> fusion gene P1C46
<400> 24
atggttctgt ttttctctct gtccctgctg ctgctgccgc tgctgctgct gtttgcttat 60
ttctcttaca ccaaacgtat cccgcagaag gagaacgact ctaaagctcc gctgccgccg 120
ggtcagaccg gctggccgct gatcggtgaa accctgaact atctgtcttg cgttaaatct 180
ggtgtttctg agaacttcgt taagtaccgt aaagagaagt atagcccgaa ggtttttcgt 240
accagcctgc tgggcgaacc gatggcgatc ctgtgtggcc cggaaggtaa caaatttctg 300
tactctaccg aaaagaagct ggttcaggtt tggttcccgt cctctgtgga aaaaatgttc 360
ccgcgctctc acggcgaatc taacgctgat aacttttcta aagttcgtgg taagatgatg 420
ttcctgctga aagttgatgg tatgaaaaag tatgttggcc tgatggaccg tgtgatgaag 480
cagtttctgg agactgactg gaaccgccag cagcagatta acgtgcacaa cactgttaag 540
aaatatactg ttaccatgtc ttgtcgtgtt ttcatgtcta ttgacgacga ggaacaggtt 600
actcgtctgg gtagctctat ccagaacatc gaagcgggtc tgctggcagt tccgatcaac 660
attccgggca ccgctatgaa ccgtgctatc aaaaccgtta agctgctgac tcgcgaagtt 720
gaagcggtta tcaagcagcg taaggttgac ctgctggaga acaagcaggc gtctcagccg 780
caggacctgc tgtcccatct gctgctgacc gcgaaccagg acggtcagtt cctgtctgaa 840
tctgacatcg cgagccacct gattggtctg atgcagggcg gctacactac tctgaacggc 900
accattactt ttgttctgaa ctacctggcg gagttcccgg atgtttacaa ccaggtgctg 960
aaggagcagg ttgaaatcgc gaactctaag catccgaaag aactgctgaa ctgggaagat 1020
ctgcgcaaaa tgaaatactc ttggaacgtt gctcaggaag tgctgcgcat cattccgccg 1080
ggtgttggta ctttccgtga ggcgatcacc gacttcacct acgctggcta cctgatcccg 1140
aaaggttgga aaatgcatct gattccgcat gacacccaca aaaacccgac ttacttcccg 1200
agcccggaga aattcgaccc gacccgtttc gaaggcaacg gtccggctcc gtataccttt 1260
actccgttcg gcggtggtcc gcgtatgtgc ccgggtatcg aatatgcgcg tctggttatt 1320
ctgatcttca tgcataacgt ggttactaac tttcgttggg aaaaactgat tccgaacgag 1380
aaaatcctga ccgatccgat cccgcgtttc gcgcacggtc tgccgattca cctgcacccg 1440
cacaacgggt cgacatggaa gaagaccacc gcggaccgct ccggcgaact gaagccgctg 1500
atgattccga agtctctgat ggctaaagac gaagatgatg atctggacct gggcagcggc 1560
aaaactcgtg tgtctatttt ctttggtact cagactggta ctgcggaggg ttttgctaag 1620
gcgctgtccg aggaaatcaa agcgcgttat gaaaaggcag ctgtgaaagt gattgacctg 1680
gatgactatg cggcagacga cgaccagtac gaagaaaaac tgaaaaaaga gaccctggcg 1740
ttcttttgtg ttgcgaccta cggcgatggc gagccgaccg acaacgctgc acgcttttcc 1800
aaatggttca ctgaggagaa cgaacgcgac attaaactgc agcagctggc atacggcgtg 1860
ttcgcactgg gcaaccgtca gtatgaacac tttaacaaaa ttggtatcgt gctggacgag 1920
gaactgtgta aaaaaggcgc aaaacgtctg attgaagtgg gtctgggcga tgacgatcag 1980
tctattgagg acgatttcaa cgcgtggaag gaatccctgt ggtccgaact ggataagctg 2040
ctgaaggatg aagacgataa gtctgtggct accccgtata ccgcagttat cccggaatac 2100
cgtgttgtga ctcatgaccc gcgcttcacc acccagaagt ctatggagtc taacgttgct 2160
aacggtaaca ccaccattga catccatcac ccgtgccgtg tggacgtggc tgttcagaag 2220
gagctgcata cccacgagag cgaccgttct tgcatccacc tggagttcga catctctcgc 2280
accggcatca cctatgaaac cggtgaccat gttggcgttt atgctgagaa ccacgttgag 2340
atcgttgagg aggcaggcaa actgctgggc cactccctgg atctggtgtt tagcattcac 2400
gcggacaagg aagatggcag cccgctggaa agcgcagttc cgccgccgtt tccgggtccg 2460
tgtaccctgg gcaccggcct ggctcgttat gcggatctgc tgaacccgcc gcgtaaatct 2520
gcgctggttg cactggcggc gtatgcgact gaaccgagcg aggcagagaa gctgaaacat 2580
ctgacttctc cggacggtaa ggacgaatac tctcagtgga tcgtggcatc ccagcgctcc 2640
ctgctggaag ttatggctgc gttcccgagc gctaaaccgc cgctgggtgt gttttttgca 2700
gcgattgctc cgcgcctgca gccgcgttac tattctattt cttcttgcca ggactgggct 2760
ccgtcccgtg ttcacgttac ctctgctctg gtttacggtc cgaccccgac cggccgtatc 2820
cacaagggcg tttgttctac ttggatgaaa aacgcggttc cggcggagaa atctcatgaa 2880
tgcagcggtg cgccgatctt tatccgtgcg tccaacttca agctgccgtc taacccgtct 2940
actccgattg ttatggttgg tccgggcacc ggtctggcac cgttccgtgg ttttctgcag 3000
gagcgtatgg ctctgaaaga ggacggtgaa gaactgggtt ctagcctgct gtttttcggt 3060
tgtcgtaacc gccagatgga ttttatctac gaggatgagc tgaacaactt cgtggaccag 3120
ggtgttatca gcgagctgat tatggcattt tctcgcgaag gtgcgcagaa agagtatgtg 3180
cagcacaaaa tgatggagaa agcggcgcag gtgtgggacc tgattaaaga agagggttat 3240
ctgtatgttt gcggcgacgc aaaaggtatg gcacgtgacg tgcatcgcac tctgcacacc 3300
atcgttcagg aacaggaagg cgtttcttcc tctgaagcag aagcgattgt taaaaagctg 3360
cagactgaag gtcgctacct gcgtgatgtg tggtaa 3396

Claims (14)

1. A genetically engineered bacterium for producing protopanoxadiol is characterized in that the genetically engineered bacterium is escherichia coli (E.coli) ((E.coli))Escherichia coli) Engineering bacteria expressing squalene synthase gene, 2, 3-oxidosqualene synthase gene, dammarendiol synthase gene, protopanoxadiol synthase gene and nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene; the nucleotide sequence of the dammarenediol synthase gene is shown as SEQ ID NO.3, the nucleotide sequence of the protopanaxadiol synthase gene is shown as SEQ ID NO.4, the nucleotide sequence of the nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene is shown as SEQ ID NO.5, the nucleotide sequence of the squalene synthase gene is shown as SEQ ID NO.1, and the nucleotide sequence of the 2, 3-oxidosqualene synthase gene is shown as SEQ ID NO. 2.
2. The genetically engineered bacterium of claim 1, carrying an expression vector 1 comprising said squalene synthase gene and said 2, 3-oxidosqualene synthase gene, and an expression vector 2 comprising said dammarendiol synthase gene, said protopanaxadiol synthase gene, and said nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene.
3. The genetically engineered bacterium of claim 2, wherein said expression vector 2 comprises two of said nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase genes.
4. The genetically engineered bacterium of claim 2, wherein said dammarenediol synthase gene and protopanaxadiol synthase gene are each adjacent to one of said nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase genes.
5. The genetically engineered bacterium of claim 4, wherein said nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase genes are both located downstream of said dammarenediol synthase gene or protopanaxadiol synthase gene.
6. The genetically engineered bacterium of claim 5, wherein the NADP-cytochrome P450 reductase gene and the dammarenediol synthase gene or the protopanaxadiol synthase gene form a fusion gene, respectively.
7. The genetically engineered bacterium of claim 6, wherein the nucleotide sequences of the fusion genes formed by the NADP-cytochrome P450 reductase gene and the dammarendiol synthase gene or the protopanaxadiol synthase gene are shown as SEQ ID NO.6 or SEQ ID NO.7, respectively.
8. The genetically engineered bacterium of claim 2, wherein the backbone of expression vector 1 is plasmid pCDFDuet-1; and/or, the skeleton of the expression vector 2 is plasmid pACYCDuet-1.
9. The genetically engineered bacterium of claim 8, wherein said Escherichia coli is Escherichia coli BL21(DE3) strain.
10. An expression vector 1 and an expression vector 2 are applied to the preparation of genetic engineering bacteria for producing protopanaxadiol, wherein the genetic engineering bacteria are escherichia coli, the expression vector 1 comprises a squalene synthase gene and a2, 3-oxidosqualene synthase gene, and the nucleotide sequences of the squalene synthase gene and the 2, 3-oxidosqualene synthase gene are respectively shown as SEQ ID NO.1 and SEQ ID NO. 2; the expression vector 2 comprises a fusion gene 1 and a fusion gene 2, wherein the nucleotide sequence of the fusion gene 1 is shown as SEQ ID NO.6, and the nucleotide sequence of the fusion gene 2 is shown as SEQ ID NO. 7.
11. Use according to claim 10, characterized in that the E.coli is the strain E.coli BL21(DE 3).
12. The use according to claim 11, wherein the backbone of expression vector 1 is plasmid pCDFDuet-1; the backbone of the expression vector 2 is plasmid pACYCDuet-1.
13. A method for producing protopanaxadiol, which comprises fermenting the genetically engineered bacterium according to any one of claims 1 to 9 to obtain protopanaxadiol from the fermentation broth.
14. A method for preparing the genetically engineered bacterium according to any one of claims 1 to 9, comprising the steps of:
1) constructing an expression vector 1 containing a squalene synthase gene and a2, 3-oxidosqualene synthase gene, and an expression vector 2 containing a dammarendiol synthase gene, a protopanaxadiol synthase gene and two nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase genes;
2) using Escherichia coli (Escherichia coli) The host strain is transformed by the expression vector 1 and the expression vector 2 obtained in the step 1) at the same time to obtain the escherichia coli genetic engineering bacteria for recombinant expression of protopanoxadiol.
CN201710237547.7A 2017-04-12 2017-04-12 Genetically engineered bacterium for producing protopanoxadiol and method thereof Active CN108690822B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710237547.7A CN108690822B (en) 2017-04-12 2017-04-12 Genetically engineered bacterium for producing protopanoxadiol and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710237547.7A CN108690822B (en) 2017-04-12 2017-04-12 Genetically engineered bacterium for producing protopanoxadiol and method thereof

Publications (2)

Publication Number Publication Date
CN108690822A CN108690822A (en) 2018-10-23
CN108690822B true CN108690822B (en) 2021-11-05

Family

ID=63843558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710237547.7A Active CN108690822B (en) 2017-04-12 2017-04-12 Genetically engineered bacterium for producing protopanoxadiol and method thereof

Country Status (1)

Country Link
CN (1) CN108690822B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838754A (en) * 2018-12-27 2023-03-24 中国医学科学院药物研究所 Recombinant bacterium for producing dammarenediol-II glucoside and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120056188A (en) * 2010-11-24 2012-06-01 한국생명공학연구원 Alpha-N-arabinofuranosidase From Rhodanobacter ginsenosidimutans And Use Thereof
CN102796159A (en) * 2011-05-24 2012-11-28 复旦大学 Dammarane glucosides and preparation method and application thereof
KR20130049270A (en) * 2011-11-03 2013-05-14 강원대학교산학협력단 Composition for promoting and activating biosynthesis of protopanaxadiol
CN103695493A (en) * 2013-12-24 2014-04-02 青岛蔚蓝生物集团有限公司 Biological synthesis method of 2,3-epoxy squalene
CN104357418A (en) * 2014-10-11 2015-02-18 上海交通大学 Applications of glycosyltransferase and mutants thereof to synthesis of ginsenoside Rh2
CN104894077A (en) * 2014-03-06 2015-09-09 中国科学院上海生命科学研究院 NADPH-cytochrome P450 reducing ferment and application thereof
CN105176905A (en) * 2015-10-16 2015-12-23 天津大学 Escherichia coli gene engineering strain for synthesizing Dammar enediol and construction method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120056188A (en) * 2010-11-24 2012-06-01 한국생명공학연구원 Alpha-N-arabinofuranosidase From Rhodanobacter ginsenosidimutans And Use Thereof
CN102796159A (en) * 2011-05-24 2012-11-28 复旦大学 Dammarane glucosides and preparation method and application thereof
KR20130049270A (en) * 2011-11-03 2013-05-14 강원대학교산학협력단 Composition for promoting and activating biosynthesis of protopanaxadiol
CN103695493A (en) * 2013-12-24 2014-04-02 青岛蔚蓝生物集团有限公司 Biological synthesis method of 2,3-epoxy squalene
CN104894077A (en) * 2014-03-06 2015-09-09 中国科学院上海生命科学研究院 NADPH-cytochrome P450 reducing ferment and application thereof
CN104357418A (en) * 2014-10-11 2015-02-18 上海交通大学 Applications of glycosyltransferase and mutants thereof to synthesis of ginsenoside Rh2
CN105176905A (en) * 2015-10-16 2015-12-23 天津大学 Escherichia coli gene engineering strain for synthesizing Dammar enediol and construction method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GenBanK登录号:AB265170.1;Shibuya,M.;《GenBank》;20100311;1-2 *
GenBank登录号:JN604537.1;Han,J.Y等;《GenBank》;20120128;1-2 *
GenBank登录号:X66016.1;Pompon,D.M.;《GenBank》;20050418;1-2 *
Optimization of a Cytochrome P450 Oxidation System for Enhancing Protopanaxadiol Production in Saccharomyces cerevisiae;Fanglong Zhao等;《Biotechnol Bioeng》;20160204;第113卷(第8期);1787-1795 *

Also Published As

Publication number Publication date
CN108690822A (en) 2018-10-23

Similar Documents

Publication Publication Date Title
US11091787B2 (en) Methods and materials for biosynthesis of mogroside compounds
CN110438099B (en) Application of glycosyltransferase and related materials thereof in construction of engineering bacteria for producing ginsenosides Rb1 and Rg1
US9828617B2 (en) Genes and processes for the production of clavine-type alkaloids
US11248248B2 (en) Production of mogroside compounds in recombinant hosts
CN109988722B (en) Recombinant saccharomyces cerevisiae strain, application thereof and method for producing tyrosol and/or salidroside
CN108138126B (en) Mycobacterium genetic engineering bacteria and application thereof in preparation of steroid compound
CN108690822B (en) Genetically engineered bacterium for producing protopanoxadiol and method thereof
Liu et al. Tricarbocyclic core formation of tyrosine-decahydrofluorenes implies a three-enzyme cascade with XenF-mediated sigmatropic rearrangement as a prerequisite
CN114045270B (en) Method for producing ginsenoside Rg1 and special engineering bacterium thereof
CN116396876B (en) Saccharomyces cerevisiae engineering bacteria for producing ginsenoside Rd and construction method thereof
CN112852653A (en) Saccharomyces cerevisiae engineering bacteria for synthesizing rebaudioside M from head and application thereof
CN114807211B (en) Recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol and construction method
CN107880134B (en) Method for enzymatic synthesis of kaempferol
KR101253471B1 (en) Method for preparing beta-glycosidase protein and converting ginsenoside
CN107345232B (en) Glucosyltransferase genes capable of participating in post-biosynthetic conversion modification
CN105802926B (en) 2 α of triterpene-hydroxylase MAA45 and its relevant biological material and they preparation hawthorn acid and Corosolic acid in application
CN112646834A (en) Lupeol derivative and synthesis method and application thereof
CN113817757A (en) Recombinant yeast engineering strain for producing cherry glycoside and application
CN107903227B (en) Succinic anhydride compound, gene and protein related to succinic anhydride compound and preparation method of succinic anhydride compound
CN105154423B (en) Red sesame Terpene synthase GL-TS2 encoding genes cDNA sequence and its application
Li et al. Inactivation of MrPigH in Monascus ruber M7 results in its Monascus pigments increase and citrinin decrease with mrpyrG selection marker
CN114806999B (en) Genetically engineered bacterium and application thereof in preparing dihydrodaidzein
CN114196641A (en) Steroid C14 alpha hydroxylase, expression vector, engineering bacterium and application thereof
CN118048252A (en) Saccharomyces cerevisiae engineering strain for producing coumaroyl-CoA, construction method and application
CN117866932A (en) Application of oxidation squalene cyclase NiOSC6 and encoding gene thereof in biosynthesis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant