CN114807211B - Recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol and construction method - Google Patents

Recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol and construction method Download PDF

Info

Publication number
CN114807211B
CN114807211B CN202210519519.5A CN202210519519A CN114807211B CN 114807211 B CN114807211 B CN 114807211B CN 202210519519 A CN202210519519 A CN 202210519519A CN 114807211 B CN114807211 B CN 114807211B
Authority
CN
China
Prior art keywords
seq
expression cassette
gene expression
gene
saccharomyces cerevisiae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210519519.5A
Other languages
Chinese (zh)
Other versions
CN114807211A (en
Inventor
卢文玉
张传波
田锦平
刘瑞霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202210519519.5A priority Critical patent/CN114807211B/en
Publication of CN114807211A publication Critical patent/CN114807211A/en
Application granted granted Critical
Publication of CN114807211B publication Critical patent/CN114807211B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/20Preparation of steroids containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01006Glycerol dehydrogenase (1.1.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01017Glucuronosyltransferase (2.4.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01029Glycerone kinase (2.7.1.29), i.e. dihydroxyacetone kinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07009UTP-glucose-1-phosphate uridylyltransferase (2.7.7.9), i.e. UDP-glucose-pyrophosphorylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)
    • C12Y504/02002Phosphoglucomutase (5.4.2.2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol and a construction method thereof, wherein the construction method comprises the following steps: (1) Introducing a glycosyltransferase UGT1 gene expression cassette, a PGM2 gene expression cassette of glucose phosphomutase and a UDP glucose pyrophosphorylase UGP1 gene expression cassette into Saccharomyces cerevisiae capable of synthesizing protopanaxadiol to obtain recombinant bacteria 1; (2) Introducing a glycerol transporter CjFPS1 gene expression cassette, a glycerol dehydrogenase OpGDH gene expression cassette and a dihydroxyacetone kinase DAK1 gene expression cassette into recombinant bacterium 1 to obtain recombinant bacterium 2; (3) Introducing a 3-hydroxy-3-methylglutaryl-CoA reductase HMGr gene expression cassette into the recombinant bacterium 2 to obtain a recombinant bacterium 3; experiments prove that the yields of the ginsenoside CK of the recombinant bacteria 1, 2 and 3 are 109.84mg/L,152.12mg/L and 330.94mg/L in sequence.

Description

Recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol and construction method
Technical Field
The invention relates to the technical field of biology, in particular to recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol, and a construction method and application thereof.
Background
Ginsenoside CK (CK for short) belongs to protopanoxadiol type saponin, and has biological properties of anticancer, antiallergic, antiaging, and antidiabetic. CK is extremely low in ginseng, and the ginsenoside Rb1, rd, rg2 and the like are mainly obtained by hydrolyzing the ginsenoside through mild acid hydrolysis alkali treatment, microbial transformation and enzymatic transformation, so that the single cost is still high. In recent years, research on synthetic biology has been advanced to enable microorganisms to synthesize animal and plant-derived compounds. Although researchers constructed strains capable of producing ginsenoside CK, the yield still remained to be improved.
In the prior art, the ginsenoside is produced by taking glucose as a substrate, and the glycerol has higher reduction degree compared with the glucose, is a main product in the petrochemical industry and has the characteristic of low cost, so that the synthesis of the ginsenoside CK by taking the glycerol as the substrate has potential in theory. However, no studies have been made to produce terpenoid natural products, particularly triterpenoid saponins, by modifying glycerol metabolism.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol.
The second object of the invention is to provide a construction method of recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol.
The third object of the invention is to provide an application of recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolism of glycerol in the production of ginsenoside CK by fermentation.
The fourth object of the present invention is to provide another recombinant Saccharomyces cerevisiae for metabolizing glycerol to produce ginsenoside CK.
The fifth object of the invention is to provide another construction method of recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol.
The sixth object of the invention is to provide an application of another recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolism of glycerol in the production of ginsenoside CK by fermentation.
The technical scheme of the invention is summarized as follows:
the construction method of the recombinant saccharomyces cerevisiae for producing the ginsenoside CK by metabolizing glycerol comprises the following steps:
(1) Introducing a glycosyltransferase UGT1 gene expression cassette, a PGM2 gene expression cassette of glucose phosphomutase and a UDP glucose pyrophosphorylase UGP1 gene expression cassette into Saccharomyces cerevisiae capable of synthesizing protopanaxadiol to obtain recombinant bacteria 1;
the nucleotide sequence of the glycosyltransferase UGT1 gene is shown in SEQ ID NO. 1;
the nucleotide sequence of the glucose phosphomutase PGM2 gene is shown in SEQ ID NO. 2;
the nucleotide sequence of the UDP-glucose pyrophosphorylase UGP1 gene is shown in SEQ ID NO. 3;
(2) Introducing a glycerol transporter CjFPS1 gene expression cassette, a glycerol dehydrogenase OpGDH gene expression cassette and a dihydroxyacetone kinase DAK1 gene expression cassette into recombinant bacterium 1 to obtain recombinant bacterium 2;
the nucleotide sequence of the glycerol transporter CjFPS1 gene is shown in SEQ ID NO. 4;
the nucleotide sequence of the glycerol dehydrogenase OpGDH gene is shown in SEQ ID NO. 5;
the nucleotide sequence of the dihydroxyacetone kinase DAK1 gene is shown in SEQ ID NO. 6.
Recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol constructed by the method.
The application of the recombinant saccharomyces cerevisiae for producing the ginsenoside CK by metabolizing glycerol to producing the ginsenoside CK is provided.
Another construction method of recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol comprises the following steps:
(1) Introducing a glycosyltransferase UGT1 gene expression cassette, a PGM2 gene expression cassette of glucose phosphomutase and a UDP glucose pyrophosphorylase UGP1 gene expression cassette into Saccharomyces cerevisiae capable of synthesizing protopanaxadiol to obtain recombinant bacteria 1;
the nucleotide sequence of the glycosyltransferase UGT1 gene is shown in SEQ ID NO. 1;
the nucleotide sequence of the glucose phosphomutase PGM2 gene is shown in SEQ ID NO. 2;
the nucleotide sequence of the UDP-glucose pyrophosphorylase UGP1 gene is shown in SEQ ID NO. 3;
(2) Introducing a glycerol transporter CjFPS1 gene expression cassette, a glycerol dehydrogenase OpGDH gene expression cassette and a dihydroxyacetone kinase DAK1 gene expression cassette into recombinant bacterium 1 to obtain recombinant bacterium 2;
the nucleotide sequence of the glycerol transporter CjFPS1 gene is shown in SEQ ID NO. 4;
the nucleotide sequence of the glycerol dehydrogenase OpGDH gene is shown in SEQ ID NO. 5;
the nucleotide sequence of the dihydroxyacetone kinase DAK1 gene is shown in SEQ ID NO. 6.
(3) Introducing a 3-hydroxy-3-methylglutaryl-CoA reductase HMGr gene expression cassette into the recombinant bacterium 2 to obtain a recombinant bacterium 3;
the nucleotide sequence of the HMGr gene of the 3-hydroxy-3-methylglutaryl-CoA reductase is shown in SEQ ID NO. 7.
Recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol constructed by the method.
The application of the recombinant saccharomyces cerevisiae for producing the ginsenoside CK by metabolizing glycerol to producing the ginsenoside CK is provided.
The invention has the advantages that:
the invention successfully constructs the recombinant saccharomyces cerevisiae for producing the ginsenoside CK by metabolizing glycerol. Experiments prove that the recombinant saccharomyces cerevisiae for producing the ginsenoside CK by metabolizing glycerol is fermented to obtain the ginsenoside CK, and the yields of the ginsenoside CK of the recombinant bacteria 1, 2 and 3 are 109.84mg/L,152.12mg/L and 330.94mg/L in sequence.
Drawings
FIG. 1A is a diagram showing the yield of ginsenoside CK synthesized by fermentation of recombinant Saccharomyces cerevisiae, which metabolizes glycerol to ginsenoside CK. Wherein the recombinant bacterium 1 is fermented by YPD liquid culture medium, and the recombinant bacterium 2 and the recombinant bacterium 3 are fermented by YPG liquid culture medium.
Detailed Description
The invention is further illustrated by the following examples.
Saccharomyces cerevisiae capable of synthesizing protopanoxadiol is used as an initial strain of the invention, and the initial strain selected by the invention is from Chinese patent, patent number 201410735927.X, and the invention name is: a fusion protein capable of improving the conversion efficiency of dammarenediol, a construction method and application thereof, namely a yeast strain W3a for synthesizing protopanaxadiol obtained in the embodiment 3, is called as 'Saccharomyces cerevisiae W3 a' for short in the invention, but the invention is not limited.
Other recombinant bacteria including the coding sequence of dammarenediol synthase DS, protopanaxadiol synthase PPDS, and cytochrome P450 enzyme reductase AtCPR1 may also be used in the present invention.
The experimental methods used in the examples below are conventional methods unless otherwise specified.
Materials, reagents and the like used in the examples described below are commercially available unless otherwise specified.
Saccharomyces cerevisiae ATCC208352, saccharomyces cerevisiae ATCC4040002, time purchased, 2016.6, website: https:// www.atcc.org /)
EXAMPLE 1 construction method of recombinant Saccharomyces cerevisiae 1 (recombinant bacterium 1)
And introducing a glycosyltransferase UGT1 gene expression cassette, a glucose phosphomutase PGM2 gene expression cassette and a UDP glucose pyrophosphorylase UGP1 gene expression cassette into Saccharomyces cerevisiae W3a to obtain recombinant bacteria 1.
The glycosyltransferase UGT1 is derived from Ginseng (Ginseng), and the nucleotide sequence of the glycosyltransferase UGT1 gene is shown in SEQ ID NO.1 after the codon optimization of saccharomyces cerevisiae of WU Jin Kairui bioengineering limited company; the nucleotide sequence of the glucose phosphomutase PGM2 gene is derived from Saccharomyces cerevisiae and is shown in SEQ ID NO. 2; the nucleotide sequence of the UDP-glucose pyrophosphorylase UGP1 gene is derived from Saccharomyces cerevisiae and is shown in SEQ ID NO. 3.
(1) Expression cassette construction
As shown in Table 1, the HOL fragment was amplified by PCR using the Saccharomyces cerevisiae ATCC208352 genome as a template and HOL-F (SEQ ID NO. 8) and TEF1-HOL-R (SEQ ID NO. 9); PCR amplification of P using Saccharomyces cerevisiae ATCC208352 genome as template and HOL-TEF1-F (SEQ ID NO. 10) and PGM2-TEF1-R (SEQ ID NO. 11) TEF1 Fragments; PCR amplification of PGM2-T using Saccharomyces cerevisiae ATCC208352 genome as template and TEF1-PGM2-F (SEQ ID NO. 12) and TDH3-PGM2T-R (SEQ ID NO. 13) PGM2 Fragments; PCR amplification of P using the Saccharomyces cerevisiae ATCC208352 genome as a template with PGM2t-TDH3-F (SEQ ID NO. 14) and UGP1-TDH3-R (SEQ ID NO. 15) TDH3 Fragments; PCR amplification of UGP1-T using Saccharomyces cerevisiae ATCC208352 genome as template and TDH3-UGP1-F (SEQ ID NO. 16) and PGK1-UGP1T-R (SEQ ID NO. 17) UGP1 Fragments; PCR amplification of P using Saccharomyces cerevisiae ATCC208352 genome as template and UGP1t-PGK1-F (SEQ ID NO. 18) and UGT1-PGK1-R (SEQ ID NO. 19) PGK1 Fragments; PCR amplification of UGT1 fragment using PGK1-UGT1-F (SEQ ID NO. 20) and ADH1-UGT1-R (SEQ ID NO. 21) with the nucleic acid sequence of UGT1 gene (SEQ ID NO. 1) as a template; PCR amplification of T using Saccharomyces cerevisiae ATCC208352 genome as template and UGT1-ADH1-F (SEQ ID NO. 22) and ADE-ADH1-R (SEQ ID NO. 23) ADH1 Fragments; ADE fragments were PCR amplified using the Saccharomyces cerevisiae ATCC4040002 genome as a template and ADH1-ADE-F (SEQ ID NO. 24) and HOR-ADE-R (SEQ ID NO. 25); the HOR fragment was PCR amplified using the Saccharomyces cerevisiae ATCC208352 genome as a template and ADE-HOR-F (SEQ ID NO. 26) and HOR-R (SEQ ID NO. 27). Amplifying the obtained HOL, P TEF1 With PGM2-T PGM2 Fragment fusion to obtain HOL-P TEF1 -PGM2-T PGM2 A gene expression cassette; p obtained by amplification TDH3 With UGP1-T UGP1 Fragment fusion to obtain P TDH3 -UGP1-T UGP1 A gene expression cassette; p obtained by amplification PGK1 ,UGT1,T ADH1 ADE and HOR fragments are fused to obtain P PGK1 -UGT1-T ADH1 ADE-HOR gene expression cassette.
(2) Saccharomyces cerevisiae transformation
Inoculating single colony of Saccharomyces cerevisiae W3a into 3ml YPD liquid culture medium, and culturing in shaking table at 30deg.C and 220rpm for 12 hr; transferring the cultured yeast seed liquid into a new 3ml YPD liquid culture medium, and culturing for 5 hours at the temperature of 30 ℃ and the rotating speed of 220 rpm; taking 1ml of bacterial liquid in a 1.5ml centrifuge tube which is sterilized in advance, centrifuging for 3min by a 4000rpm centrifuge, discarding the supernatant, and collecting bacterial cells; 1ml of sterile water was washed once, centrifuged at 4000rpm for 3min, and the supernatant was discarded to collect the cells. Then 1ml of 100mM LiAc aqueous solution was added to the cells and mixed well, and the mixture was allowed to stand at room temperature for 5 minutes. The cells after the completion of the standing were centrifuged at 4000rpm for 3min, and the LiAc liquid was removed by a pipette. Salmon sperm DNA (Solarbio, 10 mg/ml) was boiled in boiling water for 5min and then rapidly placed on prepared ice for cooling.
Sequentially adding 120 μl PEG3350 (50 g PEG3350/100ml water), 18 μl 1.0M LiAc aqueous solution, 5 μl salmon sperm DNA cooled by boiling with boiled water for 5min, 200ng HOL-P into a bacterial precipitation centrifuge tube TEF1 -PGM2-T PGM2 Fragments, 200ng P TDH3 -UGP1-T UGP1 Fragments, 200ng P PGK1 -UGT1-T ADH1 ADE-HOR fragment, final volume was made up to 180. Mu.l with sterile water. Then gently blow with a pipette for 1min to mix evenly; placing the evenly mixed centrifuge tube in a water bath kettle with the temperature of 42 ℃ for heat shock for 30min, centrifuging for 3min by a 4000rpm centrifuge, and removing the supernatant; continuously adding clean 1ml YPD liquid culture medium, and carrying out resuscitating culture for 2h at 30 ℃ by a shaking table at 220 rpm; centrifuging the resuscitated centrifuge tube at 4000rpm for 3min, discarding the upper culture medium, and washing twice with 1ml of sterile water; finally, 200 mu l of sterile water is added into a centrifuge tube containing thalli, the mixture is uniformly mixed, the mixture is coated on an SC culture medium flat plate lacking adenine, the mixture is placed in a constant temperature incubator at 30 ℃ for 2 days, and after single colony grows out, recombinant bacterium 1 is obtained by screening.
TABLE 1 recombinant bacterium 1 construction primer and template
Figure BDA0003642690810000041
Figure BDA0003642690810000051
EXAMPLE 2 construction method of recombinant Saccharomyces cerevisiae 2 (recombinant 2)
And (3) introducing a glycerol transporter CjFPS1 gene expression cassette, a glycerol dehydrogenase OpGDH gene expression cassette and a Dihydroxyacetone (DHA) kinase DAK1 gene expression cassette into the recombinant bacterium 1 to obtain recombinant bacterium 2.
The glycerol transporter CjFPS1 is derived from Cyberlindnera jadinii, and after the codon optimization of saccharomyces cerevisiae of Wohan Jin Kairui bioengineering Co., ltd., the nucleic acid sequence of the obtained glycerol transporter CjFPS1 gene is shown by SEQ ID NO. 4; the glycerol dehydrogenase OpGDH is derived from Ogataeapara polymorpha, and the nucleotide sequence of the obtained glycerol dehydrogenase OpGDH gene is shown in SEQ ID NO.5 after the codon optimization of Saccharomyces cerevisiae of WU Jin Kairui bioengineering limited company; the Dihydroxyacetone (DHA) kinase DAK1 is derived from Saccharomyces cerevisiae, and the nucleic acid sequence is shown in SEQ ID NO. 6; .
(1) Gene expression cassette construction
As shown in Table 2, the GUT1L fragment was PCR amplified using the Saccharomyces cerevisiae ATCC208352 genome as a template and GUT1L-F (SEQ ID NO. 28) and TDH3-GUT1L-R (SEQ ID NO. 29); PCR amplification of P using Saccharomyces cerevisiae ATCC208352 genome as template and GUT1L-TDH3-F (SEQ ID NO. 30) and CjFPS1-TDH3-R (SEQ ID NO. 31) TDH3 Fragments; PCR amplification of the CjFPS1 fragment using the nucleic acid sequence of the CjFPS1 gene (SEQ ID NO. 4) as a template and TDH3-CjFPS1-F (SEQ ID NO. 32) and CYC1-CjFPS1-R (SEQ ID NO. 33); PCR amplification of T using Saccharomyces cerevisiae ATCC208352 genome as template and CjFPS1-CYC1-F (SEQ ID NO. 34) and PGK1-CYC1-R (SEQ ID NO. 35) CYC1 Fragments; PCR amplification of P using Saccharomyces cerevisiae ATCC208352 genome as template and CYC1-PGK1-F (SEQ ID NO. 36) and OpGDH-PGK1-R (SEQ ID NO. 37) PGK1 Fragments; PCR amplifying the OpGDH fragment using the nucleic acid sequence of the OpGDH gene (SEQ ID NO. 5) as a template and PGK1-OpGDH-F (SEQ ID NO. 38) and ADH3-OpGDH-R (SEQ ID NO. 39); PCR amplification of T using Saccharomyces cerevisiae ATCC208352 genome as template and OpGDH-ADH3-F (SEQ ID NO. 40) and TEF1-ADH3-R (SEQ ID NO. 41) ADH3 Fragments; PCR amplification of P with ADH3-TEF1-F (SEQ ID NO. 42) and DAK1-TEF1-R (SEQ ID NO. 43) Using Saccharomyces cerevisiae ATCC208352 genome as template TEF1 Fragments; saccharomyces cerevisiaeATCC208352 genome as template, and PCR amplification of DAK1-T Using TEF1-DAK1-F (SEQ ID NO. 44) and hyhMX6-DAK1T-R (SEQ ID NO. 45) DAK1 Fragments; the hyhMX6 fragment was PCR amplified using the plasmid pFA6 a-link-yECitrarine-Hygro (purchased from Addgene, http:// www.addgene.org /) as template and DAK1t-hyhMX6-F (SEQ ID NO. 46) and GUT1R-hyhMX6-R (SEQ ID NO. 47); the GUT1R fragment was PCR amplified using Saccharomyces cerevisiae ATCC208352 genome as a template and hyhMX6-GUT1R-F (SEQ ID NO. 48) and GUT1R-R (SEQ ID NO. 49). Amplifying the obtained GUT1L, P TDH3 ,CjFPS1,T cyc1 Fragment fusion to obtain GUT1L-P TDH3 -CjFPS1-T cyc1 A gene expression cassette; p obtained by amplification PGK1 ,OpGDH,T ADH3 Fragment fusion to obtain P PGK1 -OpGDH-T ADH3 A gene expression cassette; p obtained by amplification TEF1 ,DAK1-T DAK1 Fusion of hyhMX6 with GUT1R fragment to obtain P TEF1 -DAK1-T DAK1 -hyhMX6-GUT1R gene expression cassette.
(2) Saccharomyces cerevisiae transformation
200ng of GUT1L-P obtained in step (1) was subjected to the transformation method according to step (2) of example 1 TDH3 -CjFPS1-T cyc1 、200ng P PGK1 -OpGDH-T ADH3 、200ng P TEF1 The DAK1-DAK1t-hyhMX6-GUT1R gene expression cassette is transformed into recombinant bacterium 1, and the recombinant bacterium is coated on a YPD plate containing 500mg/L hygromycin for screening to obtain recombinant bacterium 2.
TABLE 2 recombinant bacterium 2 construction primer and template
Figure BDA0003642690810000061
EXAMPLE 3 construction method of recombinant Saccharomyces cerevisiae 3 (recombinant bacterium 3)
Introducing a 3-hydroxy-3-methylglutaryl-CoA reductase HMGr gene expression cassette into the recombinant bacterium 2 to obtain a recombinant bacterium 3;
the 3-hydroxy-3-methylglutaryl-CoA reductase HMGr is derived from Silicibacter pomeroyi, and the nucleic acid sequence of the obtained 3-hydroxy-3-methylglutaryl-CoA reductase HMGr gene is shown in SEQ ID NO.7 after the codon optimization of Saccharomyces cerevisiae of Wohan Jin Kairui bioengineering Co.
(1) Expression cassette construction
As shown in Table 3, the MET17L fragment was PCR amplified using the Saccharomyces cerevisiae ATCC208352 genome as a template and MET17L-F (SEQ ID NO. 50) and Bleo-MET17L-R (SEQ ID NO. 51); the Bleo fragment was PCR amplified using the pSH65 plasmid (purchased from Wuhan vast Biotechnology Co., ltd.) as a template and MET17L-Bleo-F (SEQ ID NO. 52) and TDH3-Bleo-R (SEQ ID NO. 53); PCR amplification of P using Saccharomyces cerevisiae ATCC208352 genome as template and Bleo-TDH3-F (SEQ ID NO. 54) and HMGr-TDH3-R (SEQ ID NO. 55) TDH3 Fragments; PCR amplification of HMGr fragment using the nucleic acid sequence of the 3-hydroxy-3-methylglutaryl-CoA reductase HMGr gene (SEQ ID NO. 7) as template and TDH3-HMGr-F (SEQ ID NO. 56) and ADH1-HMGr-R (SEQ ID NO. 57); PCR amplification of T using Saccharomyces cerevisiae ATCC208352 genome as template, HMGr-ADH1-F (SEQ ID NO. 58) and MET17R-ADH1-R (SEQ ID NO. 59) ADH1 Fragments; the MET17R fragment was PCR amplified using the Saccharomyces cerevisiae ATCC208352 genome as a template and ADH1-MET17R-F (SEQ ID NO. 60) and MET17R-R (SEQ ID NO. 61). MET17L, bleo, P obtained by amplification TDH3 ,HMGr,T ADH1 Fusion of the MET17R fragment to obtain MET17L-Bleo-P TDH3 -HMGr-T ADH1 -MET17R gene expression cassette.
(2) Saccharomyces cerevisiae transformation
200ng of MET17L-Bleo-P obtained in step (1) of this example was subjected to the transformation method of step (2) of example 1 TDH3 -HMGr-T ADH1 The MET17R gene expression cassette is transformed into recombinant bacterium 2, and the recombinant bacterium 3 is obtained by screening with YPD plates added with 300mg/L bleomycin.
TABLE 3 recombinant bacterium 3 construction primer and template
Figure BDA0003642690810000071
EXAMPLE 4 fermentation Process of recombinant bacteria and extraction and determination of metabolites
(1) Fermentation process and metabolite extraction of recombinant bacteria
And (3) carrying out microbial fermentation by using each constructed recombinant bacterium, and detecting the yield of ginsenoside CK in the metabolite.
Recombinant strain 1 was inoculated into 2mL of YPD liquid medium at 30℃and 200rpm overnight for cultivation. And (3) inoculating a proper amount of seed liquid into a shake flask containing 50mL of YPD liquid culture medium, so that the initial OD of the fermentation liquid is 0.1, and fermenting for 4 days.
Recombinant 2 single colonies were inoculated into 2mL of YPD liquid medium at 30℃and 200rpm overnight for cultivation. And (3) inoculating a proper amount of seed liquid into a shake flask containing 50mL of YPG liquid culture medium, enabling the initial OD of the fermentation liquid to be 0.1, and fermenting for 4 days.
Recombinant 3 single colonies were inoculated into 2mL YPD liquid medium at 30℃and 200rpm overnight for cultivation. And (3) inoculating a proper amount of seed liquid into a shake flask containing 50mL of YPG liquid culture medium, enabling the initial OD of the fermentation liquid to be 0.1, and fermenting for 4 days.
After the fermentation, 400. Mu.L of n-butanol and quartz sand corresponding to the volume of the cells were added to 1mL of the fermentation broth, respectively, followed by shaking by vortexing for 30 minutes and centrifuging at 12000rpm for 10 minutes, and the upper organic phase was collected and filtered with a 0.22 μm filter membrane for HPLC-MS analysis.
(2) HPLC-MS determination of metabolites
Chromatographic conditions: HPLC analysis was performed using a Hypersil C18 column (4.6mm.times.250 mm,5 μm; elite Analytical Instruments Co., ltd., dai.C. China) with a detection wavelength of 203nm and a column temperature of 50℃and a mobile phase of 80% acetonitrile. A standard curve of the concentration of ginsenoside CK is prepared for quantitatively analyzing the yield of ginsenoside CK in the strain metabolite.
Mass spectrometry conditions: signal source type, ESI; ion polarity, positive; all spectra were obtained in the m/z range of 50/1200; a dry gas flow of 6.0L/min; the drying temperature is 180 ℃; the atomizer pressure was 0.8bar; probe voltage +4.5kV
(3) Measurement results
The yields of the ginsenoside CK in the recombinant bacteria 1, 2 and 3 are 109.84mg/L,152.12mg/L and 330.94mg/L in sequence. .
(4) The medium used in the examples
YPD liquid medium: the final concentration of glucose is 25g/L, the final concentration of yeast extract powder is 10g/L, and the final concentration of peptone is 20g/L, and the yeast extract powder is prepared by distilled water. YPD solid medium was prepared by adding 20g/L agar powder to YPD liquid medium.
YPG liquid medium: the final concentration of glycerin is 25.6g/L, the final concentration of yeast extract powder is 10g/L, and the final concentration of peptone is 20g/L, and the yeast extract powder is prepared by distilled water.
SC medium: the final concentration of glucose is 20g/L, the final concentration of nitrogen source (YNB) of the non-amino yeast is 6.7g/L, the final concentration of the amino acid mixture is 0.2g/L, the agar powder of 20g/L is prepared by distilled water, and the deletion of the amino acid mixture refers to the removal of the corresponding components in the amino acid mixture.
Amino acid mixture: glycine, 2.0g; alanine, 2.0g; methionine, 2.0g; lysine, 2.0g; arginine, 2.0g; serine, 2.0g; asparagine, 2.0g; aspartic acid, 2.0g; phenylalanine, 2.0g; cysteine, 2.0g; proline, 2.0g; tyrosine, 2.0g; glutamic acid, 2.0g; valine, 2.0g; threonine, 2.0g; serine, 2.0g; isoleucine, 2.0g; inositol, 2.0g; 2.0g of glutamine; 0.2g of para aminobenzoic acid; adenine, 0.5g; leucine 10g; methionine, 2g; tryptophan, 2g; histidine, 2g; uracil, 2g.
Sequence listing
<110> university of Tianjin
<120> recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol and construction method
<160> 61
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1428
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 1
atgaagtcag aattgatttt cttgccagca cctgccatag gtcatttggt cggtatggta 60
gaaatggcta agttgtttat ttctagacac gaaaatttgt cagtcacagt attgatcgca 120
aagttctaca tggataccgg tgtagacaac tacaacaaat ctttgttgac taacccaaca 180
cctagattga ctattgttaa tttgccagaa acagatcctc aaaactacat gttgaagcca 240
agacatgcta tcttcccttc tgtaatcgaa acccaaaaga ctcacgttag agatatcatc 300
tctggtatga cacaatctga atcaaccaga gttgtcggtt tgttggccga tttgttgttt 360
attaacataa tggacatagc taatgaattc aacgtaccaa cctatgttta ctctcctgct 420
ggtgcaggtc atttgggttt agcattccac ttgcaaactt tgaacgataa aaagcaagac 480
gtcaccgaat tcagaaactc tgatactgaa ttgttagtac catcattcgc aaatccagtc 540
cctgccgaag tattgccttc tatgtacgtt gataaggaag gtggttatga ctacttgttt 600
tccttattca gaagatgtag agagagtaag gcaatcatta ttaacacttt cgaagaattg 660
gaaccatatg ccattaactc tttgagaatg gattcaatga tcccacctat ctacccagtc 720
ggtcctatat tgaatttgaa cggtgacggt caaaattccg acgaagctgc agttatcttg 780
ggttggttag atgaccaacc accttcttca gtagttttct tgtgtttcgg ttcctacggt 840
agtttccaag aaaaccaagt taaggaaatc gctatgggtt tggaaagatc aggtcataga 900
ttcttgtggt ctttaagacc atcaattcct aagggtgaaa caaagttgca attgaagtac 960
tccaatttga aggaaatatt accagttggt ttcttggata gaaccagttg cgttggtaaa 1020
gtcataggtt gggccccaca agttgctgtc ttgggtcatg aatccgttgg tggtttctta 1080
agtcactgtg gttggaattc cactttggaa agtgtctggt gcggtgtacc agttgccaca 1140
tggcctatgt atggtgaaca acaattgaac gctttcgaaa tggttaagga attgggtata 1200
gcagttgaaa tcgaagtcga ttacaaaaag gactacttca acatgaagaa cgatttcatc 1260
gttagagcag aagaaatcga aacaaaaatt aaaaagttga tgatggacga aaacaactct 1320
gaaataagaa agaaagttaa ggaaatgaaa gaaaagtcca gagccgctat gagtgaaaat 1380
ggttccagtt acaactcatt ggctaaatta ttcgaagaaa ttatgtaa 1428
<210> 2
<211> 2142
<212> DNA
<213> Saccharomyces cerevisiae (Saccharomyces cerevisiae)
<400> 2
atgtcatttc aaattgaaac ggttcccacc aaaccatatg aagaccaaaa gcctggtacc 60
tctggtttgc gtaagaagac aaaggtgttt aaagacgaac ctaactacac agaaaatttc 120
attcaatcga tcatggaagc tattccagag ggttctaaag gtgccactct tgttgtcggt 180
ggtgatgggc gttactacaa tgatgtcatt cttcataaga ttgccgctat cggtgctgcc 240
aacggtatta aaaagttagt tattggccag catggtcttc tgtctacgcc agccgcttct 300
cacatcatga gaacctacga ggaaaaatgt actggtggta ttatcttaac cgcctcacat 360
aatccaggtg gtccagaaaa tgacatgggt attaagtata acttatccaa tgggggtcct 420
gctcctgaat ccgtcacaaa tgctatttgg gagatttcca aaaagcttac cagctataag 480
attatcaaag acttcccaga actagacttg ggtacgatag gcaagaacaa gaaatacggt 540
ccattactcg ttgacattat cgatattaca aaagattatg tcaacttctt gaaggaaatc 600
ttcgatttcg acttaatcaa gaaattcatc gataatcaac gttctactaa gaattggaag 660
ttactgtttg acagtatgaa cggtgtaact ggaccatacg gtaaggctat tttcgttgat 720
gaatttggtt taccggcgga tgaggtttta caaaactggc atccttctcc ggattttggt 780
ggtatgcatc cagatccaaa cttaacttat gccagttcgt tagtgaaaag agtagatcgt 840
gaaaagattg agtttggtgc tgcatccgat ggtgatggtg atagaaatat gatttacggt 900
tacggcccat ctttcgtttc tccaggtgac tccgtcgcaa ttattgccga atatgcagct 960
gaaatcccat atttcgccaa gcaaggtata tatggtctgg cccgttcatt ccctacctca 1020
ggagccatag accgtgttgc caaggcccat ggtctaaact gttatgaggt cccaactggc 1080
tggaaatttt tctgtgcttt gttcgacgct aaaaaattat ctatttgtgg tgaagaatcg 1140
tttggtactg gttccaacca cgtaagggaa aaggacggtg tttgggccat tatggcgtgg 1200
ttgaacatct tggccattta caacaagcat catccggaga acgaagcttc tattaagacg 1260
atacagaatg aattctgggc aaagtacggc cgtactttct tcactcgtta tgattttgaa 1320
aaagttgaaa cagaaaaagc taacaagatt gtcgatcaat tgagagcata tgttaccaaa 1380
tcgggtgttg ttaattccgc cttcccagcc gatgagtctc ttaaggtcac cgattgtggt 1440
gatttttcat acacagattt ggacggttct gtttctgacc atcaaggttt atatgtcaag 1500
ctttccaatg gtgcaagatt cgttctaaga ttgtcaggta caggttcttc aggtgctacc 1560
attagattgt acattgaaaa atactgcgat gataaatcac aataccaaaa gacagctgaa 1620
gaatacttga agccggtgaa cagtttattc ctggcatcaa ttattaactc ggtcatcaag 1680
ttcttgaact ttaaacaagt tttaggaact gaagaaccaa cggttcgtac ttaaaacgaa 1740
tgatttacta atggcttaat gattttcacc tttttcaatg aatattaacg gtaaagaaga 1800
aaatttcaat tttttgaaca catactttat atacttaata gatccatatt tcgacatatt 1860
agcaaacgat tgcataggtt tctgagtctt tttttttttt ttttcataag gaggagaata 1920
ttttggttaa tcgcagtatc ttcttcataa gtgctgtttc taattatatc taattcacga 1980
atttttccca aattagcgta tccccgaatt cagattacct accccgagtt ttttattata 2040
tttccctcga gaaatctgta aaatggccgt catccttaga tttataaata aaatgataaa 2100
attcagccaa agtgctccta aaccagaatt gttcaactgg gt 2142
<210> 3
<211> 1881
<212> DNA
<213> Saccharomyces cerevisiae (Saccharomyces cerevisiae)
<400> 3
atgtccacta agaagcacac caaaacacat tccacttatg cattcgagag caacacaaac 60
agcgttgctg cctcacaaat gagaaacgcc ttaaacaagt tggcggactc tagtaaactt 120
gacgatgctg ctcgcgctaa gtttgagaac gaactggatt cgtttttcac gcttttcagg 180
agatatttgg tagagaagtc ttctagaacc accttggaat gggacaagat caagtctccc 240
aacccggatg aagtggttaa gtatgaaatt atttctcagc agcccgagaa tgtctcaaac 300
ctttccaaat tggctgtttt gaagttgaac ggtgggctgg gtacctccat gggctgcgtt 360
ggccctaaat ctgttattga agtgagagag ggaaacacct ttttggattt gtctgttcgt 420
caaattgaat acttgaacag acagtacgat agcgacgtgc cattgttatt gatgaattct 480
ttcaacactg acaaggatac ggaacacttg attaagaagt attccgctaa cagaatcaga 540
atcagatctt tcaatcaatc caggttccca agagtctaca aggattcttt attgcctgtc 600
cccaccgaat acgattctcc actggatgct tggtatccac caggtcacgg tgatttgttt 660
gaatctttac acgtatctgg tgaactggat gccttaattg cccaaggaag agaaatatta 720
tttgtttcta acggtgacaa cttgggtgct accgtcgact taaaaatttt aaaccacatg 780
atcgagactg gtgccgaata tataatggaa ttgactgata agaccagagc cgatgttaaa 840
ggtggtactt tgatttctta cgatggtcaa gtccgtttat tggaagtcgc ccaagttcca 900
aaagaacaca ttgacgaatt caaaaatatc agaaagttta ccaacttcaa cacgaataac 960
ttatggatca atctgaaagc agtaaagagg ttgatcgaat cgagcaattt ggagatggaa 1020
atcattccaa accaaaaaac tataacaaga gacggtcatg aaattaatgt cttacaatta 1080
gaaaccgctt gtggtgctgc tatcaggcat tttgatggtg ctcacggtgt tgtcgttcca 1140
agatcaagat tcttgcctgt caagacctgt tccgatttgt tgctggttaa atcagatcta 1200
ttccgtctgg aacacggttc tttgaagtta gacccatccc gttttggtcc aaacccatta 1260
atcaagttgg gctcgcattt caaaaaggtt tctggtttta acgcaagaat ccctcacatc 1320
ccaaaaatcg tcgagctaga tcatttgacc atcactggta acgtcttttt aggtaaagat 1380
gtcactttga ggggtactgt catcatcgtt tgctccgacg gtcataaaat cgatattcca 1440
aacggctcca tattggaaaa tgttgtcgtt actggtaatt tgcaaatctt ggaacattga 1500
aggtgcggct tgcaatccct tttttacttt caattctccg ttaggttatt tattctacta 1560
cacgcagttt ttttttttca atgggttata tatctctaat atatacacat ttatatgttt 1620
agacttatac agaagcaaaa aaaaatgcaa aagaagctta gtgttcataa ttcttcactc 1680
acgtcatgtt atatatttgt taagcgtagc ttcagtatat atagagattt tcctttggcg 1740
gggtaagggt ctgtgaactt tagggaaata gaataaacgt aagttaaagg tgacaagctc 1800
ggatcgtcat ctttcaatta tcaccccaaa agatattgta aaaaagcaag ttcaatctcg 1860
tttgttacat ttgtcccgta t 1881
<210> 4
<211> 1035
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 4
atgactggtg aacttttggc ctctggtgag ggttgcagtt ctgacatcgt cttgaccaac 60
tctaccgccg ccccttcttc tggtttggaa aggagggcca acatcaccga ccatatcagt 120
tgcgagcact tcaccgcctt gcagagattt agatacggat ttagagagta cttcgccgag 180
ttcatcggaa ccatgatcct tgtcatgttc ggagacggtg tcgtcgctca atacaccttg 240
tctaagggat ctgccggtaa ttacaccacc atcgccttct cttgggctac tgccgtcttc 300
cttggatact gctgctctgc tggtatctct ggtgcccact tgaatccagc tgttaccttg 360
tctgccgcca ctttcagaca gttcccatgg aggaaggtct tgggttacat gttcgcccaa 420
ggtttgggtg gttacatcgg agcccttatc gtctacggta cttacatcca atctatcaac 480
aactactctg gtgaaggtca aaggatcgcc gttggagaca agagtaccgg aggtatcttc 540
tgcaccttcc cacagccata cttgaacacc aagggacaag ttaccagtga acttgtcacc 600
accgctttgc ttcagttcgg tatcttttct atgaccgatc cacataacgc cccacttggt 660
aacttcttcc catttggttt gtggattttg atctatggac ttggaaccag tttcggttac 720
cagaccggat acgccatcaa cttcgccaga gactttaccc caaggttggc tgctttgacc 780
gtcggttatg gtaccgagat gttcaccgcc tactaccact acttctgggt ccctatgatc 840
atccctttca tcggagcctt gcttggtgcc ttcatttacg acttcttcat ttaccaaggt 900
ttggactctc ctttgaacca gccaaagttc ggatacgaca ttagaaaaaa aaaaatccaa 960
gaattcgaat ttaaattgga aaattataaa cttgacttca atccagaagc ctctcacgga 1020
aggcttgatg cttaa 1035
<210> 5
<211> 1143
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 5
atgaaaggac ttttgtatta tggtaccaac gacattaggt actctgagac cgtcccagag 60
ccagaaatca agaaccctaa cgacgtcaaa attaaggtca gttactgcgg tatttgcggt 120
accgacttga aggagttcac ctacagtggt ggtccagttt tcttccctaa gcaaggtacc 180
aaagataaaa tcagtggata tgagttgcca ctttgccccg gtcacgagtt ctctggtacc 240
gttgttgagg tcggttctgg tgtcacctct gttaaacccg gtgatagagt tgctgtcgaa 300
gctacctctc actgctctga tagaagtagg tacaaggaca ccgttgccca agatttgggt 360
ttgtgcatgg cttgtcaaag tggttctcct aactgctgcg cctctttgag tttctgcggt 420
ttgggtggag cttctggtgg tttcgccgag tatgtcgttt acggtgagga ccacatggtc 480
aagttgccag acagtatccc agatgacatc ggtgccttgg tcgagccaat cagtgttgct 540
tggcatgctg tcgagagggc tagatttcag cccggtcaaa ccgccttggt tttgggaggt 600
ggtcctatcg gtttggctac catccttgcc cttcaaggtc accatgctgg taagatcgtc 660
tgcagtgaac cagctttgat cagaaggcaa ttcgccaagg agttgggtgc tgaagtcttc 720
gaccctagta cttgtgatga cgctaatgcc gtcttgaagg ctatggtccc agaaaacgaa 780
ggattccacg ccgccttcga ttgttctgga gtccctcaga ccttcaccac cagtatcgtt 840
gccactggtc catctggtat cgccgttaac gttgccgttt ggggagacca cccaatcggt 900
ttcatgccaa tgtctttgac ctaccaagag aagtacgcca ccggtagtat gtgctatacc 960
gtcaaggact tccaagaagt tgtcaaggcc ttggaggacg gtcttatctc tttggataag 1020
gctagaaaga tgatcaccgg taaggttcac ttgaaggatg gtgtcgagaa gggttttaaa 1080
caacttattg aacacaaaga aaataatgtt aaaattttgg ttaccccaaa cgaagttagt 1140
taa 1143
<210> 6
<211> 2025
<212> DNA
<213> Saccharomyces cerevisiae (Saccharomyces cerevisiae)
<400> 6
atgtccgcta aatcgtttga agtcacagat ccagtcaatt caagtctcaa agggtttgcc 60
cttgctaacc cctccattac gctggtccct gaagaaaaaa ttctcttcag aaagaccgat 120
tccgacaaga tcgcattaat ttctggtggt ggtagtggac atgaacctac acacgccggt 180
ttcattggta agggtatgtt gagtggcgcc gtggttggcg aaatttttgc atccccttca 240
acaaaacaga ttttaaatgc aatccgttta gtcaatgaaa atgcgtctgg cgttttattg 300
attgtgaaga actacacagg tgatgttttg cattttggtc tgtccgctga gagagcaaga 360
gccttgggta ttaactgccg cgttgctgtc ataggtgatg atgttgcagt tggcagagaa 420
aagggtggta tggttggtag aagagcattg gcaggtaccg ttttggttca taagattgta 480
ggtgccttcg cagaagaata ttctagtaag tatggcttag acggtacagc taaagtggct 540
aaaattatca acgacaattt ggtgaccatt ggatcttctt tagaccattg taaagttcct 600
ggcaggaaat tcgaaagtga attaaacgaa aaacaaatgg aattgggtat gggtattcat 660
aacgaacctg gtgtgaaagt tttagaccct attccttcta ccgaagactt gatctccaag 720
tatatgctac caaaactatt ggatccaaac gataaggata gagcttttgt aaagtttgat 780
gaagatgatg aagttgtctt gttagttaac aatctcggcg gtgtttctaa ttttgttatt 840
agttctatca cttccaaaac tacggatttc ttaaaggaaa attacaacat aaccccggtt 900
caaacaattg ctggcacatt gatgacctcc ttcaatggta atgggttcag tatcacatta 960
ctaaacgcca ctaaggctac aaaggctttg caatctgatt ttgaggagat caaatcagta 1020
ctagacttgt tgaacgcatt tacgaacgca ccgggctggc caattgcaga ttttgaaaag 1080
acttctgccc catctgttaa cgatgacttg ttacataatg aagtaacagc aaaggccgtc 1140
ggtacctatg actttgacaa gtttgctgag tggatgaaga gtggtgctga acaagttatc 1200
aagagcgaac cgcacattac ggaactagac aatcaagttg gtgatggtga ttgtggttac 1260
actttagtgg caggagttaa aggcatcacc gaaaaccttg acaagctgtc gaaggactca 1320
ttatctcagg cggttgccca aatttcagat ttcattgaag gctcaatggg aggtacttct 1380
ggtggtttat attctattct tttgtcgggt ttttcacacg gattaattca ggtttgtaaa 1440
tcaaaggatg aacccgtcac taaggaaatt gtggctaagt cactcggaat tgcattggat 1500
actttataca aatatacaaa ggcaaggaag ggatcatcca ccatgattga tgctttagaa 1560
ccattcgtta aagaatttac tgcatctaag gatttcaata aggcggtaaa agctgcagag 1620
gaaggtgcta aatccactgc tacattcgag gccaaatttg gcagagcttc gtatgtcggc 1680
gattcatctc aagtagaaga tcctggtgca gtaggcctat gtgagttttt gaagggggtt 1740
caaagcgcct tgtaagtact tggctcacga atacatatca agatacttat gatatatata 1800
tatagaaaaa gcttactttt cttggagtta ttgttattat catcgcgaag aacgattgta 1860
taacccggtt caacgcgaaa cgaatcgtta aactggtgaa atgttaacgc gagtgtcaga 1920
gatatacata gtatgagagt agctagatgt tgaatcggtg gtaagaacaa gaaggaaata 1980
ccgttaacaa gtgaaggaac aatctagtat tgttgaacaa gaatt 2025
<210> 7
<211> 1302
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 7
atgactggta agaccggtca tattgatggt ttgaactcca gaatcgaaaa gatgagagat 60
ttggatccag ctcaaagatt ggttagagtt gctgaagctg ctggtttgga accagaagct 120
atttctgctt tggctggtaa tggtgctttg ccattgtctt tggctaatgg tatgatcgaa 180
aacgtcatcg gtaagttcga attgccattg ggtgttgcta ctaatttcac tgttaacggt 240
agagactact tgattccaat ggctgttgaa gaaccatctg ttgttgctgc tgcttcttat 300
atggctagaa ttgctagaga aaacggtggt tttactgctc atggtactgc tccattgatg 360
agagcacaaa ttcaagttgt tggtttgggt gatccagaag gtgctagaca aagattattg 420
gctcataagg ctgcttttat ggaagctgca gatgctgttg atccagtttt ggttggttta 480
ggtggtggtt gtagagatat cgaagttcac gtttttagag atactccagt tggtgccatg 540
gttgtcttgc atttgatagt tgatgttaga gatgctatgg gtgctaacac tgttaatacc 600
atggctgaaa gattggctcc agaagttgaa agaattgctg gtggtactgt tagattgagg 660
atcttgtcta atttggccga tttgagatta gttagagcca gagttgaatt ggctcctgaa 720
actttgacta ctcaaggtta tgatggtgct gatgttgcta gaggtatggt tgaagcttgt 780
gctttagcta tcgttgatcc atatagagct gctactcata acaagggtat tatgaacggt 840
atcgatccag ttgttgttgc cactggtaat gattggagag ctattgaagc tggtgcacat 900
gcttatgctg ctagaactgg tcattatact tcattgacca gatgggaatt agccaacgat 960
ggtagattgg ttggtactat tgaattgcct ttggccttgg gtttagtagg tggtgctaca 1020
aaaactcatc caactgctag agctgcattg gctttgatgc aagttgaaac tgctactgaa 1080
ttggcacaag ttactgctgc tgtaggtttg gctcaaaaca tggctgctat tagagctttg 1140
gctactgaag gtattcaaag gggtcacatg actttacatg ctagaaacat tgctattatg 1200
gctggtgcta ctggtgcaga tattgataga gttactagag ttattgtcga agccggtgat 1260
gtttctgttg caagagctaa acaagttttg gagaacacct aa 1302
<210> 8
<211> 25
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 8
cttgatggta ggataataat aattc 25
<210> 9
<211> 36
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 9
gtgtggggga tcactgtaca taaattcagg gatttg 36
<210> 10
<211> 38
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 10
cctgaattta tgtacagtga tcccccacac accatagc 38
<210> 11
<211> 47
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 11
caatttgaaa tgacattttg taattaaaac ttagattaga ttgctat 47
<210> 12
<211> 37
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 12
tttaattaca aaatgtcatt tcaaattgaa acggttc 37
<210> 13
<211> 34
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 13
attcaacgct agtataccca gttgaacaat tctg 34
<210> 14
<211> 38
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 14
attgttcaac tgggtatact agcgttgaat gttagcgt 38
<210> 15
<211> 35
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 15
cttcttagtg gacattttgt ttgtttatgt gtgtt 35
<210> 16
<211> 32
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 16
taaacaaaca aaatgtccac taagaagcac ac 32
<210> 17
<211> 37
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 17
ataatatctg tgcgtatacg ggacaaatgt aacaaac 37
<210> 18
<211> 35
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 18
acatttgtcc cgtatacgca cagatattat aacat 35
<210> 19
<211> 47
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 19
caattctgac ttcattgttt tatatttgtt gtaaaaagta gataatt 47
<210> 20
<211> 43
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 20
aacaaatata aaacaatgaa gtcagaattg attttcttgc cag 43
<210> 21
<211> 46
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 21
cttatttttt ttataacttt acataatttc ttcgaataat ttagcc 46
<210> 22
<211> 36
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 22
cgaagaaatt atgtaaagtt ataaaaaaaa taagtg 36
<210> 23
<211> 32
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 23
tgttctagaa tccattcggc atgccggtag ag 32
<210> 24
<211> 43
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 24
ctaccggcat gccgaatgga ttctagaaca gttggtatat tag 43
<210> 25
<211> 34
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 25
gtacccatct gagtcgatct tatgtatgaa attc 34
<210> 26
<211> 36
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 26
ttcatacata agatcgactc agatgggtac gttgtg 36
<210> 27
<211> 28
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 27
agcatctagc acatactcga tttttacc 28
<210> 28
<211> 22
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 28
atgtttccct ctctcttccg ac 22
<210> 29
<211> 40
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 29
taacattcaa cgctagtatc aataccgtag ttaacaattg 40
<210> 30
<211> 36
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 30
gttaactacg gtattgatac tagcgttgaa tgttag 36
<210> 31
<211> 31
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 31
gttcaccagt cattttgttt gtttatgtgt g 31
<210> 32
<211> 32
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 32
ataaacaaac aaaatgactg gtgaactttt gg 32
<210> 33
<211> 31
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 33
ctaattacat gattaagcat caagccttcc g 31
<210> 34
<211> 36
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 34
aggcttgatg cttaatcatg taattagtta tgtcac 36
<210> 35
<211> 34
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 35
ataatatctg tgcgtgcaaa ttaaagcctt cgag 34
<210> 36
<211> 33
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 36
aaggctttaa tttgcacgca cagatattat aac 33
<210> 37
<211> 38
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 37
aagtcctttc attgttttat atttgttgta aaaagtag 38
<210> 38
<211> 39
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 38
aaatataaaa caatgaaagg acttttgtat tatggtacc 39
<210> 39
<211> 29
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 39
gtaacacgct attaactaac ttcgtttgg 29
<210> 40
<211> 29
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 40
gaagttagtt aatagcgtgt tacgcaccc 29
<210> 41
<211> 28
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 41
gtgtggggga tcactgatgt tttagttc 28
<210> 42
<211> 28
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 42
tcgaactaaa acatcagtga tcccccac 28
<210> 43
<211> 33
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 43
cgatttagcg gacattttgt aattaaaact tag 33
<210> 44
<211> 34
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 44
agttttaatt acaaaatgtc cgctaaatcg tttg 34
<210> 45
<211> 34
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 45
ctgggcctcc atgtcaattc ttgttcaaca atac 34
<210> 46
<211> 35
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 46
tgttgaacaa gaattgacat ggaggcccag aatac 35
<210> 47
<211> 37
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 47
ataggccact aaatgcagta tagcgaccag cattcac 37
<210> 48
<211> 37
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 48
ctggtcgcta tactgcattt agtggcctat tcgctcc 37
<210> 49
<211> 28
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 49
gttgttattg gaagttttct agaacctg 28
<210> 50
<211> 21
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 50
gccatcctca tgaaaactgt g 21
<210> 51
<211> 40
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 51
aggagtagaa acattgacct tttcgaattc ttctggattg 40
<210> 52
<211> 40
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 52
gaagaattcg aaaaggtcaa tgtttctact ccttttttac 40
<210> 53
<211> 35
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 53
cattcaacgc tagtatgcaa attaaagcct tcgag 35
<210> 54
<211> 40
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 54
gaaggcttta atttgcatac tagcgttgaa tgttagcgtc 40
<210> 55
<211> 40
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 55
ggtcttacca gtcattttgt ttgtttatgt gtgtttattc 40
<210> 56
<211> 43
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 56
cacacataaa caaacaaaat gactggtaag accggtcata ttg 43
<210> 57
<211> 33
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 57
tcataagaaa ttcgcttagg tgttctccaa aac 33
<210> 58
<211> 36
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 58
ttggagaaca cctaagcgaa tttcttatga tttatg 36
<210> 59
<211> 38
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 59
cttggtaaca ccagatgaga tcatgataca taaaagcg 38
<210> 60
<211> 46
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 60
cttttatgta tcatgatctc atctggtgtt accaaggact taattc 46
<210> 61
<211> 27
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 61
tcaacgatgg aattccaaca gctttac 27

Claims (4)

1. The construction method of the recombinant saccharomyces cerevisiae for producing the ginsenoside CK by metabolizing glycerol is characterized by comprising the following steps:
(1) Introducing a glycosyltransferase UGT1 gene expression cassette, a PGM2 gene expression cassette of glucose phosphomutase and a UDP glucose pyrophosphorylase UGP1 gene expression cassette into Saccharomyces cerevisiae capable of synthesizing protopanaxadiol to obtain recombinant bacteria 1;
the nucleotide sequence of the glycosyltransferase UGT1 gene is shown in SEQ ID NO. 1;
the nucleotide sequence of the glucose phosphomutase PGM2 gene is shown in SEQ ID NO. 2;
the nucleotide sequence of the UDP-glucose pyrophosphorylase UGP1 gene is shown in SEQ ID NO. 3;
(2) Introducing a glycerol transporter CjFPS1 gene expression cassette, a glycerol dehydrogenase OpGDH gene expression cassette and a dihydroxyacetone kinase DAK1 gene expression cassette into recombinant bacterium 1 to obtain recombinant bacterium 2;
the nucleotide sequence of the glycerol transporter CjFPS1 gene is shown in SEQ ID NO. 4;
the nucleotide sequence of the glycerol dehydrogenase OpGDH gene is shown in SEQ ID NO. 5;
the nucleotide sequence of the dihydroxyacetone kinase DAK1 gene is shown in SEQ ID NO. 6.
2. The construction method of the recombinant saccharomyces cerevisiae for producing the ginsenoside CK by metabolizing glycerol is characterized by comprising the following steps:
(1) Introducing a glycosyltransferase UGT1 gene expression cassette, a PGM2 gene expression cassette of glucose phosphomutase and a UDP glucose pyrophosphorylase UGP1 gene expression cassette into Saccharomyces cerevisiae capable of synthesizing protopanaxadiol to obtain recombinant bacteria 1;
the nucleotide sequence of the glycosyltransferase UGT1 gene is shown in SEQ ID NO. 1;
the nucleotide sequence of the glucose phosphomutase PGM2 gene is shown in SEQ ID NO. 2;
the nucleotide sequence of the UDP-glucose pyrophosphorylase UGP1 gene is shown in SEQ ID NO. 3;
(2) Introducing a glycerol transporter CjFPS1 gene expression cassette, a glycerol dehydrogenase OpGDH gene expression cassette and a dihydroxyacetone kinase DAK1 gene expression cassette into recombinant bacterium 1 to obtain recombinant bacterium 2;
the nucleotide sequence of the glycerol transporter CjFPS1 gene is shown in SEQ ID NO. 4;
the nucleotide sequence of the glycerol dehydrogenase OpGDH gene is shown in SEQ ID NO. 5;
the nucleotide sequence of the dihydroxyacetone kinase DAK1 gene is shown in SEQ ID NO. 6;
(3) Introducing a 3-hydroxy-3-methylglutaryl-CoA reductase HMGr gene expression cassette into the recombinant bacterium 2 to obtain a recombinant bacterium 3;
the nucleotide sequence of the HMGr gene of the 3-hydroxy-3-methylglutaryl-CoA reductase is shown in SEQ ID NO. 7.
3. Recombinant saccharomyces cerevisiae constructed by the method of claim 1 or 2 for metabolizing glycerol to produce ginsenoside CK.
4. Use of the recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol according to claim 3 for producing ginsenoside CK.
CN202210519519.5A 2022-05-13 2022-05-13 Recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol and construction method Active CN114807211B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210519519.5A CN114807211B (en) 2022-05-13 2022-05-13 Recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol and construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210519519.5A CN114807211B (en) 2022-05-13 2022-05-13 Recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol and construction method

Publications (2)

Publication Number Publication Date
CN114807211A CN114807211A (en) 2022-07-29
CN114807211B true CN114807211B (en) 2023-06-27

Family

ID=82513239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210519519.5A Active CN114807211B (en) 2022-05-13 2022-05-13 Recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol and construction method

Country Status (1)

Country Link
CN (1) CN114807211B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104611303A (en) * 2014-12-04 2015-05-13 天津大学 Fusion protein capable of improving dammarenediol conversion efficiency, construction method and application
EP3399041A1 (en) * 2017-05-02 2018-11-07 Intelligent Synthetic Biology Center Enhancement of ginsenoside production by improvement of yeast cell organelle
WO2018210349A1 (en) * 2017-05-19 2018-11-22 中国科学院上海生命科学研究院 Group of udp-glycosyltransferase for catalyzing carbohydrate chain elongation, and application thereof
CN108949601A (en) * 2018-07-17 2018-12-07 天津大学 Utilize the recombinant Saccharomyces cerevisiae bacterium and construction method of xylose production dammarendiol and protopanoxadiol
CN114150012A (en) * 2021-11-17 2022-03-08 天津大学 Recombinant saccharomyces cerevisiae for heterogeneously synthesizing ginsenoside F2 and construction method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104611303A (en) * 2014-12-04 2015-05-13 天津大学 Fusion protein capable of improving dammarenediol conversion efficiency, construction method and application
EP3399041A1 (en) * 2017-05-02 2018-11-07 Intelligent Synthetic Biology Center Enhancement of ginsenoside production by improvement of yeast cell organelle
WO2018210349A1 (en) * 2017-05-19 2018-11-22 中国科学院上海生命科学研究院 Group of udp-glycosyltransferase for catalyzing carbohydrate chain elongation, and application thereof
CN108949601A (en) * 2018-07-17 2018-12-07 天津大学 Utilize the recombinant Saccharomyces cerevisiae bacterium and construction method of xylose production dammarendiol and protopanoxadiol
CN114150012A (en) * 2021-11-17 2022-03-08 天津大学 Recombinant saccharomyces cerevisiae for heterogeneously synthesizing ginsenoside F2 and construction method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A modular metabolic engineering appoach for the production of 1,2-propanediol from glycerol by Saccharomyces cerevisiae;Zia-ul Islam et al.;Metabolic Engineering;第44卷;223-235 *
CRISPRi--Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in Saccharomyces cerevisiae;Soo-Hwan Lim et al.;International Journal of Molecular Sciences;第22卷(第21期);1-13 *
Mathias Klein et al..Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocessses.Metabolic Engineering.2016,第38卷464-472. *
Promotion of compound K production in Saccharomyces cerevisiae by glycerol;Weihua Nan et al.;Microbial Cell Factories;1-7 *

Also Published As

Publication number Publication date
CN114807211A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
CN114150012B (en) Recombinant saccharomyces cerevisiae for heterogeneously synthesizing ginsenoside F2 and construction method thereof
CN112813013B (en) Recombinant escherichia coli for producing hydroxytyrosol and application thereof
CN113755354B (en) Recombinant saccharomyces cerevisiae for producing gastrodin by utilizing glucose and application thereof
CN106566815A (en) Saccharomyces cerevisiae engineered strain used for producing glycyrrhetinic acid and precursor thereof and construction method of saccharomyces cerevisiae engineered strain
CN116987603A (en) Recombinant saccharomyces cerevisiae strain for high yield of cannabigerolic acid as well as construction method and application thereof
CN114807211B (en) Recombinant saccharomyces cerevisiae for producing ginsenoside CK by metabolizing glycerol and construction method
CN114045270B (en) Method for producing ginsenoside Rg1 and special engineering bacterium thereof
CN105647958B (en) Saccharomyces cerevisiae engineering bacterium for producing 2-phenylethyl alcohol and preparation method and application thereof
CN107880134B (en) Method for enzymatic synthesis of kaempferol
CN115786389A (en) Saccharomyces cerevisiae engineering bacterium for high-yield santalol as well as construction method and application thereof
CN113817757B (en) Recombinant yeast engineering strain for producing cherry glycoside and application thereof
CN113444737B (en) Cytochrome P450 enzyme and application thereof in synthesis of ganoderma lucidum triterpenoid
CN108690822B (en) Genetically engineered bacterium for producing protopanoxadiol and method thereof
CN114774447B (en) Method for improving heat resistance of yarrowia lipolytica and method for synthesizing mannitol by fermentation
CN114875003B (en) Mutant of short-chain dehydrogenase, coding gene obtaining method and application of mutant
CN113278597B (en) Novel short side chain fatty acid CoA ligase and application thereof in preparation of patchoulenone
CN114438109B (en) Osmanthus gene OfTPS13.2 and application thereof
CN114989996B (en) Genetically engineered bacterium for producing methyl parahydroxybenzoate and application thereof
CN115772507B (en) Application of cytochrome P450 enzyme in synthesis of ganoderma lucidum triterpene
CN116396876B (en) Saccharomyces cerevisiae engineering bacteria for producing ginsenoside Rd and construction method thereof
CN113215064B (en) Slime bacterium for producing meishadazole compounds and application thereof
CN116064267B (en) Saccharomyces cerevisiae engineering bacteria for producing ginsenoside Rg3 and construction method thereof
CN111718948B (en) Gene and application thereof in production of mannich
CN115806956A (en) l-menthol-O-beta-galactosyl enzyme, coding gene, engineering bacterium and application thereof
CN116396876A (en) Saccharomyces cerevisiae engineering bacteria for producing ginsenoside Rd and construction method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant