CN108675485A - 超重力强化萃取-催化臭氧化处理高浓度硝基苯废水的方法及装置 - Google Patents

超重力强化萃取-催化臭氧化处理高浓度硝基苯废水的方法及装置 Download PDF

Info

Publication number
CN108675485A
CN108675485A CN201810348756.3A CN201810348756A CN108675485A CN 108675485 A CN108675485 A CN 108675485A CN 201810348756 A CN201810348756 A CN 201810348756A CN 108675485 A CN108675485 A CN 108675485A
Authority
CN
China
Prior art keywords
liquid
waste water
nitrobenzene
catalytic ozonation
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810348756.3A
Other languages
English (en)
Inventor
焦纬洲
刘有智
杨鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201810348756.3A priority Critical patent/CN108675485A/zh
Publication of CN108675485A publication Critical patent/CN108675485A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明属硝基苯废水处理的技术领域,为解决现有处理硝基苯废水的方法存在的不足,提出一种超重力强化萃取‑催化臭氧化处理高浓度硝基苯废水的方法及装置。超重力环境下用萃取法处理高浓度硝基苯废水,使高浓度硝基苯废水中硝基苯浓度降低,采用O3/Fenton法进一步处理达到排放标准;高浓度硝基苯废水中硝基苯浓度为1000~2000mg/L,萃取剂为环己烷,相比V环己烷:V废水为1:2~2:1,pH5~9,温度25℃,液体流量40~60L/h。处理效率提高了25%‑30%,时间缩短了20%‑40%。工艺流程简单,操作方便,减少水处理成本,可应用于各种有机工业废水如炸药废水、含酚废水、染料废水、医药废水等。

Description

超重力强化萃取-催化臭氧化处理高浓度硝基苯废水的方法 及装置
技术领域
本发明属于硝基苯废水处理的技术领域,具体涉及一种处理高浓度硝基苯废水的工艺方法,采用超重力技术、萃取和催化臭氧化技术的耦合处理共同作用。
背景技术
硝基苯常用作有机合成中间体,广泛应用于化工、燃料、材料、焦化等行业中。但硝基苯中的取代基硝基为吸电子基团,化学性质比较稳定,不易被生物降解,可稳定存在于水体中。一旦进入环境中,能够引起动物神经系统异常症状、贫血、肝脏疾病等,现已被我国列入68种重点污染物之一。
目前国内处理该类废水的方法主要有物理法、化学法和生物法。物理法处理含硝基苯废水时,硝基苯只是从一相转移到另一相,硝基苯并未发生改变。对于初始浓度较高的含硝基苯废水,利用物理法来处理,可以达到降低废水中硝基苯的浓度,又可以回收部分硝基苯,实现资源利用最大化。其中,萃取法具有能耗低、处理水量大、设备简单、操作安全等优点,在含苯环化合物的回收利用上使用广泛,但对于萃取法而言,萃取剂选择不合适,易导致二次污染;在传统萃取塔或者搅拌震荡中进行萃取,存在液滴直径大,运动速度较慢,湍动程度小,液液萃取过程中传质推动力小,传质系数低,萃取级效率低等问题。化学方法是根据化学反应过程电子得失情况将难降解有机物转化为较易降解物质。其中,O3/Fenton作为一种高级氧化技术因其氧化能力强等优点被应用于饮用水和污水的处理中。臭氧降解废水的速率控制步骤为臭氧在气液界面的传质,然而臭氧在水中溶解度不高,利用率低,这限制着该项技术的应用。超重力技术以旋转填料床(rotating packed bed, RPB)为载体,在地球上实现了超重力环境。液体被剪切成液膜、液丝、液滴,增大了相际表面,同时气液相际表面得到快速更新,极大地强化了传质过程。郭亮等对超重力场中臭氧传质性能进行了研究,结果表明,臭氧的溶解速率明显提高,旋转填料床设备中KLa值是传统曝气反应装置中KLa值的2.5倍。同时,对于高浓度硝基苯废水而言,各种方法的单独使用存在处理效果差或者处理费用高等问题。
O3/Fenton机理:
控制步骤
k=0.09L/(mol·s)
k=3.9×109L/(mol·s)。
发明内容
本发明为解决现有处理硝基苯废水的方法存在的上述不足,提出了一种超重力强化萃取-O3/Fenton法处理高浓度硝基苯废水的工艺及装置。
本发明采用如下的技术方案实现:
处理高浓度硝基苯废水的工艺方法,其步骤如下:使用萃取法将高浓度硝基苯废水降低到一定浓度,然后采用O3/Fenton法进一步处理达到排放标准。废水中硝基苯浓度为1000mg/L~2000mg/L,采用的萃取剂为环己烷,相比(V环己烷:V废水)为1:2~2:1,pH为5~9,温度为25℃,液体流量为40L/h~60L/h。
处理高浓度硝基苯废水的工艺方法的装置,包括液液传质设备,液液传质设备上设有进液口、液体出口、喷嘴、电机、壳体、转子。液体储槽中的液体在泵的作用下经过液体流量计与进液口相连,液体出口与分液器相连。分液器设有轻液出口和重液出口。
液液传质设备为撞击流-旋转填料床(IS-RPB),转子内为不锈钢丝网填料,直径为0.275mm,内径和外径分别为60mm和160mm,轴向高度60mm,转速为300~500r/min。喷嘴(6.3)直径为1.5mm,撞击初速为6.3m/s~9.45m/s。
萃取后废水中硝基苯浓度为62.49mg/L~125.85mg/L,COD为120.96mg/L~227.51mg/L。
O3/Fenton法处理的硝基苯浓度为62.49mg/L~125.85mg/L,Fe2+总投加量为0.5mmol/L~1.5mmol/L,Fenton试剂投加次数为1~3,H2O2与Fe2+的摩尔比为3:1~7:1,臭氧浓度为28mg/L~44mg/L,pH为2.5~6.5,温度为25℃,液体流量为80L/h~160L/h,气体流量为30L/h~50L/h。
处理硝基苯废水的工艺方法的装置,包括气液传质设备,气液传质设备上设有转子、液体进口、气体进口、液体出口、气体出口、液体分布器、电机。萃余相储槽中的液体在泵的作用下经过液体流量计与液体进口相连,通过液体分布器进入转子中。纯氧自钢瓶经过臭氧发生器,通过气体流量计后与气体进口相连,气体出口与KI溶液储槽相连。
气液传质设备为旋转填料床(RPB),转子内为不锈钢丝网填料,直径为0.275mm,内径和外径分别为60mm和160mm,轴向高度60mm,超重力因子β为60~100。
RPB-O3/Fenton法处理后废水中硝基苯浓度为0.26mg/L~10.9mg/L,COD为25.64mg/L~63.36mg/L。
本发明采用超重力技术强化萃取-O3/Fenton法共同处理高浓度硝基苯废水,使之在短时间内得到较好的处理效果。与现有技术相比,处理效率提高了25%-30%,时间缩短了20%-40%。
本发明具有如下有益效果:工艺流程简单,操作方便,将超重力技术与萃取-催化臭氧化技术联用,解决了现在技术存在的一些问题,减少了水处理成本,可应用于各种有机工业废水如炸药废水、含酚废水、染料废水、医药废水等。
附图说明
图1为萃取法处理高浓度硝基苯废水工艺流程图;
图2为分液器结构示意图;
图3为撞击流-旋转填料床结构示意图;
图4为RPB-O3/Fenton法处理萃余相工艺流程图。
图5为旋转填料床结构示意图。
图中:1-液体储槽Ⅰ,2-液泵Ⅰ,3-液体流量计Ⅰ,4-液泵Ⅱ,5-液体流量计Ⅱ,6-液液传质设备,7-液体储槽Ⅱ,8-混合澄清槽,9-纯氧钢瓶,10-臭氧发生器,11-气体流量计,12-气液传质设备,13-液体流量计Ⅲ,14-液泵Ⅲ,15-萃余相储槽,16-KI溶液储槽
6.1-撞击流-旋转填料床液体进口,6.2-撞击流-旋转填料床液体出口,6.3-喷嘴,6-4电机Ⅰ,6.5-壳体,6.6-撞击流-旋转填料床转子
8.1-轻液出口,8.2-重液出口
12.1-旋转填料床转子,12.2-旋转填料床气体进口,12.3-液体分布器,12.4-旋转填料床液体进口,12.5-旋转填料床液体出口,12.6-旋转填料床气体出口,12.7-电机Ⅱ。
具体实施方式
结合附图对本发明的具体实施方式做进一步说明。
一种处理高浓度硝基苯废水的工艺方法,步骤如下:使用萃取法将高浓度硝基苯废水降低到一定浓度,然后采用RPB-O3/Fenton法进一步处理达到排放标准。
如图1、图2和图3所示,萃取法处理高浓度硝基苯废水的工艺方法及装置,步骤如下:硝基苯废水和环己烷分别置于储槽Ⅰ1和储槽Ⅱ7中,液体分别在泵Ⅰ2和Ⅱ4的作用下经过转子流量计Ⅰ3和Ⅱ5后进入撞击流-旋转填料床6中。两液体进入撞击流-旋转填料床6后首先通过喷嘴6.3,两液体相向撞击形成与原流体流动方向垂直的撞击雾面,增大了液体表面积并促进表面更新,从而增大传递速率。随后撞击形成的雾面进入撞击流-旋转填料床6的转子6.6内,被旋转的填料剪切成为液体微元(液膜、液线、液丝或液滴),这些液体微元会连续快速地经历多次凝并、分散过程,液液传质推动力,传质系数提高,萃取效率大幅度增加。最后液体被甩到壳体6.5上,在重力的作用下经过液体出口6.2进入分液器8中,萃余相从重液出口8.2流出,废水中硝基苯含量大幅度降低。
如图4和图5所示,RPB-O3/Fenton法降解萃余相废水的工艺及装置,步骤如下:钢瓶9中的纯氧经臭氧发生器10产生含一定浓度的臭氧/氧气混合气体,经气体流量计11计量后进入旋转填料床12中,沿轴向通过填料。将Fenton试剂分批次投入萃余相并置于萃余相储槽15中,在泵Ⅲ14循环作用下经过液体流量计Ⅲ13进入旋转填料床12中。液体经过液体分布器12.3喷洒在转子12.1内缘,被填料的内缘沿径向甩出,在此过程中被液体被填料剪切液体微元(液膜、液线、液丝或液滴),并与含有一定浓度臭氧气体错流接触,完成并强化了臭氧的传质与氧化反应。液体被甩到壳体后从液体出口12.5流回到萃余相储槽15,进行循环。未反应的臭氧气体进入KI溶液储槽16中,被KI溶液吸收。
下面结合具体实施例对本发明的实施方式做进一步说明。
实施例1:萃取法处理1L浓度1000mg/L的硝基苯废水。将配置好的硝基苯废水和萃取剂环己烷分别置于两储液槽中,在相比(V环己烷:V废水)为1:2,转速N=500r/min,废水流量Qa=60L/h,pH=5,温度T=25℃,两液体撞击初速为9.45m/s的条件下在撞击流-旋转填料床中进行一次错流萃取。结果表明,废水(萃余相)中硝基苯含量降低至62.49mg/L,硝基苯去除率达到93.75%,萃取级效率为98.18%。相近实验条件下,在撞击流萃取器中进行萃取实验,硝基苯去除率为81.68%,萃取级效率为83.33%,较撞击流-旋转填料床分别降低了12.07%和14.85%。利用RPB-O3/Fenton法进一步处理萃余相溶液(CNB=62.49mg/L,COD=120.96mg/L)。在pH=2.5,超重力因子β=60,T=25℃,液体流量Qa=160L/h,铁离子总投加量为0.5mmol/L,Fenton试剂投加次数为1,H2O2与Fe2+的摩尔比为3:1,气体流量QG=50L/h,臭氧质量浓度CO3=28mg/L,循环30min的条件下,处理后硝基苯含量为10.9mg/L,COD=38.43mg/L。相近实验条件下,在传统鼓泡反应装置中进行O3/Fenton氧化降解萃余相中有机物实验(BR-O3/Fenton)。RPB-O3/Fenton与BR-O3/Fenton相比,硝基苯去除率提高了20.8%,COD去除率提高了28.34%。
实施例2:萃取法处理1L浓度1500mg/L的硝基苯废水。将配置好的硝基苯废水和萃取剂环己烷分别置于两储液槽中,在相比(V环己烷:V废水)为1:1,转速N=400r/min,废水流量Qa=50L/h,pH=7,温度T=25℃,两液体撞击初速为7.88 m/s的条件下在撞击流-旋转填料床中进行一次错流萃取。结果表明,废水(萃余相)中硝基苯含量降低至75.06mg/L,硝基苯去除率达到94.93%,萃取级效率为99.99%。相近实验条件下,在撞击流萃取器中进行萃取实验,硝基苯去除率为80.88%,萃取级效率为82.03%,较撞击流-旋转填料床分别降低了14.05%和17.96%。利用RPB-O3/Fenton法进一步处理萃余相溶液(CNB=76.05mg/L,COD=139.9mg/L)。在pH=4.5,超重力因子β=80,T=25℃,液体流量Qa=120L/h,铁离子总投加量为1mmol/L,Fenton试剂投加次数为3,H2O2与Fe2+的摩尔比为5:1,气体流量QG=30L/h,臭氧质量浓度CO3=36mg/L,循环30min的条件下,处理后硝基苯含量为0.26mg/L,COD=25.64mg/L。相近实验条件下,在传统鼓泡反应装置中进行O3/Fenton氧化降解萃余相中有机物实验(BR-O3/Fenton)。RPB-O3/Fenton与BR-O3/Fenton相比,硝基苯去除率提高了25.7%,COD去除率提高了32.92%。
实施例3:萃取法处理1L浓度2000mg/L的硝基苯废水。将配置好的硝基苯废水和萃取剂环己烷分别置于两储液槽中,在相比(V环己烷:V废水)为2:1,转速N=300r/min,废水流量Qa=40L/h,pH=9,温度T=25℃,两液体撞击初速为6.3m/s的条件下在撞击流-旋转填料床中进行一次错流萃取。结果表明,废水(萃余相)中硝基苯含量降低至125.85mg/L,硝基苯去除率达到93.71%,萃取级效率为98.68%。相近实验条件下,在撞击流萃取器中进行萃取实验,硝基苯去除率为79.43%,萃取级效率为81.56%,较撞击流-旋转填料床分别降低了14.28%和17.12%。利用RPB-O3/Fenton法进一步处理萃余相溶液(CNB=125.85mg/L,COD=227.51mg/L)。在pH=6.5,超重力因子β=100,T=25℃,液体流量Qa=80L/h,铁离子总投加量为1.5mmol/L,Fenton试剂投加次数为2,H2O2与Fe2+的摩尔比为7:1,气体流量QG=30L/h,臭氧质量浓度CO3=44mg/L,循环30min的条件下,处理后硝基苯含量为6.17mg/L,COD=63.36mg/L。相近实验条件下,在传统鼓泡反应装置中进行O3/Fenton氧化降解萃余相中有机物实验(BR-O3/Fenton)。RPB-O3/Fenton与BR-O3/Fenton相比,硝基苯去除率提高了23.2%,COD去除率提高了26.64%。

Claims (9)

1.一种超重力强化萃取-催化臭氧化处理高浓度硝基苯废水的方法,其特征在于:超重力环境下使用萃取法处理高浓度硝基苯废水,使高浓度硝基苯废水中硝基苯浓度降低,然后采用O3/Fenton法进一步处理达到排放标准;高浓度硝基苯废水中硝基苯浓度为1000mg/L~2000mg/L,采用的萃取剂为环己烷,相比V环己烷:V废水为1:2~2:1,pH为5~9,温度为25℃,液体流量为40L/h~60L/h。
2.根据权利要求1所述的一种超重力强化萃取-催化臭氧化处理高浓度硝基苯废水的方法,其特征在于:萃取后废水中硝基苯浓度为62.49mg/L~125.85mg/L,COD为120.96mg/L~227.51mg/L。
3.根据权利要求1所述的一种超重力强化萃取-催化臭氧化处理高浓度硝基苯废水的方法,其特征在于:O3/Fenton法处理的硝基苯浓度为62.49mg/L~125.85mg/L,Fe2+总投加量为0.5mmol/L~1.5mmol/L,Fenton试剂投加次数为1~3,H2O2与Fe2+的摩尔比为3:1~7:1,臭氧浓度为28mg/L~44mg/L,pH为2.5~6.5,温度为25℃,液体流量为80L/h~160L/h,气体流量为30L/h~50L/h。
4.一种实现如权利要求1至3所述的任意一种超重力强化萃取-催化臭氧化处理高浓度硝基苯废水方法的装置,其特征在于:包括液液传质设备(6),液液传质设备(6)上设有进液口(6.1)、液体出口(6.2)、喷嘴(6.3)、电机(6.4)、壳体(6.5)、转子(6.6);液体储槽I(1)液体储槽II(7)通过液泵I(2)和液泵II(4)、液体流量计I(3)和液体流量计II(5)与进液口(6.1)相连,液体出口(6.2)与分液器(8)相连。
5.根据权利要求4所述的实现超重力强化萃取-催化臭氧化处理高浓度硝基苯废水方法的装置,其特征在于:混合澄清槽(8)设有轻液出口(8.1)和重液出口(8.2)。
6.根据权利要求4所述的实现超重力强化萃取-催化臭氧化处理高浓度硝基苯废水方法的装置,其特征在于:所述的液液传质设备(6)为撞击流-旋转填料床(IS-RPB),转子(6.6)内为不锈钢丝网填料,直径为0.275mm,内径和外径分别为60mm和160mm,轴向高度60mm,转速为300~500r/min;喷嘴(6.3)直径为1.5mm,撞击初速为6.3m/s~9.45m/s。
7.一种实现如权利要求1所述的超重力强化萃取-催化臭氧化处理高浓度硝基苯废水方法的装置,其特征在于:包括气液传质设备(12),气液传质设备(12)上设有转子(12.1)、液体进口(12.4)、气体进口(12.2)、液体出口(12.5)、气体出口(12.6)、液体分布器(12.3)、电机(12.7);萃余相储槽(15)通过液泵III(14)与液体流量计III(13)、液体进口(12.4)相连,通过液体分布器(12.3)进入转子(12.1)中;纯氧钢瓶(9)经过臭氧发生器(10),通过气体流量计(11)后与气体进口(12.2)相连,气体出口(12.5)与KI溶液储槽(16)相连。
8.根据权利要求7所述的实现超重力强化萃取-催化臭氧化处理高浓度硝基苯废水方法的装置,其特征在于:所述的气液传质设备(12)为旋转填料床(RPB),转子(12.1)内为不锈钢丝网填料,直径为0.275mm,内径和外径分别为60mm和160mm,轴向高度60mm,超重力因子β为60~100。
9.根据权利要求8所述的实现超重力强化萃取-催化臭氧化处理高浓度硝基苯废水方法的装置,其特征在于: RPB-O3/Fenton法处理后废水中硝基苯浓度为0.26mg/L~10.9mg/L,COD为25.64mg/L~63.36mg/L。
CN201810348756.3A 2018-04-18 2018-04-18 超重力强化萃取-催化臭氧化处理高浓度硝基苯废水的方法及装置 Pending CN108675485A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810348756.3A CN108675485A (zh) 2018-04-18 2018-04-18 超重力强化萃取-催化臭氧化处理高浓度硝基苯废水的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810348756.3A CN108675485A (zh) 2018-04-18 2018-04-18 超重力强化萃取-催化臭氧化处理高浓度硝基苯废水的方法及装置

Publications (1)

Publication Number Publication Date
CN108675485A true CN108675485A (zh) 2018-10-19

Family

ID=63801099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810348756.3A Pending CN108675485A (zh) 2018-04-18 2018-04-18 超重力强化萃取-催化臭氧化处理高浓度硝基苯废水的方法及装置

Country Status (1)

Country Link
CN (1) CN108675485A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110451681A (zh) * 2019-07-31 2019-11-15 南京大学 一种促进高级氧化效果的废水处理控制方法
CN111185132A (zh) * 2019-11-06 2020-05-22 浙江海洋大学 一种高效强化多尺度混合传质装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011032311A1 (zh) * 2009-09-17 2011-03-24 宁波万华聚氨酯有限公司 一种二苯基甲烷二异氰酸酯(mdi)生产过程中产生的废盐水的处理方法
CN102849840A (zh) * 2012-09-14 2013-01-02 北京化工大学 一种均相催化臭氧化处理酸性有机废水的方法
CN103145274A (zh) * 2013-03-15 2013-06-12 中北大学 一种高级氧化法处理废水的方法及装置
CA2797496A1 (en) * 2012-11-30 2014-05-30 General Electric Company Produced water treatment to remove organic compounds
CN104724852A (zh) * 2015-03-03 2015-06-24 中北大学 一种吹脱氧化降解含高浓度硝基苯废水的方法及装置
CN105800849A (zh) * 2016-04-21 2016-07-27 江苏久吾高科技股份有限公司 一种磺酸类染料及染料中间体的废水处理工艺及装置
CN105884007A (zh) * 2016-05-30 2016-08-24 中北大学 一种催化臭氧化处理酸性硝基苯废水的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011032311A1 (zh) * 2009-09-17 2011-03-24 宁波万华聚氨酯有限公司 一种二苯基甲烷二异氰酸酯(mdi)生产过程中产生的废盐水的处理方法
CN102849840A (zh) * 2012-09-14 2013-01-02 北京化工大学 一种均相催化臭氧化处理酸性有机废水的方法
CA2797496A1 (en) * 2012-11-30 2014-05-30 General Electric Company Produced water treatment to remove organic compounds
CN103145274A (zh) * 2013-03-15 2013-06-12 中北大学 一种高级氧化法处理废水的方法及装置
CN104724852A (zh) * 2015-03-03 2015-06-24 中北大学 一种吹脱氧化降解含高浓度硝基苯废水的方法及装置
CN105800849A (zh) * 2016-04-21 2016-07-27 江苏久吾高科技股份有限公司 一种磺酸类染料及染料中间体的废水处理工艺及装置
CN105884007A (zh) * 2016-05-30 2016-08-24 中北大学 一种催化臭氧化处理酸性硝基苯废水的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PENG-FEI YANG 等: "Extraction of nitrobenzene from aqueous solution in impinging stream rotating packed bed", 《CHEMICAL ENGINEERING & PROCESSING: PROCESS INTENSIFICATION》 *
郭亮 等: "不同臭氧组合工艺处理含硝基苯类化合物废水的实验研究", 《含能材料》 *
郭亮 等: "含硝基苯类化合物废水处理技术研究进展", 《化工环保》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110451681A (zh) * 2019-07-31 2019-11-15 南京大学 一种促进高级氧化效果的废水处理控制方法
CN111185132A (zh) * 2019-11-06 2020-05-22 浙江海洋大学 一种高效强化多尺度混合传质装置及方法

Similar Documents

Publication Publication Date Title
CN106277589B (zh) 一种利用铁碳芬顿预处理-ubf-a/o处理染料废水的系统及其方法
CN103145274B (zh) 一种高级氧化法处理废水的方法及装置
CN104710000B (zh) 一种超重力场中催化臭氧降解硝基苯类废水的方法及装置
CN103145275B (zh) 一种强化微电解-Fenton氧化法处理废水的方法与装置
CN108675485A (zh) 超重力强化萃取-催化臭氧化处理高浓度硝基苯废水的方法及装置
CN212151749U (zh) 一种高盐废水的高效臭氧催化氧化处理装置
CN107777830A (zh) 一种高浓度难降解制药废水处理方法及系统
CN108117214A (zh) 页岩气开采压裂返排废液循环列管蒸发减量化处理方法及设备
CN106495359A (zh) 一种高难度废水深度处理装置及方法
CN103395908A (zh) 一种串联式内循环Fenton流化床氧化塔
CN110156143A (zh) 一种uv光催化/微气泡臭氧化废水深度处理系统
CN108640330A (zh) 超重力强化萃取-催化O3/Ti4+处理高浓度硝基苯废水的方法及装置
CN203602394U (zh) 一种射流式臭氧光催化-膜处理有机废水装置
CN108675486A (zh) 超重力强化萃取-催化O3/Mn2+处理高浓度硝基苯废水的方法及装置
CN108675487A (zh) 超重力强化萃取-催化o3/h2o2处理高浓度硝基苯废水的方法及装置
CN108706674A (zh) 超重力强化萃取-O3/Fe2+法处理高浓度硝基苯废水的方法及装置
CN207330484U (zh) 一种藕合式非均相催化臭氧高效深度处理污水装置
CN213865543U (zh) 一种制药污水处理用芬顿氧化装置
CN205838783U (zh) 磁分离高级氧化污水处理系统
CN104773891A (zh) 一种新型炼油废水综合处理系统及方法
CN108658373A (zh) 一种羟基自由基去除制药废水中抗生素的组合系统
CN105060391B (zh) 用于处理有机废水的外循环光催化旋液膜分离耦合反应器
CN108191029A (zh) 一种化学去除亚硝酸盐的装置和方法
CN102276053A (zh) 一种炼油废水深度处理的方法
CN207726911U (zh) 一种页岩气开采压裂返排废液循环列管蒸发减量化处理设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination