CN108671929B - 一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法 - Google Patents

一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法 Download PDF

Info

Publication number
CN108671929B
CN108671929B CN201810440021.3A CN201810440021A CN108671929B CN 108671929 B CN108671929 B CN 108671929B CN 201810440021 A CN201810440021 A CN 201810440021A CN 108671929 B CN108671929 B CN 108671929B
Authority
CN
China
Prior art keywords
metal
alloy
tin
salt
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810440021.3A
Other languages
English (en)
Other versions
CN108671929A (zh
Inventor
梁长海
王攀
齐骥
李闯
陈霄
时肖栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810440021.3A priority Critical patent/CN108671929B/zh
Publication of CN108671929A publication Critical patent/CN108671929A/zh
Application granted granted Critical
Publication of CN108671929B publication Critical patent/CN108671929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • B01J35/33
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明属于电化学的能源转化技术领域,涉及一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法。具体步骤:将金属M、锡的盐和柠檬酸钠完全溶于去离子水中,其中,金属M、锡的盐的摩尔比由合金的原子比确定,柠檬酸钠的摩尔量为金属M和锡的盐的摩尔量之和的1.4倍;然后加入碳纳米管或石墨烯,超声分散均匀,其中,碳纳米管或石墨烯的加入量由合金的担载量确定;接着在冰浴中加入硼氢化钠进行还原反应,其中,硼氢化钠的摩尔量为金属M和锡的盐的摩尔量之和的8倍;搅拌,过滤干燥即得到产品超小纳米合金催化剂。本发明的制备方法制备工艺简单易行,合成成本低,环境友好,而且所制备的合金催化剂显示了对于析氧反应优异的活性。

Description

一种用于电催化水分解析氧反应的超小纳米合金催化剂的制 备方法
技术领域
本发明属于电化学的能源转化技术领域,涉及一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法,尤其涉及一种用于水分解、可再生燃料电池、可充电金属-空气电池及相关电能转化领域中所使用的一种新型的超小纳米合金催化剂。
背景技术
随着现代社会的急速发展,全球气候变暖和化石燃料濒临枯竭的问题引发了人们对可再生清洁能源的关注。,此外,现在低碳经济和可持续概念正在全世界广泛传播。随着人类对可持续的、清洁的能源需求越来越大,电化学能量存储与转化技术(如水分解、可再生燃料电池、可充电金属-空气电池)已经被认为是最可行和最有效的技术之一去应对便携性、稳定性和运输需求。这促进了水分解、燃料电池、金属-空气电池等的极大发展。
氢气作为一种非常重要的可再生的清洁能源,在目前已知的燃料中具有最大的质量能量密度,且生成产物只有水,不会造成环境污染和温室效应。此外,生成物水可以通过电催化和光催化的形式再次转化为氢气,循环利用,且不会产生污染物和温室气体。目前工业上的制氢过程主要是天然气或甲烷的蒸汽重整。虽然这种制氢技术成本低,但是天然气是一种不可再生资源且释放的二氧化碳会造成温室效应。可再生氢燃料电池技术在可再生能源(如太阳能、风能、潮汐能、地热能等)和可持续能源的存储与利用之间建立了一个根本的联系。水和氢气之间的相互转化是一种环境友好、零碳排放的制氢过程,但是目前水分解的能源效率和成本还有待于改善。
燃料电池一种电化学能量转换装置。它能够把燃料中的化学能直接转换为电能和热能,而不需要燃烧过程。它的能量密度相比传统的电池和电容器高出几个数量级,和内燃机的功率和能量密度相当。此外,它运用能量的效率超过80%。这与限制能量效率的卡诺循环形成了鲜明的对比。燃料电池被认为是最有前途的、环境友好的、利于运输和稳定应用的能源之一。
全世界对电动车的需求逐渐增加而要求更小、更轻的充电电池来满足全球的能源和环境挑战。可充电锂离子电池由于它们的高循环容量和能量效率通常被认为是最有前途的电动车应用替代品。但是锂离子电池的不足的存储容量(100–200W h kg-1)限制了它们在电动车中的应用。最近,可充电金属-空气电池(如锌-空气电池、锂-空气电池)由于它们的极其高的能量密度(分别是470和1700W h kg-1)、低价和环境友好的特点,已经引起了全世界的广泛关注,被认为是一种可能的可充电锂离子电池替代品。金属空气电池在放电的过程中使用的是空气中大量存在的氧气作为阴极,替代了可充电锂离子电池中的昂贵的化学组分,因而金属-空气电池具有紧凑、重量轻、廉价等特点。
水分解、可再生燃料电池和可充电金属-空气电池总是包含着氧气/水氧化还原系统。这个系统提供和消耗水、质子、电子和氧气。其中一定包含着氧气析出反应(4OH-→O2+2H2O+4e-或2H2O→O2+4H++4e-)。由于氧析出反应是一个四电子-质子耦合反应,它的动力学是迟缓的。甚至是使用高活性的贵金属催化剂依然如此。所以为了越过析氧反应的动力学壁垒,它需要更高的能量(更高的超电势)。因此,高效的析氧催化剂需要加速反应和降低超电势去提高能量转换效率。在过去的几十年,析氧反应已经被广泛的研究,而各种各样的催化剂已经被设计去提高电极动力学和稳定性。目前,最有效的析氧催化剂是贵金属,如RuO2、IrO2。但是由于这些贵金属催化剂在地球上储量稀少和价格高,这阻碍了它们的大规模实际应用。目前,设计和发展储量丰富、高活性和稳定的析氧催化剂吸引了大量工作者的注意。
目前,大量研究的析氧催化剂包括过渡金属氧化物(如CoMoO4、Co3O4、NiO和FeCoW氢氧化氧物)、过渡金属硫属化合物(MoS2、NiS、CoSe和NiSe)、过渡金属磷属化合物(Ni3FeN、CuCo2Nx、CoP和NiCoP)和有机金属化合物(金属配位化合物)等。同时,合金催化剂(如Ni-Co、Ni-Mo、Ni-Al、Ni-Mo-Fe等)对于催化析氢反应展现出高效的活性,可是几乎没有合金催化剂用于析氧反应的。
铁、钴和镍等过渡金属是一种储量丰富且廉价的金属。它们的氧化物、硫属化合物、磷属化合物在析氧反应中已经展示出了优异的析氧反应活性。纯单金属铁、钴和镍等过渡金属的析氧活性不够高,这阻碍了它们的实际应用。因而,这就需要往铁、钴、镍等过渡金属里添加一种金属助剂来提高它们的析氧活性。
发明内容
本发明的目的是提供一种新型的金属助剂来显著增强铁、钴、镍等过渡金属的析氧活性,并且通过相对温和的条件且不使用模版剂和有机溶剂来制备超小纳米颗粒合金催化剂,同时将该催化剂应用于电化学析氧反应,从而高效经济的实现水分解、可再生燃料电池和可充电金属-空气电池的高效利用。
一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法,一步法合成,具体步骤如下:
将金属M、锡的盐和柠檬酸钠完全溶于去离子水中,其中,金属M与锡的盐二者的摩尔比由合金的原子比确定,柠檬酸钠的摩尔量为金属M和锡的盐的摩尔量之和的1.4倍;然后加入碳纳米管或石墨烯,超声分散均匀,其中,碳纳米管或石墨烯的加入量由合金的担载量确定;接着在冰浴中加入硼氢化钠进行还原反应,其中,硼氢化钠的摩尔量为金属M和锡的盐的摩尔量之和的8倍;搅拌,过滤干燥即得到产品超小纳米合金催化剂。
所述的超小纳米颗粒为合金MSnx
所述的金属M为过渡金属,包括Ni、Fe、Co、Mo和Mn。
所述的超小纳米颗粒合金催化剂为镍基合金、钴基合金、铁基合金、钼基合金或锰基合金;镍基合金,包括金属间化合物Ni4Sn、Ni3Sn、NiSn、Ni3Sn2和Ni3Sn2;钴基合金,包括金属间化合物CoSn3、CoSn、Co3Sn2和CoSn2;铁基合金,包括金属间化合物Fe3Sn、FeSn2、FeSn、Fe1.3Sn和Fe3Sn2;钼基合金,包括金属间化合物MoSn2;锰基合金,包括金属间化合物Mn1.77Sn、Mn3Sn、Mn3.7Sn和MnSn2
所述的金属M和锡的盐为二者的二价氯化物、硝酸盐、乙酸盐或硫酸盐。
本发明的有益效果:本方法制备的超小纳米颗粒合金在电化学析氧反应中具有很高的催化活性,明显优于单金属催化剂。锡的加入极大地提高了催化剂的析氧活性。本发明提供了一种在常压、温和温度条件下合成一种新型超小纳米颗粒合金催化剂的制备方法。本方法制备的负载型合金催化剂直径约9nm,制备方法制备工艺简单易行,合成成本低,环境友好,而且所制备的合金催化剂显示了对于析氧反应优异的活性。锡的加入极大地提高了催化剂的析氧活性。
附图说明
图1为该方法制备的镍锡合金催化剂的XRD衍射图,其中(a)是CNT图;(b)是Ni/CNT图;(c)是Sn/CNT图;(d)是Ni3Sn2/CNT图;
图2为该方法制备的镍锡合金催化剂的透射电镜图;
图3为该方法制备的镍锡合金催化剂的透射电镜图上的粒径分布图;
图4为镍锡合金催化剂的电催化析氧活性图,其中(a)是所有催化剂的极化曲线图;(b)是相应的Tafel图;(c)是相应的阻抗图;(d)是Ni3Sn2/CNT循环2000次前后的极化曲线图。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
实施例1:超小纳米颗粒镍锡合金催化剂(担载量为40%)的制备
取0.169g NiCl2.6H2O、0.090g SnCl2和0.490g柠檬酸钠完全溶于1L去离子水,然后加入0.147g碳纳米管。接着超声处理,使碳纳米管分散在去离子水中。最后在冰浴中加入0.358g硼氢化钠到之前的溶液中。搅拌一晚上后,过滤、洗涤,80℃干燥12h,即得到负载在碳纳米管上的超小纳米颗粒镍锡合金催化剂。通过图2中的透射电镜图和图3的粒径统计图可得知,该镍锡合金催化剂直径约等于9nm。
实施例2:超小纳米颗粒镍锡合金催化剂的电催化析氧活性的研究。
使用一个电化学工作站,利用三电极体系在l mol/L的KOH溶液中进行析氧反应。反应在玻璃电解池中进行。
反应条件为:催化剂担载在玻碳电极上(担载量为0.214mg/cm2)作为工作电极,饱和甘汞电极为参比电极,碳棒为对电极。在测试之前,KOH溶液被氧气饱和。在扫描速度5mV/s、转速2000rpm的条件下测试线性扫描伏安法得到极化曲线。电化学阻抗图是在超电势300mV/s、转速2000rpm的条件下得到。催化剂的稳定性是在扫速100mV/s、转速2000rpm条件下循环2000次获得。测试结果如图4所示。

Claims (3)

1.一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法,其特征在于,一步法合成,具体步骤如下:
将金属M、锡的盐和柠檬酸钠完全溶于去离子水中,其中,金属M和锡的盐二者的摩尔比由合金的原子比确定,柠檬酸钠的摩尔量为金属M和锡的盐的摩尔量之和的1.4倍;然后加入碳纳米管或石墨烯,超声分散均匀,其中,碳纳米管或石墨烯的加入量由合金的担载量确定;接着在冰浴中加入硼氢化钠进行还原反应,其中,硼氢化钠的摩尔量为金属M和锡的盐的摩尔量之和的8倍;搅拌,过滤干燥即得到产品超小纳米合金催化剂;超小纳米合金催化剂的平均直径为9.2nm;
超小纳米颗粒为合金MSnx;所述的超小纳米颗粒为镍基合金、钴基合金、铁基合金、钼基合金或锰基合金;镍基合金选自金属间化合物Ni4Sn、Ni3Sn、NiSn、Ni3Sn2和Ni3Sn2;钴基合金选自金属间化合物CoSn3、CoSn、Co3Sn2和CoSn2;铁基合金选自金属间化合物Fe3Sn、FeSn2、FeSn、Fe1.3Sn和Fe3Sn2;钼基合金选自金属间化合物MoSn2;锰基合金选自金属间化合物Mn1.77Sn、Mn3Sn、Mn3.7Sn和MnSn2
2.根据权利要求1所述的一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法,其特征在于,所述的金属M为过渡金属,选自Ni、Fe、Co、Mo和Mn。
3.根据权利要求1或2所述的一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法,其特征在于,所述的金属M和锡的盐为二者的二价氯化物、硝酸盐、乙酸盐或硫酸盐。
CN201810440021.3A 2018-05-02 2018-05-02 一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法 Active CN108671929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810440021.3A CN108671929B (zh) 2018-05-02 2018-05-02 一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810440021.3A CN108671929B (zh) 2018-05-02 2018-05-02 一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN108671929A CN108671929A (zh) 2018-10-19
CN108671929B true CN108671929B (zh) 2021-05-11

Family

ID=63805650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810440021.3A Active CN108671929B (zh) 2018-05-02 2018-05-02 一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN108671929B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309236B (zh) * 2018-10-26 2021-04-02 北方民族大学 用于直接硼氢化物燃料电池的阳极催化材料、阳极材料及其制备方法和燃料电池
CN111450831B (zh) * 2020-05-22 2021-06-18 北京化工大学 一种高性能石墨烯负载介孔镍铁合金电催化剂及制备方法
CN111841550B (zh) * 2020-08-18 2022-12-30 中国科学技术大学 双金属合金在抗积碳甲烷水汽重整催化剂中的应用
JPWO2022172904A1 (zh) * 2021-02-12 2022-08-18

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732863A (zh) * 2012-03-16 2012-10-17 福州大学 一种磁场辅助石墨型碳材料化学镀磁性金属的制备方法
CN102800849A (zh) * 2012-07-23 2012-11-28 浙江大学 过渡金属锡化物/石墨烯复合材料及其制备方法和应用
CN104064739A (zh) * 2014-07-02 2014-09-24 长沙国容新能源有限公司 锡钴合金/石墨烯复合材料及其制备方法
CN105810923A (zh) * 2014-12-31 2016-07-27 中国科学院宁波材料技术与工程研究所 一种超小粒径锡及锡基合金纳米颗粒的制备方法及其应用
CN105914381A (zh) * 2016-06-29 2016-08-31 王尧尧 一种Pt-Au/GR-SnO2甲醇燃料电池催化剂制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172710B2 (en) * 2003-03-03 2007-02-06 Ovonic Battery Company, Inc. Performance enhancing additive material for the nickel hydroxide positive electrode in rechargeable alkaline cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732863A (zh) * 2012-03-16 2012-10-17 福州大学 一种磁场辅助石墨型碳材料化学镀磁性金属的制备方法
CN102800849A (zh) * 2012-07-23 2012-11-28 浙江大学 过渡金属锡化物/石墨烯复合材料及其制备方法和应用
CN104064739A (zh) * 2014-07-02 2014-09-24 长沙国容新能源有限公司 锡钴合金/石墨烯复合材料及其制备方法
CN105810923A (zh) * 2014-12-31 2016-07-27 中国科学院宁波材料技术与工程研究所 一种超小粒径锡及锡基合金纳米颗粒的制备方法及其应用
CN105914381A (zh) * 2016-06-29 2016-08-31 王尧尧 一种Pt-Au/GR-SnO2甲醇燃料电池催化剂制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electrodeposition of Sn-Ni Alloy Coatings for Water-Splitting Application from Alkaline Medium;Shetty, Sandhya et al;《METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE》;20160922;第48卷(第1期);第638页右栏第2段、第634页D节 *

Also Published As

Publication number Publication date
CN108671929A (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
CN108671929B (zh) 一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法
CN107346826B (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
Crabtree et al. The hydrogen fuel alternative
CN110838588B (zh) 一种可充式锌空电池双功能催化剂及其制备方法与应用
Xu et al. Dual-active-sites design of CoNx anchored on zinc-coordinated nitrogen-codoped porous carbon with efficient oxygen catalysis for high-stable rechargeable zinc-air batteries
Wang et al. Increased nucleation sites in nickel foam for the synthesis of MoP@ Ni3P/NF nanosheets for bifunctional water splitting
CN109967100B (zh) 一种金属掺杂的CoP3、其制备方法及应用
CN112058283B (zh) 一种硒化镍/硒化钼复合纳米电催化剂的制备方法及应用
CN114293200B (zh) 一种多孔碳负载非晶态/晶态钌基高效析氢催化剂及其制备与应用
CN112808274A (zh) 室温方法制备高性能的铁掺杂镍或钴基非晶态羟基氧化物催化剂及其高效电解水制氢研究
Zhou et al. Fe-Co dual atomic doublets on N, P codoped carbon as active sites in the framework of heterostructured hollow fibers towards high-performance flexible Zn-Air battery
Qi et al. Self-supported cobalt–nickel bimetallic telluride as an advanced catalyst for the oxygen evolution reaction
Li et al. Integration of heterointerface and porosity engineering to achieve efficient hydrogen evolution of 2D porous NiMoN nanobelts coupled with Ni particles
CN114628696B (zh) 一种多孔碳载钴基双功能氧催化剂的制备方法
Huang et al. N-doped carbon nanosheets derived from lignin as a novel bifunctional electrocatalyst for rechargeable zinc-air battery
CN111313042B (zh) 一种双功能氧化电催化剂及其制备方法
Ren et al. Electrospinning-derived functional carbon-based materials for energy conversion and storage
Ma et al. Effect of cobalt precursors on Co3O4 anodic catalyst for a membrane-free direct borohydride fuel cell
CN109097788B (zh) 一种双碳耦合过渡金属镍基量子点电催化剂及其制备方法
CN115125547B (zh) Mo/Nb双掺杂Co中空介孔碳纳米盒催化剂的制备及应用
Vinu et al. Controllable morphology transformation of hierarchical-porous CoMoSi/C metal hydroxide nanosheets from sugarcane bagasse as green sources for high performance supercapacitors and oxygen evolution reaction
CN103272591B (zh) 用于硼氢化钠燃料电池的阳极催化剂的制备方法
CN116065185A (zh) 一种快速构筑纳米圆锥支撑纳米片电催化剂的制备方法
Park et al. Ultrafast Thermal Synthesis of Non-Noble Metal-Based Electrocatalysts for Overall Water Splitting
Yan et al. Fundamentals of Water Electrolysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant