CN108660151A - 一种毛竹遗传转化的方法 - Google Patents

一种毛竹遗传转化的方法 Download PDF

Info

Publication number
CN108660151A
CN108660151A CN201810511262.2A CN201810511262A CN108660151A CN 108660151 A CN108660151 A CN 108660151A CN 201810511262 A CN201810511262 A CN 201810511262A CN 108660151 A CN108660151 A CN 108660151A
Authority
CN
China
Prior art keywords
callus
solution
liquid
enzymolysis
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810511262.2A
Other languages
English (en)
Inventor
袁金玲
岳晋军
顾小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Subtropical Forestry of Chinese Academy of Forestry
Original Assignee
Research Institute of Subtropical Forestry of Chinese Academy of Forestry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Subtropical Forestry of Chinese Academy of Forestry filed Critical Research Institute of Subtropical Forestry of Chinese Academy of Forestry
Priority to CN201810511262.2A priority Critical patent/CN108660151A/zh
Publication of CN108660151A publication Critical patent/CN108660151A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8206Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种毛竹Phyllostachys edulis遗传转化的方法,它是通过将毛竹愈伤组织适度酶解,然后用质粒DNA转化酶解后的愈伤组织,继而对转化后的愈伤组织进行恢复培养和筛选,从而实现遗传转化的方法。本发明解决了毛竹愈伤组织转化困难、原生质体转化后不易再生等难题,为毛竹的种质创新和功能基因研究提供了新途径。

Description

一种毛竹遗传转化的方法
技术领域
本发明涉及植物遗传转化领域,特别涉及到竹子的遗传转化。
背景技术
遗传转化是现代生物技术的重要内容之一,人类利用遗传转化技术开展功能基因的研究和利用,并实现了众多植物的种质创新和定向改良(参考文献1、参考文献2、参考文献3、参考文献4、参考文献5)。
竹类植物具有生长迅速的特点,可以在短短2-3个月内实现10多米的高生长(参考文献6、参考文献7),研究人员一直期望掌握并利用调控竹子快速生长的相关基因;且竹子的开花周期长达几十年到上百年,导致其开展杂交的试验较为困难,种质创新缺乏有效的手段,研究人员也期望通过遗传转化技术实现竹子的种质创新和良种选育。但是,当前竹子功能基因的克隆和验证以及种质创新的研究均受限于落后的遗传转化水平。
目前植物上常用的遗传转化方法有农杆菌介导法、基因枪法、聚乙二醇法、电击法等,其中以农杆菌介导法的转化机理最清楚、应用最广泛(参考文献8、参考文献9、参考文献10)。研究人员将现有的遗传转化技术应用于竹类植物,未能获得较好的转化效果,当前关于竹子遗传转化的研究报道仅见利用农杆菌介导法转化梁山慈竹和麻竹(参考文献11、参考文献12、参考文献13);也有利用农杆菌介导法转化版纳甜龙竹的尝试(参考文献14、参考文献15);还有利用基因枪法转化紫竹的愈伤组织(参考文献16);迄今未见毛竹遗传转化的实验报道。分析竹类植物遗传转化的现状,可以看出目前有关竹子遗传转化的研究报道数量非常稀少,而且存在转化效率低、重复性差等缺陷,获得转化个体的数量稀少,难以建立具有规模的转化群体,不能满足进一步的选育和其他研究的需要。由于农杆菌的寄主范围主要是双子叶植物,尽管农杆菌介导转化在水稻等单子叶植物上取得了较好的应用,但是应用于再生能力较差的单子叶木本竹类植物仍存在一定的差距,农杆菌介导法转化竹类植物的过程中存在褐化严重、筛选难度大、再生困难、转化效率低等缺陷,实验技术和方法均需要进一步优化。
鉴于当前竹类植物遗传转化存在的种种困难,本发明提供了一种毛竹遗传转化的新方法,对转化材料处理、愈伤组织转化技术和恢复培养技术等方面进行了革新,为毛竹的遗传转化提供了新的技术,也为其他竹种的遗传转化提供参考。
主要参考文献
1. Cheng, S., Xie, X., Xu, Y., Zhang, C., Wang, X., Zhang, J., & Wang, Y.(2016). Genetic transformation of a fruit-specific, highly expressed stilbenesynthase gene from Chinese wild Vitis quinquangularis. Planta, 243 (4), 1041-1053
2. Shih, M. C., Chou, M. L., Yue, J. J., Hsu, C. T., Chang, W. J., Ko, S.S., et al. (2014). BeMADS1 is a key to delivery MADSs into nucleus inreproductive tissues-De novo characterization of Bambusa edulis transcriptomeand study of MADS genes in bamboo floral development. BMC Plant Biol. 14:179.doi: 10.1186/1471-2229-14-179
3. 敖雁, 吴启, 周桂生. 转基因番茄的研究进展. 北方园艺, 2017 (22) :160-166
4. 丁一, 丁箐雯, 李冰清, 等. 转基因技术改良水稻淀粉品质研究进展, 中国稻米, 2018 (1) :1-5
5. 崔宁波, 张正岩. 转基因大豆研究及应用进展, 西北农业学报, 2016, 25 (8) :1111-1124
6. 成项托, 赖信舟, 陈明亮, 等. 毛竹发笋与幼竹生长规律研究, 湖北林业科技,2017 , 46 (2) :1-4
7. 李荣, 何明霞, 刀定伟, 等. 版纳甜龙竹发笋及幼竹高生长规律. 基因组学与应用生物学, 2010, 29 (4): 735-739
8. Juturu, V. N., Mekala, G. K., & Kirti, P. B. (2015). Current status oftissue culture and genetic transformation research in cotton (Gossypiumspp.). Plant Cell, Tissue and Organ Culture (PCTOC), 120(3), 813-839.
9. Singh, R. K., & Prasad, M. (2016). Advances in Agrobacteriumtumefaciens-mediated genetic transformation of graminaceous crops.Protoplasma, 253(3), 691-707.
10. 许惠滨, 朱永生, 连玲, 等. 水稻遗传转化方法研究与应用进展, 福建稻麦科技, 2017 (4) : 79-83
11. 李晓瑞,胡尚连,曹颖,等.农杆菌介导慈竹4CL基因遗传转化梁山慈竹.林业科学,2012, 48(3): 38-48
12. Qiao, G., Yang, H., Zhang, L., Han, X., Liu, M., Jiang, J., ... &Zhuo, R. (2014). Enhanced cold stress tolerance of transgenic Dendrocalamuslatiflorus Munro (Ma bamboo) plants expressing a bacterial CodA gene. InVitro Cellular & Developmental Biology-Plant, 50(4), 385-391.
13. Ye, S., Cai, C., Ren, H., Wang, W., Xiang, M., Tang, X., Zhu, C.,Yin, T., Zhang, L., and Zhu, Q. (2017) An Efficient Plant Regeneration andTransformation System of Ma Bamboo (Dendrocalamus latiflorus Munro) Startedfrom Young Shoot as Explant. Front. Plant Sci. 8:1298. doi: 10.3389/fpls.2017.01298
14. 宋李玲. 不同竹种再生能力的比较及转基因研究[D]. 浙江农林大学: 浙江农林大学, 2014
15. Sood, P., Bhattacharya, A., Joshi, R., Gulati, A., Chanda, S., &Sood, A. (2014). A method to overcome the waxy surface, cell wall thickeningand polyphenol induced necrosis at wound sites-the major deterrents toAgrobacterium mediated transformation of bamboo, a woody monocot. Journal ofplant biochemistry and biotechnology, 23(1), 69-80.
16. Ogita, S., Kikuchi, N., Nomura, T., & Kato, Y. (2011). A practicalprotocol for particle bombardment-mediated transformation of Phyllostachysbamboo suspension cells. Plant biotechnology, 28(1), 43-50.
本发明的特点
尽管当前的科学研究迫切需要开展竹子的遗传转化,但竹类植物的遗传转化尚缺乏切实有效的技术手段,其它植物上现有的遗传转化技术不能良好地应用于竹类植物,导致竹子遗传转化效率低下、转化个体数量稀少,无法开展进一步的研究和应用。本发明采用酶解法对愈伤组织进行适度酶解,使愈伤组织的表层细胞处于半无壁状态,有利于外源基因片段进入细胞内部;并且表层细胞半无壁状态的愈伤组织其恢复再生能力远大于完全无壁的原生质体,有利于转化后的恢复生长,可以保证转化细胞的快速增殖。通过对同类研究进行重要的技术改进,发明人建立了毛竹遗传转化的新技术,首次公开毛竹遗传转化的新方法。
发明内容
一种毛竹Phyllostachys edulis遗传转化的方法,其特征包括:愈伤组织酶解、聚乙二醇介导质粒DNA转化、恢复培养和抗性筛选,具体步骤如下:
(1)愈伤组织酶解:选择处于旺盛增殖状态的毛竹胚性愈伤组织为材料,分切成直径约0.6-0.9 cm的小块,取2-5 g投入装有50 ml酶解液的容积为100 ml的培养瓶中,置于摇床上黑暗条件下振荡酶解2-4 h,摇床转速40-80 rpm;倒掉酶解液,加入20-30 ml W5溶液,略微浸没愈伤组织;酶解液含1%-3% 纤维素酶,1%-2%果胶酶,0.1% MES,0.6 M 甘露醇,0.1%二水氯化钙,1% 牛血清蛋白,将pH值调整为5.6-5.8;W5溶液含154 mM氯化钠,125 mM 氯化钙;5 mM 氯化钾,2 mM MES,5 mM葡萄糖;酶解液和W5溶液现配现用;
(2)聚乙二醇介导质粒DNA转化:将含有W5 溶液和愈伤组织的培养瓶置于冰上静置30min;加入1-2 ml浓度为1.0 μg/μl的含有外源基因的质粒DNA溶液,轻柔混匀,置于冰上静置10 min;加入20-30 ml 聚乙二醇溶液,轻柔混匀,室温静置20 min;加入50 ml的W5 溶液,轻柔混匀,然后倒掉瓶中的溶液;用50-60 ml 恢复液轻柔冲洗2-3次,弃溶液;聚乙二醇溶液含0.8 M甘露醇、1.0 M氯化钙和40%聚乙二醇4000;恢复液是以MS培养基为基础,添加0.6 M 甘露醇,20 g/L 蔗糖,10 g/L 葡萄糖,3.0 mM MES,将pH值调整到5.6-5.8;
(3)恢复培养和抗性筛选:在愈伤组织中加入30 ml 恢复液,培养3-7 d,期间每隔8-10h轻微晃动一次;倒掉恢复液,沥出愈伤组织并转入液体浅层-固定平板双层培养基上培养2周;转入固体平板培养基上继续培养,每2周转接一次,培养1个月取愈伤组织进行检测;液体和固定培养基均以MS培养基为基础,添加30 g/L蔗糖、0.5 mg/L IBA、0.5 mg/L TDZ、抗性筛选剂,唯固体培养基另添加8 g/L琼脂糖;上述愈伤组织酶解、转化、恢复培养和抗性筛选均需在无菌条件下进行。
具体实施方式
下面结合以从毛竹Phyllostachys edulis种胚诱导出的胚性愈伤组织为材料开展遗传转化的实例对本发明进行详细说明:
(1)愈伤组织酶解:选择处于旺盛增殖状态的从毛竹种胚诱导出的胚性愈伤组织为材料,分切成直径约0.6-0.9 cm的小块,取3 g投入装有50 ml酶解液的容积为100 ml的培养瓶中,置于摇床上黑暗条件下振荡酶解3 h,摇床转速60 rpm;倒掉酶解液,加入25 ml W5溶液,略微浸没愈伤组织;酶解液含2% 纤维素酶,1%果胶酶,0.1% MES,0.6 M 甘露醇,0.1%二水氯化钙,1% 牛血清蛋白,将pH值调整为5.8;W5溶液含154 mM氯化钠,125 mM 氯化钙;5mM 氯化钾,2 mM MES,5 mM葡萄糖;酶解液和W5溶液现配现用;
(2)聚乙二醇介导质粒DNA转化:将含有W5 溶液和愈伤组织的培养瓶置于冰上静置30min;加入2.0 ml浓度为1.0 μg/μl的含有GFP基因的质粒DNA溶液,轻柔混匀,置于冰上静置10 min;加入25 ml 聚乙二醇溶液,轻柔混匀,室温静置20 min;加入50 ml的W5 溶液,轻柔混匀,然后倒掉瓶中的溶液;用50 ml 恢复液轻柔冲洗2次,弃溶液;聚乙二醇溶液含0.8 M甘露醇、1.0 M氯化钙和40% 聚乙二醇4000;恢复液是以MS培养基为基础,添加0.6 M 甘露醇,20 g/L 蔗糖,10 g/L 葡萄糖,3.0 mM MES,将pH值调整到5.8;
(3)恢复培养和抗性筛选:在愈伤组织中加入30 ml 恢复液,培养5 d,期间每隔8 h轻微晃动一次;倒掉恢复液,沥出愈伤组织并转入液体浅层-固定平板双层培养基上培养2周;转入固体平板培养基上继续培养,每2周转接一次,培养1个月取抗性愈伤组织进行检测,发现GFP基因的转化率为2.92%-5.23%;液体和固定培养基均以MS培养基为基础,添加30 g/L蔗糖、0.5 mg/L IBA、0.5 mg/L TDZ、50 mg/L潮霉素,唯固体培养基另添加8 g/L琼脂糖;上述愈伤组织酶解、转化、恢复培养和抗性筛选均需在无菌条件下进行。

Claims (1)

1.一种毛竹Phyllostachys edulis遗传转化的方法,其特征包括:愈伤组织酶解、聚乙二醇介导质粒DNA转化、恢复培养和抗性筛选,具体步骤如下:(1)愈伤组织酶解:选择处于旺盛增殖状态的毛竹胚性愈伤组织为材料,分切成直径约0.6-0.9 cm的小块,取2-5 g投入装有50 ml酶解液的容积为100 ml的培养瓶中,置于摇床上黑暗条件下振荡酶解2-4 h,摇床转速40-80 rpm;倒掉酶解液,加入20-30 ml W5溶液,略微浸没愈伤组织;酶解液含1%-3%纤维素酶,1%-2%果胶酶,0.1% MES,0.6 M 甘露醇,0.1% 二水氯化钙,1% 牛血清蛋白,将pH值调整为5.6-5.8;W5溶液含154 mM氯化钠,125 mM 氯化钙;5 mM 氯化钾,2 mM MES,5 mM葡萄糖;酶解液和W5溶液现配现用;(2)聚乙二醇介导质粒DNA转化:将含有W5 溶液和愈伤组织的培养瓶置于冰上静置30 min;加入1-2 ml浓度为1.0 μg/μl的含有外源基因的质粒DNA溶液,轻柔混匀,置于冰上静置10 min;加入20-30 ml 聚乙二醇溶液,轻柔混匀,室温静置20 min;加入50 ml的W5 溶液,轻柔混匀,然后倒掉瓶中的溶液;用50-60 ml 恢复液轻柔冲洗2-3次,弃溶液;聚乙二醇溶液含0.8 M甘露醇、1.0 M氯化钙和40%聚乙二醇4000;恢复液是以MS培养基为基础,添加0.6 M 甘露醇,20 g/L 蔗糖,10 g/L 葡萄糖,3.0 mM MES,将pH值调整到5.6-5.8;(3)恢复培养和抗性筛选:在愈伤组织中加入30 ml 恢复液,培养3-7d,期间每隔8-10 h轻微晃动一次;倒掉恢复液,沥出愈伤组织并转入液体浅层-固定平板双层培养基上培养2周;转入固体平板培养基上继续培养,每2周转接一次,培养1个月取愈伤组织进行检测;液体和固定培养基均以MS培养基为基础,添加30 g/L蔗糖、0.5 mg/L IBA、0.5 mg/L TDZ、抗性筛选剂,唯固体培养基另添加8 g/L琼脂糖;上述愈伤组织酶解、转化、恢复培养和抗性筛选均需在无菌条件下进行。
CN201810511262.2A 2018-05-25 2018-05-25 一种毛竹遗传转化的方法 Pending CN108660151A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810511262.2A CN108660151A (zh) 2018-05-25 2018-05-25 一种毛竹遗传转化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810511262.2A CN108660151A (zh) 2018-05-25 2018-05-25 一种毛竹遗传转化的方法

Publications (1)

Publication Number Publication Date
CN108660151A true CN108660151A (zh) 2018-10-16

Family

ID=63777704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810511262.2A Pending CN108660151A (zh) 2018-05-25 2018-05-25 一种毛竹遗传转化的方法

Country Status (1)

Country Link
CN (1) CN108660151A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436391A (en) * 1991-11-29 1995-07-25 Mitsubishi Corporation Synthetic insecticidal gene, plants of the genus oryza transformed with the gene, and production thereof
CN101906434A (zh) * 2010-07-19 2010-12-08 胡尚连 农杆菌介导法生产大型丛生竹类的方法
CN105145355A (zh) * 2015-09-08 2015-12-16 中国林业科学研究院亚热带林业研究所 毛竹原生质体培养的方法
CN105331574A (zh) * 2015-11-16 2016-02-17 华南农业大学 一种小桐子组培苗原生质体的制备及基因瞬时表达的方法
CN106520666A (zh) * 2016-12-05 2017-03-22 天津吉诺沃生物科技有限公司 马铃薯原生质体的高效分离、转化及再生的方法及其专用培养基
CN106967750A (zh) * 2017-03-31 2017-07-21 西南科技大学 一种利用基因枪法介导遗传转化毛竹的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436391A (en) * 1991-11-29 1995-07-25 Mitsubishi Corporation Synthetic insecticidal gene, plants of the genus oryza transformed with the gene, and production thereof
CN101906434A (zh) * 2010-07-19 2010-12-08 胡尚连 农杆菌介导法生产大型丛生竹类的方法
CN105145355A (zh) * 2015-09-08 2015-12-16 中国林业科学研究院亚热带林业研究所 毛竹原生质体培养的方法
CN105331574A (zh) * 2015-11-16 2016-02-17 华南农业大学 一种小桐子组培苗原生质体的制备及基因瞬时表达的方法
CN106520666A (zh) * 2016-12-05 2017-03-22 天津吉诺沃生物科技有限公司 马铃薯原生质体的高效分离、转化及再生的方法及其专用培养基
CN106967750A (zh) * 2017-03-31 2017-07-21 西南科技大学 一种利用基因枪法介导遗传转化毛竹的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张继友等: "热研4号王草原生质体的制备", 《分子植物育种》 *
杨金水等: "外源基因导入部分酶解的水稻小细胞团及其转基因植株的再生", 《JOURNAL OF INTEGRATIVE PLANT BIOLOGY》 *
马伯军等: "外源基因导入部分酶解的大麦愈伤组织和转基因植株的再生", 《上海农业学报》 *
高志民等: "竹子组织培养技术研究进展", 《世界竹藤通讯》 *

Similar Documents

Publication Publication Date Title
Frame et al. Genetic transformation using maize immature zygotic embryos
Ishida et al. Agrobacterium-mediated transformation of maize
Rech et al. High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants
Burris et al. An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L.)
Dutt et al. Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures
Corral-Martínez et al. Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.)
Salaj et al. Somatic embryogenesis in selected conifer trees Pinus nigra Arn. and Abies hybrids
CN103013954A (zh) 水稻基因badh2的定点敲除系统及其应用
Lin et al. Evaluation of parameters affecting switchgrass tissue culture: toward a consolidated procedure for Agrobacterium-mediated transformation of switchgrass (Panicum virgatum)
Ishida et al. Tissue culture protocols for gene transfer and editing in maize (Zea mays L.)
Ozyigit et al. Cotton biotechnology: An efficient gene transfer protocol via agrobacterium tumefaciens for a greater transgenic recovery
Yu et al. Enhancing wheat regeneration and genetic transformation through overexpression of TaLAX1
CN108660151A (zh) 一种毛竹遗传转化的方法
Velcheva et al. Aloe vera transformation: the role of Amberlite XAD-4 resin and antioxidants during selection and regeneration
AU2020357969A1 (en) Genetically modified plants and methods of making the same
EP2220243A1 (en) Transformation of crambe abyssinica
Cody et al. BiBAC Modification and Stable Transfer into Maize (Zea mays) Hi‐II Immature Embryos via Agrobacterium‐Mediated Transformation
Yang et al. Optimized protocols for protoplast isolation, transfection, and regeneration in the Solanum genus for the CRISPR/Cas-mediated transgene-free genome editing
Kranz et al. In vitro fertilization of single, isolated gametes, transmission of cytoplasmic organelles and cell reconstitution of maize (Zea mays L.)
Wędzony et al. Tissue culture and regeneration: a prerequisite for alien gene transfer
Liu et al. Biolistic DNA delivery and its applications in sorghum bicolor
CN103993039B (zh) 一种利用pmi筛选标记将外源基因导入闭颖授粉粳稻的方法
US20110162111A1 (en) Method for transforming somatic embryos
WO2003080848A1 (fr) Billes biologiques comportant une substance genetique etrangere immobilisee sur de l'alginate de calcium
CN103981214B (zh) 一种将外源基因导入粳稻品种8m30的水稻细胞的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181016