CN108654671B - 一种复合光催化剂及其制备方法和应用 - Google Patents

一种复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN108654671B
CN108654671B CN201810415619.7A CN201810415619A CN108654671B CN 108654671 B CN108654671 B CN 108654671B CN 201810415619 A CN201810415619 A CN 201810415619A CN 108654671 B CN108654671 B CN 108654671B
Authority
CN
China
Prior art keywords
composite photocatalyst
black phosphorus
preparation
carbon nitride
biobr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810415619.7A
Other languages
English (en)
Other versions
CN108654671A (zh
Inventor
王新
江天昊
陈志鸿
金名亮
周国富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201810415619.7A priority Critical patent/CN108654671B/zh
Publication of CN108654671A publication Critical patent/CN108654671A/zh
Application granted granted Critical
Publication of CN108654671B publication Critical patent/CN108654671B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/305Endocrine disruptive agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种复合光催化剂及其制备方法和应用,该复合催化剂的制备方法首先通过铋盐溶于溶剂,加入氮化碳分散均匀,后加入溴化物分散后置于高压反应釜反应,最后加入黑磷的分散液搅拌反应制得了在氮化碳上生长有溴氧化铋且分散了黑磷颗粒的纳米片状的复合光催化剂。该制备方法简单,制得的复合光催化剂在降解抗生素中具有较好的应用前景。

Description

一种复合光催化剂及其制备方法和应用
技术领域
本发明涉及电化学和光降解催化领域,尤其是涉及一种复合光催化剂及其制备方法和应用。
背景技术
由于对环境污染的认识和关注,对新环境修复技术的需求日益增加,特别是大量的广谱抗生素,如用于治疗的环丙沙星(CIP)和四环素盐酸盐(TC),污染越来越多的湖泊、河流和海洋,对生态系统造成各种不利影响,对人类健康造成巨大威胁,因此迫切需要找到一种绿色、可持续的方法来解决水生环境中的抗生素污染问题。
在潜在的解决方案中,用取之不尽的太阳能作为驱动力的半导体光催化技术已经成为最吸引人的技术之一,它可以降解有机污染物、制氢和减少二氧化碳。然而,催化剂的效率和成本是制约光催化剂实际发展的关键挑战。与其他的水污染物如染料相比,抗生素相对来说更难被光降解。氮化碳在可见光下具有极好的光降解性能,该材料是一种2D纳米片状非金属光催化材料,兼具可见光响应和良好的稳定性,在光催化产氢、水氧化、有机物降解、光合成以及二氧化碳还原等领域具有重要研究价值,目前基于氮化碳的复合光催化剂主要是降解染料,而对于更难降解的抗生素未作研究。因此,研究出新型高效的复合光催化剂,以提高抗生素的降解效率是非常重要的。
发明内容
针对现有技术的缺陷,本发明所要解决的技术问题是提供一种复合光催化剂及其制备方法,制备得到的复合光催化剂能够高效地降解抗生素。
本发明所采取的技术方案是:
本发明提供一种复合光催化剂的制备方法,包括以下步骤:
S1、取铋盐溶于溶剂,加入氮化碳分散均匀,后加入溴化物再次分散均匀得到混合溶液;
S2、取步骤S1中得到的混合溶液置于高压反应釜中,在60~100℃下反应;
S3、取黑磷均匀分散于溶剂中,加入步骤S2反应得到的溶液,进行搅拌反应。
优选地,步骤S1中所述铋盐为Bi(NO3)3·5H2O、Bi(NO3)3、BiCl3中的至少一种。
优选地,步骤S1中所述溴化物为KBr、溴代十六烷基吡啶、NaBr中的至少一种。
优选地,所述加入的铋盐:溴化物的物质的量比为1:(1~1.2)。
优选地,步骤S2中反应3~5h。
优选地,步骤S3中在0~30℃下进行搅拌反应。
优选地,步骤S1中氮化碳的具体合成步骤为:取双氰胺、氯化铵和溶剂混合均匀,在550~600℃下反应后退火处理得到氮化碳。
进一步地,双氰胺:氯化铵的质量比为1:(5~10)。
进一步地,退火处理的时间为4~6h。
本发明还提供一种复合光催化剂,根据上述的复合光催化剂的制备方法制得。
本发明还提供上述复合光催化剂在降解抗生素中的应用。
优选地,所述抗生素为四环素。
本发明的有益效果是:
本发明制备出了在氮化碳(C3N4)材料上生长有BiOBr且均匀分散了黑磷颗粒的纳米片状复合光催化剂(简写为C3N4/BiOBr/黑磷),与现有技术相比BiOBr的纳米层状结构可有效地加速电流的通过,减小了内部能耗,且具有与C3N4非常匹配的带隙,降低了激发电子和空穴的复合概率,促进了电子空穴对的分离,从而大大提高了光催化性能,黑磷本身具有较明显的导电性和光催化活性且能够使C3N4/BiOBr间的带隙更加有效地联结,各个材料之间相互协同充分发挥催化性能,最大可能地提升了对抗生素的降解效率。
本发明所制备的复合光催化剂(C3N4/BiOBr/黑磷)制备简单,比表面积高,吸附性能强,无毒副作用,用作在太阳光下降解抗生素时,尤其表现出了对于四环素极高的降解效率,在极短时间内,可使降解效率达到80%以上,改善了单纯的C3N4降解效率较低,速率较慢等特点,在降解抗生素领域具有较好的应用前景。
附图说明
图1为实施例1中的纳米片层状C3N4的15000倍放大倍数的扫描电子显微镜(SEM)照片;
图2为实施例1中的复合光催化剂(C3N4/BiOBr/黑磷)的20000倍放大倍数的扫描电子显微镜(SEM)照片;
图3为实施例1中的复合光催化剂(C3N4/BiOBr/黑磷)的透射电镜(TEM)图;
图4为实施例1中光降解四环素实验的吸光度曲线图;
图5为实施例2中光降解四环素实验的吸光度曲线图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
取3g双氰胺与15g NH4Cl充分混合,在80℃条件下搅拌析干,再将所得物质放入马弗炉中按照3℃/min的升温速率升温至550℃,反应4h,得纳米片层状C3N4,其在15000倍放大倍数的扫描电子显微镜(SEM)下的照片如图1所示,从图中可以看出相较于普通的氮化碳材料(C3N4),本实施例中的氮化碳(g-C3N4)为二维纳米片层结构,具有中空结构,大大提高了材料的比表面积,从而最大限度地提高了它的降解效率。
再取0.12g的KBr,溶于去离子水中,超声5min形成均匀分散的溶液。再取0.7g上述纳米片层状C3N4加入到上述溶液中,超声5min。再投入与KBr等物质的量的Bi(NO3)3·5H2O,超声5min后,充分搅拌2h。最后于80℃的高压反应釜中反应3h,制备得到C3N4/BiOBr。
取10mL已在无水乙醇溶液中超声好且分散均匀的黑磷颗粒溶液(黑磷的质量分数为1mg/mL)与上述高压反应釜中反应后的溶液充分混合,搅拌均匀。最后将所得混合液中物质分离,干燥,即为所得的复合光催化剂g-C3N4/BiOBr/黑磷催化剂,其在20000倍放大倍数的扫描电子显微镜(SEM)下的照片如图2所示,从图中可以看出,BiOBr生长在纳米片层状C3N4上,而黑磷微粒由于粒径过小,含量较低很难用扫描电镜SEM观察到,因此用透射电镜TEM观察如图3所示,从图3中可以看出黑磷成功地负载到C3N4/BiOBr/黑磷催化剂上。
在制备好C3N4/BiOBr/黑磷光催化剂后,我们取0.25g置于100mL,30mg/L中的四环素溶液中,于加载了1.5AM,420nm滤光片氙灯下搅拌,反应。先暗反应30min,再在氙灯照射下每隔30min取样一次,
最终的降解效率可高达96%。与单纯的C3N4,C3N4/BiOBr进行对比,添加了黑磷的催化剂的光降解效率显著提升,降解效果从图4中即可看出。
实施例2
分别取0.1g实施例1中的纳米片层状C3N4、C3N4/BiOBr和C3N4/BiOBr/黑磷置于150mL,10mg/L的四环素溶液中,于加载了1.5AM,420nm滤光片氙灯下搅拌,反应。先暗反应30min,再在氙灯照射下每隔30min取样一次。
最后将所得样品离心,在紫外分光光度计(UV-vis)下测试,降解效果如图5所示,从图中可以看出本发明制备的复合光催化剂降解效率高达85%以上。
实验结果表明本发明的复合光催化剂(C3N4/BiOBr/黑磷)在光照下对于四环素类抗生素有显著的降解效率,改善了单纯的C3N4降解效率较低,速率较慢等特点。
实施例3
取0.3g实施例1中的C3N4/BiOBr/黑磷复合光催化剂置于100mL,50mg/L中的四环素溶液中,于加载了1.5AM,420nm滤光片氙灯下搅拌,反应。先暗反应30min,再在氙灯照射下每隔30min取样一次,最终的降解效率可高达85%,具有较高的降解效率。
实施例4
取3g双氰胺与30g NH4Cl充分混合,在80℃条件下搅拌析干,再将所得物质放入马弗炉中按照3℃/min的升温速率升温至600℃,反应6h,得纳米片层状C3N4
再取0.12g的溴代十六烷基吡啶,溶于去离子水中,超声5min形成均匀分散的溶液。再取0.7g上述纳米片层状C3N4加入到上述溶液中,超声5min。再投入1.2倍溴代十六烷基吡啶物质的量的BiCl3,超声5min后,充分搅拌2h。最后于60℃的高压反应釜中反应5h,制备得到C3N4/BiOBr。
取10mL已在无水乙醇溶液中超声好且分散均匀的黑磷颗粒溶液(黑磷的质量分数为1mg/mL)与上述高压反应釜中反应后的溶液充分混合,搅拌均匀。最后将所得混合液中物质分离,干燥,即为所得的复合光催化剂g-C3N4/BiOBr/黑磷。
取本实施例中制备的复合光催化剂g-C3N4/BiOBr/黑磷按照实施例1中降解四环素实验的步骤,测得本实施例中复合光催化剂的降解效率可高达88%。
实施例5
取3g双氰胺与24g NH4Cl充分混合,在80℃条件下搅拌析干,再将所得物质放入马弗炉中按照3℃/min的升温速率升温至580℃,反应5h,得纳米片层状C3N4
再取0.12g的NaBr,溶于去离子水中,超声5min形成均匀分散的溶液。再取0.7g上述纳米片层状C3N4加入到上述溶液中,超声5min。再投入1.1倍NaBr物质的量的BiCl3,超声5min后,充分搅拌2h。最后于100℃的高压反应釜中反应3h,制备得到C3N4/BiOBr。
取10mL已在无水乙醇溶液中超声好且分散均匀的黑磷颗粒溶液(黑磷的质量分数为1mg/mL)与上述高压反应釜中反应后的溶液充分混合,搅拌均匀。最后将所得混合液中物质分离,干燥,即为所得的复合光催化剂g-C3N4/BiOBr/黑磷。
取本实施例中制备的复合光催化剂g-C3N4/BiOBr/黑磷按照实施例1中降解四环素实验的步骤,测得本实施例中复合光催化剂的降解效率可高达82%。

Claims (6)

1.一种用于降解抗生素的复合光催化剂的制备方法,其特征在于,包括以下步骤:
S1、取铋盐溶于溶剂,加入氮化碳分散均匀,后加入溴化物再次分散均匀得到混合溶液,步骤S1中氮化碳的具体合成步骤为:取双氰胺、氯化铵和溶剂混合均匀,在550~600℃下反应后退火处理得到氮化碳,所述加入的铋盐:溴化物的物质的量比为1:(1~1.2);
S2、取步骤S1中得到的混合溶液置于高压反应釜中,在60~100℃下反应,步骤S2中反应3~5h;
S3、取黑磷均匀分散于溶剂中,加入步骤S2反应得到的溶液,进行搅拌反应,步骤S3中在0~30℃下进行搅拌反应。
2.根据权利要求1所述的复合光催化剂的制备方法,其特征在于,步骤S1中所述铋盐为Bi(NO3)3·5H2O、Bi(NO3)3、BiCl3中的至少一种。
3.根据权利要求1所述的复合光催化剂的制备方法,其特征在于,步骤S1中所述溴化物为KBr、溴代十六烷基吡啶、NaBr中的至少一种。
4.根据权利要求1所述的复合光催化剂的制备方法,其特征在于,双氰胺:氯化铵的质量比为1:(5~10)。
5.一种复合光催化剂,其特征在于,根据权利要求1-4任一项所述的复合光催化剂的制备方法制得。
6.权利要求5所述的复合光催化剂在降解抗生素中的应用。
CN201810415619.7A 2018-05-03 2018-05-03 一种复合光催化剂及其制备方法和应用 Active CN108654671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810415619.7A CN108654671B (zh) 2018-05-03 2018-05-03 一种复合光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810415619.7A CN108654671B (zh) 2018-05-03 2018-05-03 一种复合光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108654671A CN108654671A (zh) 2018-10-16
CN108654671B true CN108654671B (zh) 2021-06-22

Family

ID=63781687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810415619.7A Active CN108654671B (zh) 2018-05-03 2018-05-03 一种复合光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108654671B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522327B (zh) * 2020-04-13 2022-09-13 深圳先进技术研究院 三元复合光催化剂、其制备方法及其应用
CN113457698B (zh) * 2021-06-16 2023-04-25 四川轻化工大学 一种提高BiOCl表面光电压信号的方法
CN113477268B (zh) * 2021-06-28 2022-07-01 华东理工大学 一种铑负载量子点自修饰氮化碳纳米片的制备方法
CN117563582A (zh) * 2023-10-27 2024-02-20 齐齐哈尔大学 富含氧空位的Bi/BiOBr@Bi–MOF异质结光催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3790189B2 (ja) * 2002-06-21 2006-06-28 独立行政法人科学技術振興機構 可視光応答性BiVO4微粉末の新規合成法、該BiVO4微粉末からなる光触媒および該光触媒を用いた浄化方法
CN104607240A (zh) * 2015-02-12 2015-05-13 重庆工商大学 Bi/g-C3N4半金属-有机复合光催化剂及制备方法
CN106732735A (zh) * 2017-01-18 2017-05-31 常州大学 一种光催化降解微囊藻毒素的复合材料及其制备方法与应用
CN106799251A (zh) * 2017-03-03 2017-06-06 盐城工学院 一种复合光催化剂及其制备方法
CN107262131A (zh) * 2017-07-17 2017-10-20 河海大学 一种可见光响应Bi3O4Cl/g‑C3N4异质结材料的制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3790189B2 (ja) * 2002-06-21 2006-06-28 独立行政法人科学技術振興機構 可視光応答性BiVO4微粉末の新規合成法、該BiVO4微粉末からなる光触媒および該光触媒を用いた浄化方法
CN104607240A (zh) * 2015-02-12 2015-05-13 重庆工商大学 Bi/g-C3N4半金属-有机复合光催化剂及制备方法
CN106732735A (zh) * 2017-01-18 2017-05-31 常州大学 一种光催化降解微囊藻毒素的复合材料及其制备方法与应用
CN106799251A (zh) * 2017-03-03 2017-06-06 盐城工学院 一种复合光催化剂及其制备方法
CN107262131A (zh) * 2017-07-17 2017-10-20 河海大学 一种可见光响应Bi3O4Cl/g‑C3N4异质结材料的制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Black Phosphorus and Polymeric Carbon Nitride Heterostructure for Photoinduced Molecular Oxygen Activation";Yun Zheng等;《Adv. Funct. Mater.》;20180208;第28卷;第1705407(1-9)页 *
"Facile constructing novel 2D porous g-C3N4/BiOBr hybrid with enhanced visible-light-driven photocatalytic activity";Jiali Lv等;《Separation and Purification Technology》;20170110;第178卷;第6-17页 *
"Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity";Xiuli Lu等;《J. Mater. Chem. A》;20140919;第2卷;第18924-18928页 *

Also Published As

Publication number Publication date
CN108654671A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN108654671B (zh) 一种复合光催化剂及其制备方法和应用
Li et al. In situ anion exchange strategy to construct flower-like BiOCl/BiOCOOH pn heterojunctions for efficiently photocatalytic removal of aqueous toxic pollutants under solar irradiation
CN109772454B (zh) 光催化膜及其制备方法和对消毒副产物前体物的降解应用
Wang et al. Novel Ag3PO4/boron-carbon-nitrogen photocatalyst for highly efficient degradation of organic pollutants under visible-light irradiation
CN103801284B (zh) 一种钒酸铋-石墨烯复合光催化剂的制备方法
CN107008467B (zh) 一种异质结光催化剂的制备方法和用途
CN106517341B (zh) 一种制备二氧化锰纳米催化剂的方法及其应用
Li et al. Ternary rGO decorated W18O49@ g-C3N4 composite as a full-spectrum-responded Z-scheme photocatalyst for efficient photocatalytic H2O2 production and water disinfection
CN105195131A (zh) 一种石墨烯量子点/钒掺杂介孔二氧化钛复合光催剂的制备方法
Rasheed et al. Synthesis and studies of ZnO doped with g-C3N4 nanocomposites for the degradation of tetracycline hydrochloride under the visible light irradiation
Zhang et al. Facile synthesis of Z-scheme KBiO3/g-C3N4 Z-scheme heterojunction photocatalysts: Structure, performance, and mechanism
CN107986380A (zh) 一种N掺杂包裹型TiO2光催化剂降解废水的工艺
CN114247452A (zh) 一种铋-硫化铋-钨酸铋复合光催化剂及其制备方法和应用
Zhang et al. Conjugated polymers S-scheme homojunction with large internal electric field and matching interface for efficient visible light photocatalytic degradation of ciprofloxacin
Kang et al. Preparation of Zn2GeO4 nanosheets with MIL-125 (Ti) hybrid photocatalyst for improved photodegradation of organic pollutants
Han et al. MIL-53 (Fe)@ BiOBr/TCN/Ti photoanode assembled visible light responsive photocatalytic fuel cell to enhance rhodamine B degradation and electricity generation
CN111468100B (zh) 一种原位生长的多酸铌/石墨烯光催化剂的制备方法及其在降解四环素中的应用
CN109160594A (zh) 阳极负载光催化材料微生物燃料电池及其制备方法与应用
CN110586149B (zh) 钼酸铋/碳化钛异质结二维光催化材料及其制备方法和应用
Cui et al. Preparation and application of Bi4O7/Cu-BiOCl heterojunction photocatalyst for photocatalytic degradation of tetracycline under visible light
Lee et al. Complementary conjugated piezo-phototronic polarized blue TiO2-KNN for piezophotocatalytic degradation of tetracycline enhanced under gentle oscillatory hydrodynamic disturbances
CN108554427B (zh) 一种In2O3/BiOI半导体复合光催化剂及其制备方法和用途
CN108043457B (zh) 高导电性石墨烯-曙红y复合气凝胶光催化剂的制备方法
CN107973367B (zh) 一种Fe掺杂包裹型TiO2光催化剂降解废水的工艺
CN111111683A (zh) 一种复合光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant