CN108649200A - 一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法 - Google Patents

一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法 Download PDF

Info

Publication number
CN108649200A
CN108649200A CN201810434202.5A CN201810434202A CN108649200A CN 108649200 A CN108649200 A CN 108649200A CN 201810434202 A CN201810434202 A CN 201810434202A CN 108649200 A CN108649200 A CN 108649200A
Authority
CN
China
Prior art keywords
solution
nano wire
cotio
lati
electrostatic spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810434202.5A
Other languages
English (en)
Other versions
CN108649200B (zh
Inventor
王超
李星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University Science Park Development Co ltd
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201810434202.5A priority Critical patent/CN108649200B/zh
Publication of CN108649200A publication Critical patent/CN108649200A/zh
Application granted granted Critical
Publication of CN108649200B publication Critical patent/CN108649200B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法,本发明采用静电纺丝技术将一定量的钛酸四丁酯、乙酸钴四水合物、乙酸锰四水合物、醋酸镧水合物为主要原料溶于一定体积的N,N‑二甲基甲酰胺和异丙醇的混合溶剂中,然后加入适量的聚乙烯吡咯烷酮,得到前驱体混合物溶液,在一定的电压、流率及一定的相对湿度氛围下进行静电纺丝;然后将纺丝产品进行烧结得到LaTi21O38·CoTiO3·Mn3O4复合物纳米线。本发明制得的复合物纳米线具有良好的电化学性能可应用于锂离子电池的电极材料当中,在整个制备过程中,操作简单,原料成本低,设备投资少,适合批量生产。

Description

一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法
技术领域
本发明属于材料化学领域,具体涉及到一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法。
背景技术
由于纳米颗粒粒径小,具有壳层结构,使得纳米材料具有四种效应即小尺寸效应、表面和界面效应、量子尺寸效应、宏观量子隧道效应。因此,纳米材料与一般常规材料相比,表现出一些超常现象,如:光学特性、光电催化特性、光电转化特性、电学特性及磁学特性等。而在所有的纳米材料中,一维纳米材料因其原子级结构和1D形态使其在光、电、磁、催化、传感器等诸多领域具有优异的性能和潜在的应用前景。同时,一维纳米材料也是其他低维纳米材料研究的基础。因此,一维纳米材料已经成为当前纳米材料科学领域的前沿和热点。锂离子电池具有许多突出的优点,比如电压高、储存能量密度大、循环寿命长、工作温度范围宽而且没有记忆效应。随着锂离子电池被广泛应用于笔记本电脑、手机、航空航天、电动汽车等领域,锂离子电池在人们日常生活以及工业等领域所产生的影响越来越大。电池的能量密度是制约锂离子电池发展的重要因素,改善负极材料对提高锂离子电池的总体性能有着较大影响。而一维纳米材料因具有良好的电学特性已经被广泛的应用到锂离子电池材料当中。
钛基氧化物(LaTi21O38和CoTiO3)材料相对于传统碳负极材料具有较高的电压平台、充放电过程中体积变化小等优点,具有很好的安全性和循环稳定性,被认为是一种非常有应用前景、可替代碳的新型负极材料。然而,钛基氧化物负极材料较低的电子传导率和锂离子扩散速率导致倍率性能不佳,从而限制其实际应用。提高电子的传导和锂离子的传输,已成为钛基氧化物材料的主要研究方向之一(朱文均,多孔钛基氧化物锂离子电池负极材料制备及其电化学性能[D].浙江大学,2016,博士学位论文)。而Mn3O4以其较高的理论容量、低电压磁滞、储量丰富、原料便宜而备受关注。然而锰基材料属于半导体材料,作为锂电池材料时导电性能差,并且在充放电过程中材料体积变化等因素,限制了其实际放电容量和倍率性能(蒋锋,锰基材料及其复合物的制备与电化学性能研究[D].湘潭大学,2014,硕士学位论文)。为了解决上述材料的不足,本发明采用静电纺丝技术将钛基氧化物LaTi21O38、CoTiO3与Mn3O4进行复合,利用不同组分的优点去优化钛基氧化物材料较低的电子传导率和倍率性能差等问题,以及氧化锰导电性能差、充放电体积变化大等问题,从而使材料的电化学性能得到有效的提高。
发明内容
本发明所要解决的技术问题是针对现有技术,提供一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法。
本发明为了解决上述技术问题所采取的技术方案为:一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法,利用静电纺丝技术采用以钛酸四丁酯、乙酸钴四水合物、乙酸锰四水合物、醋酸镧为原料,加入适量的高分子为粘合剂,在高电压条件下利用静电纺丝技术进行纺丝,随后将电纺丝产品置于在马弗炉中进行高温烧结,得到一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线,具体包括以下步骤:
(1)将乙酸钴四水合物和乙酸锰四水合物溶于N,N-二甲基甲酰胺和异丙醇的混合溶剂(体积比为1:1)中搅拌0.5h,形成溶液A;
(2)将钛酸四丁酯溶于溶液A,加入冰醋酸,搅拌0.5h,形成溶液B;
(3)将溶液B进行加热,加入醋酸镧,搅拌0.5h,形成溶液C;
(4)将PVP(聚乙烯吡咯烷酮K-120)加入溶液C,搅拌6h,形成澄清的溶液D;
(5)将澄清的溶液D在18~21kV的电压、15cm的接收距离、0.8~1.2mL h-1的流率下和相对湿度为35~45%的氛围下进行静电纺丝;
(6)将得到的静电纺丝产物放于100℃下干燥12h;
(7)将干燥后的静电纺丝产品转移到马弗炉中,在800℃~900℃温度下烧结5h,得到褐色粉末,经XRD和SEM分析该粉末为LaTi21O38·CoTiO3·Mn3O4复合物纳米线。
与现有技术相比,本发明采制备的LaTi21O38·CoTiO3·Mn3O4复合物纳米线的特点如下:
(a)采用静电纺丝技术制备的LaTi21O38·CoTiO3·Mn3O4复合物纳米线的表面带有小孔、粒径均匀以及稳定性更高;
(b)利用钛基氧化物具有较高的电压平台、充放电过程中体积变化小等优点克服氧化锰材料导电性能差且在充放电过程中材料体积变化大的问题。
(c)利用氧化锰具有较高的理论容量、低电压磁滞等优点克服钛基氧化物较低的电子传导率和倍率性能差等问题,从而使材料的电化学性能得到提升。
附图说明
图1为本发明制得的LaTi21O38·CoTiO3·Mn3O4复合物纳米线的XRD图;
图2为本发明制得的LaTi21O38·CoTiO3·Mn3O4复合物纳米线的SEM图。
具体实施方式
以下结合实施例对本发明作进一步详细描述。本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
实施例1
将1.0mmol(0.251g)的乙酸钴四水合物(C4H6CoO4·4H2O)和3.0mmol(0.735g)乙酸锰四水合物(MnC4H6O4·4H2O)溶于20mL的N,N-二甲基甲酰胺(DMF)和异丙醇的混合溶剂(体积比为1:1)中搅拌0.5h,形成溶液A;将8.0mL钛酸四丁酯(C16H36O4Ti)溶于溶液A,加入6mL冰醋酸,搅拌0.5h,形成溶液B;将溶液B进行加热,加入1.0mmol(0.316g)醋酸镧(C6H9O6La),搅拌0.5h,形成溶液C;将3.70g PVP(K-120,聚乙烯吡咯烷酮)加入溶液C,搅拌6h,形成澄清的溶液D;将澄清的溶液D在18kV的电压,15cm的接收距离和0.8mL h-1的流率下和相对湿度为35%的氛围下进行静电纺丝;将得到的静电纺丝产物放于100℃下干燥12h;将干燥后的静电纺丝产品转移到马弗炉中,在800℃下烧结5h,得到褐色粉末。将得到的粉末产品进行X射线粉末衍射(XRD)分析测试(图1),确认该粉末产品为复合物,其化学式为LaTi21O38·CoTiO3·Mn3O4;扫描电子显微镜SEM观察粉末产品的形貌为纳米线形(图2)。
实施例2
将1.0mmol(0.251g)的乙酸钴四水合物和3.0mmol(0.735g)乙酸锰四水合物溶于20mL的N,N-二甲基甲酰胺和异丙醇的混合溶剂(体积比为1:1)中搅拌0.5h,形成溶液A;将6.0mL钛酸四丁酯(C16H36O4Ti)溶于溶液A,加入6mL冰醋酸,搅拌0.5h,形成溶液B;将溶液B进行加热,加入1.0mmol(0.316g)醋酸镧(C6H9O6La),搅拌0.5h,形成溶液C;将3.70g PVP(K-120,聚乙烯吡咯烷酮)加入溶液C,搅拌6h,形成澄清的溶液D;将澄清的溶液D在21kV的电压,15cm的接收距离和1.2mL h-1的流率下和相对湿度为45%的氛围下进行静电纺丝;将得到的静电纺丝产品放于100℃下干燥12h;将干燥后的静电纺丝产品转移到马弗炉中,在900℃下烧结5h,得到褐色粉末。XRD和SEM分析确认该粉末为LaTi21O38·CoTiO3·Mn3O4复合物纳米线。
实施例3
将0.5mmol(0.126g)的乙酸钴四水合物和1.5mmol(0.3675g)乙酸锰四水合物溶于10mL的N,N-二甲基甲酰胺和异丙醇的混合溶剂(体积比为1:1)中搅拌0.5h,形成溶液A;将4.0ml钛酸四丁酯(C16H36O4Ti)溶于溶液A,加入3mL冰醋酸,搅拌0.5h,形成溶液B;将溶液B进行加热,加入1.00mmol(0.158g)醋酸镧(C6H9O6La),搅拌0.5h,形成溶液C;将1.85g PVP(K-120,聚乙烯吡咯烷酮)加入溶液C,搅拌6h,形成澄清的溶液D;将澄清的溶液D在19kV的电压,15cm的接收距离和0.9mL h-1的流率下和相对湿度为40%的氛围下进行静电纺丝;将得到的静电纺丝产品放于100℃下干燥12h;将干燥后的静电纺丝产品转移到马弗炉中,在850℃下烧结5h,得到褐色粉末。XRD和SEM分析确认该粉末为LaTi21O38·CoTiO3·Mn3O4复合物纳米线。

Claims (1)

1.一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法,其特征在于,所述纳米线的元素组成化学式为LaTi21O38·CoTiO3·Mn3O4;所述的制备方法包括以下步骤:
(1)将乙酸钴四水合物和乙酸锰四水合物溶于体积比为1:1的N,N-二甲基甲酰胺和异丙醇的混合溶剂中,搅拌0.5h,形成溶液A;
(2)将钛酸四丁酯溶于溶液A,加入冰醋酸,搅拌0.5h,形成溶液B;
(3)将溶液B进行加热,加入醋酸镧,搅拌0.5h,形成溶液C;
(4)将K-120聚乙烯吡咯烷酮加入溶液C,搅拌6h,形成澄清的溶液D;
(5)将澄清的溶液D在18~21kV的电压、15cm的接收距离、0.8~1.2mL h-1的流率下和相对湿度为35~45%的氛围下进行静电纺丝;
(6)将得到的静电纺丝产品放于100℃下干燥12h;
(7)将干燥后的静电纺丝产品转移到马弗炉中,在800℃~900℃温度下烧结5h,得到LaTi21O38·CoTiO3·Mn3O4复合物纳米线。
CN201810434202.5A 2018-05-08 2018-05-08 一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法 Active CN108649200B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810434202.5A CN108649200B (zh) 2018-05-08 2018-05-08 一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810434202.5A CN108649200B (zh) 2018-05-08 2018-05-08 一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法

Publications (2)

Publication Number Publication Date
CN108649200A true CN108649200A (zh) 2018-10-12
CN108649200B CN108649200B (zh) 2020-01-03

Family

ID=63749427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810434202.5A Active CN108649200B (zh) 2018-05-08 2018-05-08 一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN108649200B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350174A (zh) * 2019-07-11 2019-10-18 宁波大学 一种锰酸锂、钛酸锂与TiO2复合物纳米线及其制备方法
CN111607846A (zh) * 2020-06-09 2020-09-01 宁波大学 一种钛酸盐锂离子电池负极材料的制备方法及其用途
CN111910290A (zh) * 2020-07-27 2020-11-10 陕西科技大学 一种具有梯度分布的钴镍合金/碳复合电催化剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146640A (zh) * 1995-06-07 1997-04-02 永备电池有限公司 其阴极含钛酸盐添加剂的碱性电池
CN103022463A (zh) * 2012-12-20 2013-04-03 中国东方电气集团有限公司 一种锂电池锰基复合负极材料及其制备方法
CN103700509A (zh) * 2013-12-26 2014-04-02 常州大学 一种固态敏化电池的制备方法
CN104882299A (zh) * 2015-05-13 2015-09-02 扬州大学 一种四氧化三锰/碳基复合纳米电极材料的制备方法
CN104878469A (zh) * 2015-05-13 2015-09-02 扬州大学 一种制备无机氧化锰纳米线、纳米管和纳米棒的方法
CN104928802A (zh) * 2015-06-28 2015-09-23 安徽工程大学 一种Ag-TiO2复合纤维的制备方法
CN105401260A (zh) * 2015-11-03 2016-03-16 浙江大学 一种钛酸锶纳米管材料的制备方法
CN105967226A (zh) * 2016-04-29 2016-09-28 宁波大学 一种钛酸盐纳米纤维及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146640A (zh) * 1995-06-07 1997-04-02 永备电池有限公司 其阴极含钛酸盐添加剂的碱性电池
CN103022463A (zh) * 2012-12-20 2013-04-03 中国东方电气集团有限公司 一种锂电池锰基复合负极材料及其制备方法
CN103700509A (zh) * 2013-12-26 2014-04-02 常州大学 一种固态敏化电池的制备方法
CN104882299A (zh) * 2015-05-13 2015-09-02 扬州大学 一种四氧化三锰/碳基复合纳米电极材料的制备方法
CN104878469A (zh) * 2015-05-13 2015-09-02 扬州大学 一种制备无机氧化锰纳米线、纳米管和纳米棒的方法
CN104928802A (zh) * 2015-06-28 2015-09-23 安徽工程大学 一种Ag-TiO2复合纤维的制备方法
CN105401260A (zh) * 2015-11-03 2016-03-16 浙江大学 一种钛酸锶纳米管材料的制备方法
CN105967226A (zh) * 2016-04-29 2016-09-28 宁波大学 一种钛酸盐纳米纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANG LU SHAO等,: ""Preparation of Mn3O4 Nanofibres via An Electrospinning Technique"", 《CHINESE CHEMICAL LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350174A (zh) * 2019-07-11 2019-10-18 宁波大学 一种锰酸锂、钛酸锂与TiO2复合物纳米线及其制备方法
CN111607846A (zh) * 2020-06-09 2020-09-01 宁波大学 一种钛酸盐锂离子电池负极材料的制备方法及其用途
CN111910290A (zh) * 2020-07-27 2020-11-10 陕西科技大学 一种具有梯度分布的钴镍合金/碳复合电催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN108649200B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
Hu et al. Facile syntheses of perovskite type LaMO3 (M= Fe, Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes
Lu et al. Hierarchical NiCo 2 O 4 nanosheets@ hollow microrod arrays for high-performance asymmetric supercapacitors
Li et al. Microwave-assisted synthesis of novel nanostructured Zn 3 (OH) 2 V 2 O 7· 2H 2 O and Zn 2 V 2 O 7 as electrode materials for supercapacitors
CN106971855B (zh) 一种铁酸镍纳米颗粒电极材料及制备方法和用途
Chen et al. Al 2 O 3-coated Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 nanotubes as cathode materials for high-performance lithium-ion batteries
JP5270503B2 (ja) 遷移金属酸化物ロッドの製造方法、2次電池の製造方法
CN108649200A (zh) 一种LaTi21O38·CoTiO3·Mn3O4复合物纳米线的制备方法
CN103903873A (zh) 一种全赝电容超级电容器
CN108565127B (zh) 一种可提高超级电容器比容量的电极材料、制备方法及应用
Xu et al. Preparation and performance of Co 3 O 4–NiO composite electrode material for supercapacitors
Amani et al. Synthesis and investigation of CoMnFeO4/reduced graphene oxide as ecofriendly electrode material for supercapacitor and its electrochemical performances
Duan et al. Synthesis and electrochemical properties of Co3O4 nanoparticles by hydrothermal method at different temperatures
CN103682343A (zh) 锡化钴/聚苯胺复合材料及其制备方法和应用
CN111268745A (zh) 一种NiMoO4@Co3O4核壳纳米复合材料、制备方法和应用
CN106374086A (zh) 纳米钛酸锂‑石墨烯复合材料及其制备方法
CN110033955B (zh) 一种基于石墨烯构建镍钴矿二元复合材料的制备方法
CN109560277B (zh) 一种纳米线状硒化锰/碳复合材料的制备方法
CN105967226B (zh) 一种钛酸盐纳米纤维及其制备方法
CN108711517B (zh) 一种γ-Fe2O3纳米材料及其制备方法和应用
CN108649201B (zh) 一种LaTi21O38·CoO·CuLaO2复合物纳米线的制备方法
Wang et al. Misfit-layered cobaltite Ca3Co4O9+ δas a new electrode for supercapacitor with excellent cycling stability
CN117254049A (zh) 一种用于锂空气电池的Co3O4/CeO2纳米球复合材料的制备方法
CN109904436B (zh) 一种钛酸钴二氧化钛复合物纳米线及其制备方法
Ren et al. Assembly of Mn3O4/carbon black composite and its supercapacitor application
CN109585183A (zh) 一种多孔FeS2@Fe7S8/石墨烯三维致密宏观体的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221223

Address after: No. 777, Zhongguan West Road, Zhuangshi Street, Ningbo City, Zhejiang Province 315000

Patentee after: Ningbo University Science Park Development Co.,Ltd.

Address before: 315211, Fenghua Road, Jiangbei District, Zhejiang, Ningbo 818

Patentee before: Ningbo University

TR01 Transfer of patent right
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181012

Assignee: Ningbo Haoyi Technology Co.,Ltd.

Assignor: Ningbo University Science Park Development Co.,Ltd.

Contract record no.: X2023980033943

Denomination of invention: Preparation method of LaTi21O38 . CoTiO3 . Mn3O4 composite nanowires

Granted publication date: 20200103

License type: Exclusive License

Record date: 20230325

EE01 Entry into force of recordation of patent licensing contract