CN108640658A - 掺杂稀土铈的热敏电阻材料的制备方法 - Google Patents

掺杂稀土铈的热敏电阻材料的制备方法 Download PDF

Info

Publication number
CN108640658A
CN108640658A CN201810557696.6A CN201810557696A CN108640658A CN 108640658 A CN108640658 A CN 108640658A CN 201810557696 A CN201810557696 A CN 201810557696A CN 108640658 A CN108640658 A CN 108640658A
Authority
CN
China
Prior art keywords
parts
rare earth
thermistor material
preparation
earth cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810557696.6A
Other languages
English (en)
Inventor
赵娟
赵秋锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810557696.6A priority Critical patent/CN108640658A/zh
Publication of CN108640658A publication Critical patent/CN108640658A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

本发明公开了掺杂稀土铈的热敏电阻材料的制备方法,该工艺利用硝酸铈和草酸钠反应提供稀土铈,较大程度的改变了原有热敏电阻材料的B值和电阻率。传统的NTC热敏陶瓷的导电原理为电子在尖晶石结构B位中同种金属不同的变价离子之间的跳跃而产生的跳跃电导,而Mn和Co都有多种变价离子,它们的阳离子分布比较复杂,B位可能存在Mn4+、Mn3+和Co3+、Co2+等多种离子。通过检测发现,在掺杂稀土铈后,晶粒变小,晶界增多,在负温度系数热敏陶瓷材料中,晶粒是半导体,而晶界是高阻层,而晶界是承受电压的主要单位。同时在掺杂稀土铈后获得的热敏电阻材料的稳定性高,耐老化性能好。并且在精密仪器方面有较大的应用前景,例如透析仪、DNA测序仪、血液分析仪等。

Description

掺杂稀土铈的热敏电阻材料的制备方法
技术领域
本发明涉及电阻材料这一技术领域,特别涉及到掺杂稀土铈的热敏电阻材料的制备方法。
背景技术
负温度系数(Negative Temperature Coeficient,NTC)热敏电阻是一种由多晶半导体陶瓷材料制备的对温度非常敏感的材料元件。NTC热敏电阻的阻值会随着温度的升高呈指数减小,它具有对温度敏感、制备成本低和互换性良好等优点,广泛应用于温度测量、温度控制和温度补偿等 。目前,NTC热敏电阻大多是由3d过渡金属元素组成,是主相为AB2O4尖晶石结构的复合化合物。以最简单的Mn-Co—O系NTC热敏电阻为例,Mn。Co 0系尖晶石相的电学性能,主要是由尖晶石结构八面体间隙中Mn3 /Mn4 离子浓度的变化和它们之间的电荷跳跃来决定的。因此阳离子的掺杂和阳离子在尖晶石结构的八面体间隙中的分布是影响热敏陶瓷性能的主要因素。近几年来,对于热敏陶瓷的研究大多集中在添加少量掺杂物来改善材料性能方面。目前研究较多的是具有尖晶石结构的常温NTC热敏电阻,关于Mn-Co.O二元体系,经Zn、Fe等元素掺杂后,Mn-Co-O 尖晶石相的电性能会得以改善,这些掺杂元素的离子半径一般都与Mn离子半径比较接近,对于在体系中掺杂一些价态半径明显有别于主相离子的物质的研究相对比较少。众所周知,稀土氧化物有着很好的热稳定性,然而关于它在热敏陶瓷中的掺杂的研究却很少. 所以本发明尝试将少量的稀土Ce掺入热敏电阻中,以期望来改善提升传统热敏电阻材料的性能。
发明内容
针对现有技术存在的上述问题和需求,本发明的目的是提供一种掺杂稀土铈的热敏电阻材料的制备方法。本发明利用硝酸铈和草酸钠反应提供稀土铈,较大程度的改变了原有热敏电阻材料的B值和电阻率。传统的NTC热敏陶瓷的导电原理为电子在尖晶石结构B位中同种金属不同的变价离子之间的跳跃而产生的跳跃电导,而Mn和Co都有多种变价离子,它们的阳离子分布比较复杂,B 位可能存在Mn4+ 、Mn3+ 和Co3+ 、Co2+等多种离子。通过检测发现,在掺杂稀土铈后,晶粒变小,晶界增多,在负温度系数热敏陶瓷材料中,晶粒是半导体,而晶界是高阻层,而晶界是承受电压的主要单位。同时在掺杂稀土铈后获得的热敏电阻材料的稳定性高,耐老化性能好。
技术方案:为了实现上述目的,本发明公开了掺杂稀土铈的热敏电阻材料的制备方法,包括以下步骤:
(1)将MnO 5-8份、AlCl3 2-4份、B2O3 3-6份、Fe3O4 5-9份、ZnO3 5-8份、Al2O3 2-6份、SiO2 10-18份、尖晶石20-35份,置于球磨罐中,然后加入分散介质,进行球磨,烘干得到粉末混合物;
(2)将步骤(1)的粉末混合物中加入硝酸铈1-3份、草酸钠4-8份、聚乙烯醇4-10份、偶联剂1-4份中进行熔融,在惰性气体保护的气氛中做高温烧结,然后自然冷却至室温;
(3)将步骤(2)的反应物加入到超声震荡器中打碎,过筛分选得到小颗粒产物;
(4)将步骤(3)的产物进行压制成型,脱模干燥,即得成品。
优选地,所述步骤(1)中的分散介质为无水乙醇、异丁醇、石蜡油和焦磷酸钠的混合物,其摩尔质量比为无水乙醇:异丁醇:石蜡油:焦磷酸钠为7:5:5:1。
优选地,所述步骤(1)中的球磨转速为100-500转/分钟,球磨时间为3-6h。
优选地,所述步骤(1)中的烘干温度为65-90℃。
优选地,所述步骤(2)中的偶联剂选自3-氨丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、γ―氨丙基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷中的一种或几种。
优选地,所述步骤(2)中的惰性气体为氮气,气体流入速率为0.5L/min,保持炉内气压为2-5MPa。
优选地,所述步骤(2)中的高温烧结的温度为800-1000℃,反应时间为2-3h。
优选地,所述步骤(3)中的超声处理的频率为50-60KHz,功率为300W,超声时间为60-75分钟。
优选地,所述步骤(3)中的过筛孔径为500目。
优选地,所述步骤(4)中的脱模干燥的温度控制在65-70℃:
与现有技术相比,本发明具有如下有益效果:
(1) 本发明所述的掺杂稀土铈的热敏电阻材料制备方法步骤简单易行,原材料易得,均为市面上常见材料,价格便宜。
(2)通过本发明所述的掺杂稀土铈的热敏电阻材料的制备方法获得的电阻材料在电化学性能上较市面上常见的同类材料有明显的提升,电阻率增加、B值减小,材料样本稳定性好、耐老化。
(3)通过本发明所述的掺杂稀土铈的热敏电阻材料的制备方法获得的电阻材料在精密仪器方面有较大的应用前景,例如透析仪、DNA测序仪、血液分析仪等。
具体实施方式
以下通过结合下述具体实施方式进一步说明本发明。需要指出的是,以下具体实施方式仅用于解释本发明,并不用于对本发明的内容进行限定。
本发明提供的掺杂稀土铈的热敏电阻材料利用硝酸铈和草酸钠反应提供稀土铈,较大程度的改变了原有热敏电阻材料的B值和电阻率。传统的NTC热敏陶瓷的导电原理为电子在尖晶石结构B位中同种金属不同的变价离子之间的跳跃而产生的跳跃电导,而Mn和Co都有多种变价离子,它们的阳离子分布比较复杂,B 位可能存在Mn4+ 、Mn3+ 和Co3+ 、Co2+等多种离子。通过检测发现,在掺杂稀土铈后,晶粒变小,晶界增多,在负温度系数热敏陶瓷材料中,晶粒是半导体,而晶界是高阻层,而晶界是承受电压的主要单位。同时在掺杂稀土铈后获得的热敏电阻材料的稳定性高,耐老化性能好。
下面通过实施例进一步阐明本发明。需要指出的是,本发明并非仅局限于所述实施例。
实施例1
(1)将MnO 5份、AlCl3 2份、B2O3 3份、Fe3O4 5份、ZnO3 5份、Al2O3 2份、SiO2 10份、尖晶石20份,置于球磨罐中,然后加入分散介质,进行球磨,球磨转速为100转/分钟,球磨时间为3h,然后在65℃温度下烘干得到粉末混合物,其中分散介质为无水乙醇、异丁醇、石蜡油和焦磷酸钠的混合物,其摩尔质量比为无水乙醇:异丁醇:石蜡油:焦磷酸钠为7:5:5:1,;
(2)将步骤(1)的粉末混合物中加入硝酸铈1份、草酸钠4份、聚乙烯醇4份、3-氨丙基三甲氧基硅烷1份中进行熔融,在氮气气体保护的气氛中做高温烧结,高温烧结的温度为800℃,反应时间为2h,然后自然冷却至室温,其中氮气气体流入速率为0.5L/min,保持炉内气压为2Mpa;
(3)将步骤(2)的反应物加入到超声震荡器中打碎,超声处理的频率为50KHz,功率为300W,超声时间为60分钟,过筛分选得到小颗粒产物,其中过筛孔径为500目;
(4)将步骤(3)的产物进行压制成型,脱模干燥,即得成品,其中脱模干燥的温度控制在65-70℃。
实施例2
(1)将MnO 6份、AlCl3 3份、B2O3 4份、Fe3O4 6份、ZnO3 6份、Al2O3 3份、SiO2 13份、尖晶石25份,置于球磨罐中,然后加入分散介质,进行球磨,球磨转速为200转/分钟,球磨时间为4h,然后在70℃温度下烘干得到粉末混合物,其中分散介质为无水乙醇、异丁醇、石蜡油和焦磷酸钠的混合物,其摩尔质量比为无水乙醇:异丁醇:石蜡油:焦磷酸钠为7:5:5:1,;
(2)将步骤(1)的粉末混合物中加入硝酸铈2份、草酸钠6份、聚乙烯醇6份、乙烯基三乙氧基硅烷2份中进行熔融,在氮气气体保护的气氛中做高温烧结,高温烧结的温度为900℃,反应时间为2.3h,然后自然冷却至室温,其中氮气气体流入速率为0.5L/min,保持炉内气压为3Mpa;
(3)将步骤(2)的反应物加入到超声震荡器中打碎,超声处理的频率为55KHz,功率为300W,超声时间为65分钟,过筛分选得到小颗粒产物,其中过筛孔径为500目;
(4)将步骤(3)的产物进行压制成型,脱模干燥,即得成品,其中脱模干燥的温度控制在65-70℃。
实施例3
(1)将MnO 7份、AlCl3 3份、B2O3 5份、Fe3O4 8份、ZnO3 7份、Al2O3 5份、SiO2 17份、尖晶石30份,置于球磨罐中,然后加入分散介质,进行球磨,球磨转速为400转/分钟,球磨时间为5h,然后在80℃温度下烘干得到粉末混合物,其中分散介质为无水乙醇、异丁醇、石蜡油和焦磷酸钠的混合物,其摩尔质量比为无水乙醇:异丁醇:石蜡油:焦磷酸钠为7:5:5:1,;
(2)将步骤(1)的粉末混合物中加入硝酸铈2份、草酸钠7份、聚乙烯醇9份、γ―氨丙基三甲氧基硅烷3份中进行熔融,在氮气气体保护的气氛中做高温烧结,高温烧结的温度为950℃,反应时间为2.7h,然后自然冷却至室温,其中氮气气体流入速率为0.5L/min,保持炉内气压为4Mpa;
(3)将步骤(2)的反应物加入到超声震荡器中打碎,超声处理的频率为55KHz,功率为300W,超声时间为70分钟,过筛分选得到小颗粒产物,其中过筛孔径为500目;
(4)将步骤(3)的产物进行压制成型,脱模干燥,即得成品,其中脱模干燥的温度控制在65-70℃。
实施例4
(1)将MnO 8份、AlCl3 4份、B2O3 6份、Fe3O4 9份、ZnO3 8份、Al2O3 6份、SiO2 18份、尖晶石35份,置于球磨罐中,然后加入分散介质,进行球磨,球磨转速为500转/分钟,球磨时间为6h,然后在90℃温度下烘干得到粉末混合物,其中分散介质为无水乙醇、异丁醇、石蜡油和焦磷酸钠的混合物,其摩尔质量比为无水乙醇:异丁醇:石蜡油:焦磷酸钠为7:5:5:1,;
(2)将步骤(1)的粉末混合物中加入硝酸铈3份、草酸钠8份、聚乙烯醇10份、乙烯基三(β-甲氧基乙氧基)硅烷4份中进行熔融,在氮气气体保护的气氛中做高温烧结,高温烧结的温度为1000℃,反应时间为3h,然后自然冷却至室温,其中氮气气体流入速率为0.5L/min,保持炉内气压为5Mpa;
(3)将步骤(2)的反应物加入到超声震荡器中打碎,超声处理的频率为60KHz,功率为300W,超声时间为75分钟,过筛分选得到小颗粒产物,其中过筛孔径为500目;
(4)将步骤(3)的产物进行压制成型,脱模干燥,即得成品,其中脱模干燥的温度控制在65-70℃。
对比例1
(1)将MnO 5份、AlCl3 2份、B2O3 3份、Fe3O4 5份、ZnO3 5份、Al2O3 2份、SiO2 10份、尖晶石20份,置于球磨罐中,然后加入分散介质,进行球磨,球磨转速为100转/分钟,球磨时间为3h,然后在65℃温度下烘干得到粉末混合物,其中分散介质为无水乙醇、异丁醇、石蜡油和焦磷酸钠的混合物,其摩尔质量比为无水乙醇:异丁醇:石蜡油:焦磷酸钠为7:5:5:1,;
(2)将步骤(1)的粉末混合物中加入聚乙烯醇4份、3-氨丙基三甲氧基硅烷1份中进行熔融,在氮气气体保护的气氛中做高温烧结,高温烧结的温度为800℃,反应时间为2h,然后自然冷却至室温,其中氮气气体流入速率为0.5L/min,保持炉内气压为2Mpa;
(3)将步骤(2)的反应物加入到超声震荡器中打碎,超声处理的频率为50KHz,功率为300W,超声时间为60分钟,过筛分选得到小颗粒产物,其中过筛孔径为500目;
(4)将步骤(3)的产物进行压制成型,脱模干燥,即得成品,其中脱模干燥的温度控制在65-70℃。
对比例2
(1)将MnO 8份、AlCl3 4份、B2O3 6份、Fe3O4 9份、ZnO3 8份、Al2O3 6份、SiO2 18份、尖晶石35份,置于球磨罐中,然后加入分散介质,进行球磨,球磨转速为500转/分钟,球磨时间为6h,然后在90℃温度下烘干得到粉末混合物,其中分散介质为无水乙醇、异丁醇、石蜡油和焦磷酸钠的混合物,其摩尔质量比为无水乙醇:异丁醇:石蜡油:焦磷酸钠为7:5:5:1,;
(2)将步骤(1)的粉末混合物中加入硝酸铈3份、草酸钠8份、聚乙烯醇10份、乙烯基三(β-甲氧基乙氧基)硅烷4份中进行熔融,进行高温烧结,高温烧结的温度为1000℃,反应时间为3h,然后自然冷却至室温;
(3)将步骤(2)的反应物加入到超声震荡器中打碎,超声处理的频率为60KHz,功率为300W,超声时间为75分钟,过筛分选得到小颗粒产物,其中过筛孔径为500目;
(4)将步骤(3)的产物进行压制成型,脱模干燥,即得成品,其中脱模干燥的温度控制在65-70℃。
将实施例1-4和对比例1-2的制得的掺杂稀土铈的热敏电阻材料分别进行电阻率、B值、耐老化性能这几项性能测试,测试结果见表1。
表1
电阻率 Ωcm B值K 耐老化性能 ΔR25/R25
实施例1  948 4040  0.013
实施例2  940  4095  0.019
实施例3  935  4014  0.011
实施例4  937  4070  0.016
对比例1  520 5590  0.072
对比例2 619  4730  0.066
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.掺杂稀土铈的热敏电阻材料的制备方法,其特征在于,包括以下步骤:
(1)将MnO 5-8份、AlCl3 2-4份、B2O3 3-6份、Fe3O4 5-9份、ZnO3 5-8份、Al2O3 2-6份、SiO2 10-18份、尖晶石20-35份,置于球磨罐中,然后加入分散介质,进行球磨,烘干得到粉末混合物;
(2)将步骤(1)的粉末混合物中加入硝酸铈1-3份、草酸钠4-8份、聚乙烯醇4-10份、偶联剂1-4份中进行熔融,在惰性气体保护的气氛中做高温烧结,然后自然冷却至室温;
(3)将步骤(2)的反应物加入到超声震荡器中打碎,过筛分选得到小颗粒产物;
(4)将步骤(3)的产物进行压制成型,脱模干燥,即得成品。
2.根据权利要求1所述的掺杂稀土铈的热敏电阻材料的制备方法,其特征在于,所述步骤(1)中的分散介质为无水乙醇、异丁醇、石蜡油和焦磷酸钠的混合物,其摩尔质量比为无水乙醇:异丁醇:石蜡油:焦磷酸钠为7:5:5:1。
3.根据权利要求1所述的掺杂稀土铈的热敏电阻材料的制备方法,其特征在于,所述步骤(1)中的球磨转速为100-500转/分钟,球磨时间为3-6h。
4.根据权利要求1所述的掺杂稀土铈的热敏电阻材料的制备方法,其特征在于,所述步骤(1)中的烘干温度为65-90℃。
5.根据权利要求1所述的掺杂稀土铈的热敏电阻材料的制备方法,其特征在于,所述步骤(2)中的偶联剂选自3-氨丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、γ―氨丙基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷中的一种或几种。
6.根据权利要求1所述的掺杂稀土铈的热敏电阻材料的制备方法,其特征在于,所述步骤(2)中的惰性气体为氮气,气体流入速率为0.5L/min,保持炉内气压为2-5MPa。
7.根据权利要求1所述的掺杂稀土铈的热敏电阻材料的制备方法,其特征在于,所述步骤(2)中的高温烧结的温度为800-1000℃,反应时间为2-3h。
8.根据权利要求1所述的掺杂稀土铈的热敏电阻材料的制备方法,其特征在于,所述步骤(3)中的超声处理的频率为50-60KHz,功率为300W,超声时间为60-75分钟。
9.根据权利要求1所述的掺杂稀土铈的热敏电阻材料的制备方法,其特征在于,所述步骤(3)中的过筛孔径为500目。
10.根据权利要求1所述的掺杂稀土铈的热敏电阻材料的制备方法,其特征在于,所述步骤(4)中的脱模干燥的温度控制在65-70℃。
CN201810557696.6A 2018-06-01 2018-06-01 掺杂稀土铈的热敏电阻材料的制备方法 Pending CN108640658A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810557696.6A CN108640658A (zh) 2018-06-01 2018-06-01 掺杂稀土铈的热敏电阻材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810557696.6A CN108640658A (zh) 2018-06-01 2018-06-01 掺杂稀土铈的热敏电阻材料的制备方法

Publications (1)

Publication Number Publication Date
CN108640658A true CN108640658A (zh) 2018-10-12

Family

ID=63759199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810557696.6A Pending CN108640658A (zh) 2018-06-01 2018-06-01 掺杂稀土铈的热敏电阻材料的制备方法

Country Status (1)

Country Link
CN (1) CN108640658A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180151A (zh) * 2020-01-03 2020-05-19 北京科技大学 基于交变频率的正、负、Delta温度系数热敏电阻主动切换法
CN113956038A (zh) * 2021-12-01 2022-01-21 中国科学院新疆理化技术研究所 一种铈掺杂钙钛矿型高温热敏陶瓷电阻材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143207A (en) * 1996-09-18 2000-11-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Wide-range thermistor material and method for producing it
CN103011811A (zh) * 2012-12-07 2013-04-03 华中科技大学 一种高温负温度系数热敏电阻材料的制备方法
CN103098149A (zh) * 2010-09-14 2013-05-08 株式会社村田制作所 半导体陶瓷元件及其制造方法
CN104230342A (zh) * 2014-09-11 2014-12-24 华中科技大学 一种负温度系数热敏电阻材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143207A (en) * 1996-09-18 2000-11-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Wide-range thermistor material and method for producing it
CN103098149A (zh) * 2010-09-14 2013-05-08 株式会社村田制作所 半导体陶瓷元件及其制造方法
CN103011811A (zh) * 2012-12-07 2013-04-03 华中科技大学 一种高温负温度系数热敏电阻材料的制备方法
CN104230342A (zh) * 2014-09-11 2014-12-24 华中科技大学 一种负温度系数热敏电阻材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180151A (zh) * 2020-01-03 2020-05-19 北京科技大学 基于交变频率的正、负、Delta温度系数热敏电阻主动切换法
CN111180151B (zh) * 2020-01-03 2021-08-03 北京科技大学 基于交变频率的正、负、Delta温度系数热敏电阻主动切换法
CN113956038A (zh) * 2021-12-01 2022-01-21 中国科学院新疆理化技术研究所 一种铈掺杂钙钛矿型高温热敏陶瓷电阻材料及其制备方法

Similar Documents

Publication Publication Date Title
CN102924070B (zh) 宽温高频低功耗锰锌铁氧体材料及制造方法
CN107793153A (zh) 一种复合型热敏电阻材料及其制备方法和应用
CN111205075B (zh) 一种镍锌铁氧体材料及其制备方法
CN108640658A (zh) 掺杂稀土铈的热敏电阻材料的制备方法
KR20120091091A (ko) 강자성 입자 분말 및 그의 제조법, 이방성 자석 및 본드 자석
CN101152981B (zh) 纳米材料在铁氧体中的应用
CN108558383A (zh) NiZn铁氧体材料及制备方法
JPH08208333A (ja) 酸素イオン導電体及びその製造方法
CN105777098A (zh) 铁氧体的制备方法、铁氧体和电感器
CA2034106C (en) Process for fabricating doped zinc oxide microspheres
CN106747392A (zh) 一种Ho/Co复合掺杂Ni‑Zn铁氧体陶瓷的制备方法
CN110342922A (zh) 一种复合铁氧体材料及其制备方法、叠层电感
CN114394819B (zh) 一种高可靠性片式ntc热敏电阻材料及其制备方法及用途
CN104370525B (zh) 一种锰钴铜体系非线性负温度系数厚膜电子浆料的制备方法
CN100401434C (zh) 高损耗复合结构磁性材料的制备方法
CN100440390C (zh) Ni-Zn系铁氧体合成物及天线线圈
Dordor et al. Electrical characterization of phase transition in yttrium doped bismuth oxide, Bi1. 55Y0. 45O3
CN106601419B (zh) 一种具有间隙结构的磁性材料及制备方法
CN110467448A (zh) 一种适于流延成型的纳米ntc陶瓷粉体及流延膜的制备方法
CN109665833A (zh) 一种多铁复合材料及制备柔性多铁复合材料的方法
US20100213646A1 (en) Method for producing metal complex oxide sintered body
CN110054488A (zh) 一种含有复相添加剂的热敏陶瓷材料及其制备方法
JP2740648B2 (ja) 軟磁性酸化物材料の製造方法
CN106115799B (zh) 一种钴酸钡粉体的制备方法
CN108484157A (zh) TiO2基压敏电阻材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181012