CN108640251B - 二价锰强化高铁酸盐去除水中多种重金属污染物的方法 - Google Patents

二价锰强化高铁酸盐去除水中多种重金属污染物的方法 Download PDF

Info

Publication number
CN108640251B
CN108640251B CN201810448789.5A CN201810448789A CN108640251B CN 108640251 B CN108640251 B CN 108640251B CN 201810448789 A CN201810448789 A CN 201810448789A CN 108640251 B CN108640251 B CN 108640251B
Authority
CN
China
Prior art keywords
ferrate
heavy metal
water
manganese
metal pollutants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810448789.5A
Other languages
English (en)
Other versions
CN108640251A (zh
Inventor
马军
王鲁
刘玉蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810448789.5A priority Critical patent/CN108640251B/zh
Priority to PCT/CN2018/095812 priority patent/WO2019214065A1/zh
Priority to US17/054,456 priority patent/US11560324B2/en
Publication of CN108640251A publication Critical patent/CN108640251A/zh
Application granted granted Critical
Publication of CN108640251B publication Critical patent/CN108640251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

二价锰强化高铁酸盐去除水中多种重金属污染物的方法,本发明涉及二价锰强化高铁酸盐去除水中多种重金属污染物的方法。本发明的目的是为了解决现有的常规水处理工艺对水中重金属的去除效率低,尤其是对多种重金属污染物共存时同步去除的效率更低的问题,方法为:配制浓度为20~10000mmol/L的高铁酸盐母液;配制浓度为30~10000mmol/L的二价锰盐母液;将二价锰盐母液加入到重金属污染物的水体中;再加入高铁酸盐母液,反应;然后加絮凝剂,沉淀。本发明可以使水体中砷酸盐、铬、铊、锑、铬以及钼酸盐的去除率达90%以上,使铅、镉等重金属的去除率达85%以上。本发明应用于水处理领域。

Description

二价锰强化高铁酸盐去除水中多种重金属污染物的方法
技术领域
本发明涉及二价锰强化高铁酸盐去除水中多种重金属污染物的方法。
背景技术
重金属是对人体危害较大的一类重要污染物,它们易在生物体内积累,毒性随形态而异,不能被生物降解而消除,这些特点使得它们的污染问题显得特别突出。水体中的重金属污染主要是由于工业废水,如电镀废水、颜料废水、电子工业废水、合金废水、采矿废水等排入水体造成的。水中重金属的存在严重地影响了人们的身体健康。大量的资料表明,饮用水中的某些无机或矿物成分与某些疾病有相关性。重金属离子如镉、铜和锌等与心血管病有因果关系。铅也是一种毒性物质,人饮用含铅量0.03mg/L以上的水会导致慢性中毒。铅与其它金属可发生协同作用并能使其它金属的毒性增大。重金属污染的日趋严重,已造成了多起中毒事件。20世纪中期,在日本雄本县水俣湾沿岸地区,由于汞污染而发生“水俣病”;富山县神通川流域的镉污染地区发生骨痛病,先后引起数十人死亡,数百至上万人受害。如何有效地去除饮用水源中的重金属污染物已成为给水处理中急需解决的问题。
发明内容
本发明的目的是为了解决现有的常规水处理工艺对水中重金属的去除效率低,尤其是对多种重金属污染物共存时同步去除的效率更低的问题,提供二价锰强化高铁酸盐去除水中多种重金属污染物的方法。
本发明二价锰强化高铁酸盐去除水中多种重金属污染物的方法是按照以下步骤进行的:
一、配制浓度为20~10000mmol/L的高铁酸盐母液;二、配制浓度为30~10000mmol/L的二价锰盐母液;三、将步骤二中配制的二价锰盐母液加入到含有一种或者多种重金属污染物的水体中,其中二价锰的最终浓度为5~20μmol/L;四、将步骤一配制的高铁酸盐母液加入到步骤三的水体中,反应1~60min;然后加絮凝剂,再以100-130r/min搅拌0.8-1.2min,然后以30-50r/min搅拌15-25min,沉淀15-25min,即完成,其中二价锰与高铁酸盐的摩尔比为0.1~1.5:1。
高铁酸盐是一种强氧化剂,在整个pH范围内都具有强氧化性。碱性条件下为0.7V;酸性条件下为2.2V。许多研究者确定,高铁酸盐分解时不会直接由Fe(Ⅵ)转化为Fe(Ⅲ),而是经过Fe+5、Fe+4等中间氧化态,并可能形成比铝、铁盐水解产物具有更大网状结构,更高正电荷的水解产物。多种水解产物的形成表明,高铁酸盐可能会比无机絮凝剂更有效地中和水中胶体的ζ电位,它们在水中发挥聚合作用,并最终形成氢氧化铁胶体沉淀。
本发明提供了一种同时高效去除水中多种重金属污染物的方法。本发明利用二价锰与高铁酸钾快速反应时同时生成两种纳米级的具有很强吸附性能的吸附剂:二氧化锰和三价铁氧化物。所产生的纳米级二氧化锰颗粒具有较大的比表面积,表面具有较强的负电性,对铅、镉、铊、锰等重金属具有较强的吸附性能和去除效果;而该体系所产生的纳米级铁氧化物颗粒同样具有较大的比表面积,但是其表面的负电性较弱,而且易与含氧酸重金属污染物发生络合作用,因此对砷酸盐、钼酸盐等重金属污染物具有很强的去除效果。所以采用二价锰协同高铁酸钾工艺能够高效快速的同时去除水中多种共存重金属污染物。根据水中重金属污染物的种类和浓度大小,可以灵活调整高铁酸钾与二价锰离子的投入比例,调节新生态纳米级铁锰氧化物颗粒表面的zeta电位,从而实现对电性不同的重金属污染物的高效去除。由于高铁酸钾本身是一种集氧化、消毒、吸附、助凝等多种功能于一体的水处理药剂,在水体中有机物污染物含量较高,而重金属含量不高工艺条件下,可以减少二价锰的投加量,增加高铁酸钾的投量;在水体中有机物含量低而重金属含量较高的工艺条件下,可以增加二价锰的投加量。另外,高铁酸钾可以有效吸附产生的纳米级二氧化锰,减少水体锰污染的可能性。二价锰协同高铁酸钾去除水中重金属同时具有投药量低、反应快速、运行成本低等优势。高铁酸盐价格较高,但二价锰的价格低,通过这种方法,可以以较低的成本达到高效去除水体重金属污染的目的。本发明可以使水体中砷酸盐、铬、铊、锑、铬以及钼酸盐的去除率达90%以上,使铅、镉等重金属的去除率达85%以上。
具体实施方式
具体实施方式一:本实施方式二价锰强化高铁酸盐去除水中多种重金属污染物的方法是按照以下步骤进行的:
一、配制浓度为20~10000mmol/L的高铁酸盐母液;二、配制浓度为30~10000mmol/L的二价锰盐母液;三、将步骤二中配制的二价锰盐母液加入到含有一种或者多种重金属污染物的水体中,其中二价锰的最终浓度为5~20μmol/L;四、将步骤一配制的高铁酸盐母液加入到步骤三的水体中,反应1~60min;然后加絮凝剂,再以100-130r/min搅拌0.8-1.2min,然后以30-50r/min搅拌15-25min,沉淀15-25min,即完成,其中二价锰与高铁酸盐的摩尔比为0.1~1.5:1。
本实施方式中重金属污染物为砷酸盐、钼酸盐、铬、铅、镉、铊、锑、铁、锰和锌中的一种或几种的按任意比组成的混合物。
本实施方式提供了一种同时高效去除水中多种重金属污染物的方法。本实施方式利用二价锰与高铁酸钾快速反应时同时生成两种纳米级的具有很强吸附性能的吸附剂:二氧化锰和三价铁氧化物。所产生的纳米级二氧化锰颗粒具有较大的比表面积,表面具有较强的负电性,对铅、镉、铊、锰等重金属具有较强的吸附性能和去除效果;而该体系所产生的纳米级铁氧化物颗粒同样具有较大的比表面积,但是其表面的负电性较弱,而且易与含氧酸重金属污染物发生络合作用,因此对砷酸盐、钼酸盐等重金属污染物具有很强的去除效果。所以采用二价锰协同高铁酸钾工艺能够高效快速的同时去除水中多种共存重金属污染物。根据水中重金属污染物的种类和浓度大小,可以灵活调整高铁酸钾与二价锰离子的投入比例,调节新生态纳米级铁锰氧化物颗粒表面的zeta电位,从而实现对电性不同的重金属污染物的高效去除。由于高铁酸钾本身是一种集氧化、消毒、吸附、助凝等多种功能于一体的水处理药剂,在水体中有机物污染物含量较高,而重金属含量不高工艺条件下,可以减少二价锰的投加量,增加高铁酸钾的投量;在水体中有机物含量低而重金属含量较高的工艺条件下,可以增加二价锰的投加量。另外,高铁酸钾可以有效吸附产生的纳米级二氧化锰,减少水体锰污染的可能性。二价锰协同高铁酸钾去除水中重金属同时具有投药量低、反应快速、运行成本低等优势。高铁酸盐价格较高,但二价锰的价格低,通过这种方法,可以以较低的成本达到高效去除水体重金属污染的目的。本实施方式可以使水体中砷酸盐、铬、铊、锑、铬以及钼酸盐的去除率达90%以上,使铅、镉等重金属的去除率达85%以上。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中高铁酸盐为固体的高铁酸盐或液体的高铁酸盐;其中高铁酸盐为高铁酸钾、高铁酸钠或高铁酸钡。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤二中的二价锰盐为硫酸锰、二氯化锰和硝酸锰中的一种或者几种按任意比组合的混合物。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤三中的絮凝剂为无机絮凝剂或有机絮凝剂。其它与具体实施方式一至三之一相同。
本实施方式中无机絮凝剂为铝盐、铁盐,如硫酸铝、聚氧化铝、氯化铁或硫酸亚铁;有机絮凝剂为阴离子型、阳离子型或非离子型,如聚丙烯酸钠、羧甲基纤维素(阴离子型)、聚乙烯基亚胺(阳离子型)、聚环氧乙烷、聚丙烯酰胺(非离子型)。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤一中配制浓度为150mmol/L的高铁酸盐母液。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二中配制浓度为75mmol/L的二价锰盐母液。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤三中二价锰的最终浓度为7.5μmol/L。其它与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤四中将高铁酸盐母液加入到步骤三的水体中,反应15min,其中二价锰与高铁酸盐的摩尔比为0.5:1。其它与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤四中以120r/min搅拌1min,然后以40r/min搅拌20min,沉淀20min。其它与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:每吨水中絮凝剂的加入量为0.3-200。其它与具体实施方式一至九之一相同。
通过以下实施例验证本发明的有益效果:
实施例一:本实施例二价锰强化高铁酸盐去除水中多种重金属污染物的方法是按照以下步骤进行的:一、称取高铁酸钾固体粉末,用其配制浓度为50mmol/L的高铁酸盐母液;二、称取硫酸锰固体粉末,配制浓度为100mmol/L的二价锰盐母液;三、将步骤二中配制的二价锰盐母液加入到含有砷酸盐和铁污染的地下水体中,其中二价锰的最终浓度为5μmol/L;四、将步骤一配制的高铁酸盐母液加入到步骤三的水体中,反应10min;然后加入60g/吨水的聚合氯化铝,再以120r/min搅拌1min,然后以40r/min搅拌20min,沉淀20min,其中二价锰与高铁酸盐的摩尔比为1:1。过滤上清液,测定溶液中残留的砷酸盐和铁的浓度;测定结果显示,本实施例可以使水体中砷酸盐的去除率达95%以上,而使铁的去除率达90%以上。
实施例二:本实施例二价锰强化高铁酸盐去除水中多种重金属污染物的方法是按照以下步骤进行的:一、称取高铁酸钾固体粉末,用其配制浓度为25mmol/L的高铁酸盐母液;二、称取硫酸锰固体粉末,配制浓度为50mmol/L的二价锰盐母液;三、将步骤二中配制的二价锰盐母液加入到含有钼酸盐和锑污染的地下水体中,其中二价锰的最终浓度为7.5μmol/L;四、将步骤一配制的高铁酸盐母液加入到步骤三的水体中,反应15min;然后加入50g/吨水的聚合氯化铝,再以120r/min搅拌1min,然后以40r/min搅拌20min,沉淀20min,其中二价锰与高铁酸盐的摩尔比为1.25:1。过滤上清液,测定溶液中残留的钼酸盐和锑的浓度;测定结果显示,本实施例可以使水体中钼酸盐的去除率达94%以上,而使锑的去除率达90%以上。
实施例三:本实施例二价锰强化高铁酸盐去除水中多种重金属污染物的方法是按照以下步骤进行的:一、称取高铁酸钾固体粉末,用其配制浓度为200mmol/L的高铁酸盐母液;二、称取氯化锰固体粉末,配制浓度为100mmol/L的二价锰盐母液;三、将步骤二中配制的二价锰盐母液加入到含有砷酸盐、铅和镉污染的地表水体中,其中二价锰的最终浓度为10μmol/L;四、将步骤一配制的高铁酸盐母液加入到步骤三的水体中,反应30min;然后加入80mg/L的聚合氯化铝,再以120r/min搅拌1min,然后以40r/min搅拌20min,沉淀20min,其中二价锰与高铁酸盐的摩尔比为1:1。过滤上清液,测定溶液中残留的砷酸盐、铅和镉的浓度;测定结果显示,本实施例可以使水体中砷酸盐的去除率达92%以上,而使铅、镉的去除率达90%以上。
实施例四:本实施例二价锰强化高铁酸盐去除水中多种重金属污染物的方法是按照以下步骤进行的:一、称取高铁酸钾固体粉末,用其配制浓度为150mmol/L的高铁酸盐母液;二、称取硫酸锰固体粉末,配制浓度为75mmol/L的二价锰盐母液;三、将步骤二中配制的二价锰盐母液加入到含有钼酸盐和铊污染的地表水体中,其中二价锰的最终浓度为7.5μmol/L;四、将步骤一配制的高铁酸盐母液加入到步骤三的水体中,反应15min;然后加入75g/吨水的聚合氯化铝,再以120r/min搅拌1min,然后以40r/min搅拌20min,沉淀20min,其中二价锰与高铁酸盐的摩尔比为0.5:1。过滤上清液,测定溶液中残留的钼酸盐和铊的浓度;测定结果显示,本实施例可以使水体中钼酸盐的去除率达95%以上,而使铊的去除率达90%以上。
实施例五:本实施例二价锰强化高铁酸盐去除水中多种重金属污染物的方法是按照以下步骤进行的:一、称取高铁酸钾固体粉末,用其配制浓度为100mmol/L的高铁酸盐母液;二、称取硫酸锰固体粉末,配制浓度为50mmol/L的二价锰盐母液;三、将步骤二中配制的二价锰盐母液加入到含有铬、铅和镉污染的地表水体中,其中二价锰的最终浓度为6μmol/L;四、将步骤一配制的高铁酸盐母液加入到步骤三的水体中,反应15min;然后加入70g/吨水的聚合氯化铝,再以120r/min搅拌1min,然后以40r/min搅拌20min,沉淀20min,其中二价锰与高铁酸盐的摩尔比为0.5:1。过滤上清液,测定溶液中残留的铬、铅和镉的浓度;测定结果显示,本实施例,可以使水体中铬的去除率达90%以上,铅和镉的去除率达88%以上。

Claims (8)

1.二价锰强化高铁酸盐去除水中多种重金属污染物的方法,其特征在于该方法是按照以下步骤进行的:一、配制浓度为20~10000mmol/L的高铁酸盐母液;二、配制浓度为30~10000mmol/L的二价锰盐母液;三、将步骤二中配制的二价锰盐母液加入到含有一种或者多种重金属污染物的水体中,其中二价锰的最终浓度为5~20μmol/L;四、将步骤一配制的高铁酸盐母液加入到步骤三的水体中,反应1~60min;然后加絮凝剂,再以100-130r/min搅拌0.8-1.2min,然后以30-50r/min搅拌15-25min,沉淀15-25min,即完成,其中含有一种或者多种重金属污染物的水体为含有砷酸盐和铁污染的地下水体时,二价锰与高铁酸盐的摩尔比为1:1;含有一种或者多种重金属污染物的水体为含有钼酸盐和锑污染的地下水体时,二价锰与高铁酸盐的摩尔比为1.25:1;含有一种或者多种重金属污染物的水体为含有砷酸盐、铅和镉污染的地表水体时,二价锰与高铁酸盐的摩尔比为1:1;含有一种或者多种重金属污染物的水体为含有钼酸盐和铊污染的地表水体时,二价锰与高铁酸盐的摩尔比为0.5:1;含有一种或者多种重金属污染物的水体为含有铬、铅和镉污染的地表水体时,二价锰与高铁酸盐的摩尔比为0.5:1。
2.根据权利要求1所述的二价锰强化高铁酸盐去除水中多种重金属污染物的方法,其特征在于步骤一中高铁酸盐为固体的高铁酸盐或液体的高铁酸盐;其中高铁酸盐为高铁酸钾、高铁酸钠或高铁酸钡。
3.根据权利要求1所述的二价锰强化高铁酸盐去除水中多种重金属污染物的方法,其特征在于步骤二中的二价锰盐为硫酸锰、二氯化锰和硝酸锰中的一种或者几种按任意比组合的混合物。
4.根据权利要求1所述的二价锰强化高铁酸盐去除水中多种重金属污染物的方法,其特征在于步骤四 中的絮凝剂为无机絮凝剂或有机絮凝剂。
5.根据权利要求1所述的二价锰强化高铁酸盐去除水中多种重金属污染物的方法,其特征在于步骤三中二价锰的最终浓度为7.5μmol/L。
6.根据权利要求1所述的二价锰强化高铁酸盐去除水中多种重金属污染物的方法,其特征在于步骤四中将高铁酸盐母液加入到步骤三的水体中,反应15min。
7.根据权利要求1所述的二价锰强化高铁酸盐去除水中多种重金属污染物的方法,其特征在于步骤四中以120r/min搅拌1min,然后以40r/min搅拌20min,沉淀20min。
8.根据权利要求1所述的二价锰强化高铁酸盐去除水中多种重金属污染物的方法,其特征在于每吨水中絮凝剂的加入量为0.3-200g。
CN201810448789.5A 2018-05-11 2018-05-11 二价锰强化高铁酸盐去除水中多种重金属污染物的方法 Active CN108640251B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810448789.5A CN108640251B (zh) 2018-05-11 2018-05-11 二价锰强化高铁酸盐去除水中多种重金属污染物的方法
PCT/CN2018/095812 WO2019214065A1 (zh) 2018-05-11 2018-07-16 二价锰强化高铁酸盐去除水中多种重金属污染物的方法
US17/054,456 US11560324B2 (en) 2018-05-11 2018-07-16 Method for removing heavy metal pollutants in water with divalent manganese strengthened ferrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810448789.5A CN108640251B (zh) 2018-05-11 2018-05-11 二价锰强化高铁酸盐去除水中多种重金属污染物的方法

Publications (2)

Publication Number Publication Date
CN108640251A CN108640251A (zh) 2018-10-12
CN108640251B true CN108640251B (zh) 2021-09-14

Family

ID=63754809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810448789.5A Active CN108640251B (zh) 2018-05-11 2018-05-11 二价锰强化高铁酸盐去除水中多种重金属污染物的方法

Country Status (3)

Country Link
US (1) US11560324B2 (zh)
CN (1) CN108640251B (zh)
WO (1) WO2019214065A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299518B (zh) * 2020-10-28 2022-09-23 常熟理工学院 一种镁铁锰基高效废水处理剂的制备方法及其应用
CN115259447A (zh) * 2022-07-14 2022-11-01 广州大学 一种低浓度矿山废水的深度除铊方法
CN117756342A (zh) * 2024-01-10 2024-03-26 西安工程大学 高效去除地表水源中双酚a和富里酸的系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU941311A1 (ru) * 1981-04-02 1982-07-07 Всесоюзный Научно-Исследовательский Институт Водоснабжения,Канализации,Гидротехнических Сооружений И Инженерной Гидрогеологии Способ очистки сточных вод от гексацианоферратов
CN1502710A (zh) * 2002-11-26 2004-06-09 中南大学 硫酸锰溶液的深度净化方法
CN102145947A (zh) * 2011-02-24 2011-08-10 哈尔滨工业大学 一种原位产生纳米铁锰氧化物除Tl+和/或Cd2+的水处理方法
CN104512974A (zh) * 2013-09-30 2015-04-15 谢逢春 一种深度去除水体中持久性有机污染物和重金属的方法
CN107628703A (zh) * 2017-09-27 2018-01-26 中山大学 一种去除水中铁锰污染的水处理预氧化技术

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228255C (zh) * 2003-04-02 2005-11-23 哈尔滨工业大学 一种高铁酸盐的制备方法
JP2012250226A (ja) * 2011-06-01 2012-12-20 Nippon Filter Kk 水処理用固液分離方法
CN107651777B (zh) * 2017-10-24 2020-10-27 哈尔滨工业大学 一种碳质材料与高铁酸盐协同进行水处理的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU941311A1 (ru) * 1981-04-02 1982-07-07 Всесоюзный Научно-Исследовательский Институт Водоснабжения,Канализации,Гидротехнических Сооружений И Инженерной Гидрогеологии Способ очистки сточных вод от гексацианоферратов
CN1502710A (zh) * 2002-11-26 2004-06-09 中南大学 硫酸锰溶液的深度净化方法
CN102145947A (zh) * 2011-02-24 2011-08-10 哈尔滨工业大学 一种原位产生纳米铁锰氧化物除Tl+和/或Cd2+的水处理方法
CN104512974A (zh) * 2013-09-30 2015-04-15 谢逢春 一种深度去除水体中持久性有机污染物和重金属的方法
CN107628703A (zh) * 2017-09-27 2018-01-26 中山大学 一种去除水中铁锰污染的水处理预氧化技术

Also Published As

Publication number Publication date
US20210230029A1 (en) 2021-07-29
CN108640251A (zh) 2018-10-12
WO2019214065A1 (zh) 2019-11-14
US11560324B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
CN108640251B (zh) 二价锰强化高铁酸盐去除水中多种重金属污染物的方法
CN104478160B (zh) 采选矿含有机物和重金属废水协同氧化处理的方法
CN107311277B (zh) 一种同时去除水中砷磷氟的纳米药剂及其制备方法
WO2012056826A1 (ja) 有害物質含有水の処理方法および処理装置
Zhang et al. Efficient As (III) removal directly as basic iron arsenite by in-situ generated Fe (III) hydroxide from ferrous sulfate on the surface of CaCO3
JP2009148749A (ja) 重金属類含有水の処理方法
KR102055013B1 (ko) 황화물과 규산염을 유효성분으로 하는 중금속 처리제 및 처리방법
CN103626340B (zh) 含钼水源水的处理方法
CN109850952B (zh) 一种含重金属离子水溶液中铁离子的高纯分离方法
KR20120043832A (ko) 수처리 무기 응집제 및 그 제조방법
JP2009148750A (ja) 重金属類含有水の処理方法
CN102887582A (zh) Fe0-Al0/O2体系高级氧化水处理方法
JP2012106227A (ja) 有害物質含有水の浄化処理材とその製造方法
CN105293659A (zh) 一种应急处理水体中重金属污染物的沉积物的稳定化方法
JP2017159222A (ja) 砒素の除去方法
JP2004290777A (ja) ヒ素含有水の処理方法
CN109179605A (zh) 聚合氯化铁的制备方法及其应用
JP4747269B2 (ja) 重金属類含有水の処理方法および処理装置
JP4014032B2 (ja) 溶存銅錯化合物含有排水の処理方法及びそれに使用する薬剤
CN110790417B (zh) 五金和电子电镀废水的处理方法
JP4706828B2 (ja) 硝酸性窒素含有水の処理方法および処理装置
CN111453880A (zh) 一种联合沉淀法去除多种类重金属废液的方法
Tiwari et al. Application of ferrate (VI) on the decomplexation of Cu (II)-EDTA
Zouboulis et al. Inorganic pre-polymerized coagulants: current status and future trends
CN107935141A (zh) 一种水处理复合混凝剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant