CN108632767B - 异构网络协同多播的传输方法及装置 - Google Patents

异构网络协同多播的传输方法及装置 Download PDF

Info

Publication number
CN108632767B
CN108632767B CN201810318310.6A CN201810318310A CN108632767B CN 108632767 B CN108632767 B CN 108632767B CN 201810318310 A CN201810318310 A CN 201810318310A CN 108632767 B CN108632767 B CN 108632767B
Authority
CN
China
Prior art keywords
optimization problem
noise ratio
beam optimization
heterogeneous network
qos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810318310.6A
Other languages
English (en)
Other versions
CN108632767A (zh
Inventor
姜春晓
倪祖耀
匡麟玲
吴胜
葛宁
朱向明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201810318310.6A priority Critical patent/CN108632767B/zh
Publication of CN108632767A publication Critical patent/CN108632767A/zh
Application granted granted Critical
Publication of CN108632767B publication Critical patent/CN108632767B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种异构网络协同多播的传输方法及装置,该方法包括:收集异构网络到用户的下行信道信息;基于异构网络协同多播的传输方式确定波束优化问题;对波束优化问题进行求解,得到优化波束向量;基于优化波束向量进行异构网络系统的波束资源分配,以优化异构网络系统性能。该方法能够优化异构网络系统的波束资源分配,进而优化异构网络系统的性能,通过多网系协同覆盖,单网系覆盖时的瓶颈用户能够获得更大增益,改善了单网系系统性能,提高了信号的传输效果,缓解了现有的单网系多播传输方法中,信号的传输效果差,存在通信瓶颈用户,系统性能不好的技术问题。

Description

异构网络协同多播的传输方法及装置
技术领域
本发明涉及无线通信中资源分配的技术领域,尤其是涉及一种异构网络协同多播的传输方法及装置。
背景技术
随着通信发展,通信从传统的基于连接的通信逐渐拓展到基于内容的通信,例如音乐、视频、网络电视等。基于内容的通信往往需求更大的通信容量,但具有被多个用户同时需求的特性。利用多播传输,可以在同样的系统资源消耗下,将相同需求内容同时传输给多个用户,相对于点对点传输能够有效提升系统性能。
在多播传输中,基于多天线,发射波束成形可以被用于改善接收信干噪比。已有文献研究了单网系单用户组的多播波束成形方法,针对QoS约束,以及用户间最大最小公平问题分别求解系统的最优波束设计。原问题为NP难问题,因此通过半正定规划与系统松弛,得到原问题的近似解。该问题可进一步拓展到单网系多用户组的场景,同样研究了QoS约束和用户间最大最小公平下的最优波束设计。
在多播传输中,各分组的传输速率由分组内速率最低用户决定。而由于单网系覆盖的局限性,信道状况不佳,或者波束边缘的用户,通信质量相对较差,在多播传输情况下,成为系统容量的瓶颈。
综上,现有的单网系多播传输方法中,信号的传输效果差,存在通信瓶颈用户,影响了系统性能。
发明内容
有鉴于此,本发明的目的在于提供一种异构网络协同多播的传输方法及装置,以缓解现有的单网系多播传输方法中,信号的传输效果差,存在通信瓶颈用户,系统性能不好的技术问题。
第一方面,本发明实施例提供了一种异构网络协同多播的传输方法,所述方法包括:
收集异构网络到用户的下行信道信息,其中,所述异构网络包括:高速密集网络,广域覆盖网络;
基于异构网络协同多播的传输方式确定波束优化问题,其中,所述波束优化问题表示在满足功率约束下,最大化最小用户的加权信噪比,所述波束优化问题中包含所述下行信道信息;
对所述波束优化问题进行求解,得到优化波束向量;
基于所述优化波束向量进行异构网络系统的波束资源分配,以优化所述异构网络系统性能。
第二方面,本发明实施例还提供了一种异构网络协同多播的传输装置,所述装置包括:
收集模块,用于收集异构网络到用户的下行信道信息,其中,所述异构网络包括:高速密集网络,广域覆盖网络;
确定模块,用于基于异构网络协同多播的传输方式确定波束优化问题,其中,所述波束优化问题表示在满足功率约束下,最大化最小用户的加权信噪比,所述波束优化问题中包含所述下行信道信息;
求解模块,用于对所述波束优化问题进行求解,得到优化波束向量;
波束资源分配模块,用于基于所述优化波束向量进行异构网络系统的波束资源分配,以优化所述异构网络系统性能。
本发明实施例带来了以下有益效果:本发明实施例提供了一种异构网络协同多播的传输方法及装置,该方法包括:收集异构网络到用户的下行信道信息,其中,异构网络包括:高速密集网络,广域覆盖网络;基于异构网络协同多播的传输方式确定波束优化问题,其中,波束优化问题表示在满足功率约束下,最大化最小用户的加权信噪比,波束优化问题中包含下行信道信息;对波束优化问题进行求解,得到优化波束向量;基于优化波束向量进行异构网络系统的波束资源分配,以优化异构网络系统性能。
现有的单网系多播传输方法中,由于单网系覆盖的局限性,信道状况不佳,信号的传输效果差,或者波束边缘的用户,通信质量相对较差,系统的性能不好。与现有的单网系多播传输方法相比,本发明实施例的异构网络协同多播的传输方法中,先收集异构网络到用户的下行信道信息,然后,基于异构网络协同多播的传输方式确定波束优化问题,对波束优化问题进行求解,得到优化波束向量;基于优化波束向量进行异构网络系统的波束资源分配,以优化异构网络系统性能,该方法能够优化异构网络系统的波束资源分配,进而优化异构网络系统的性能,通过多网系协同覆盖,单网系覆盖时的瓶颈用户能够获得更大增益,改善了单网系系统性能,提高了信号的传输效果,缓解了现有的单网系多播传输方法中,信号的传输效果差,存在通信瓶颈用户,系统性能不好的技术问题。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种异构网络协同多播的传输方法的流程图;
图2为本发明实施例提供的收集异构网络到用户的下行信道信息的方法流程图;
图3为本发明实施例提供的基于异构网络协同多播传输方式确定波束优化问题的流程图;
图4为本发明实施例提供的对波束优化问题进行求解,得到优化波束向量的流程图;
图5为本发明实施例提供的基于关系通过对QoS波束优化问题进行求解,得到简化的波束优化问题的优化波束矩阵的流程图;
图6为本发明实施例提供的基于待处理优化波束向量对功率资源进行优化,得到异构网络系统的最优功率分配的流程图;
图7为本发明实施例提供的异构网络协同多播传输的系统的示意图;
图8为本发明实施例提供的协同与非协同传输情况下传输速率的对比示意图;
图9为本发明实施例提供的一种异构网络协同多播的传输装置的结构框图。
图标:
11-收集模块;12-确定模块;13-求解模块;14-波束资源分配模块。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为便于对本实施例进行理解,首先对本发明实施例所公开的一种异构网络协同多播的传输方法进行详细介绍。
实施例一:
一种异构网络协同多播的传输方法,参考图1,该方法包括:
S102、收集异构网络到用户的下行信道信息,其中,异构网络包括:高速密集网络,广域覆盖网络;
在本发明实施例中,该方法的执行主体是发射端。具体的,如果广域覆盖网络为卫星时,那么卫星即为该方法的执行主体,如果高速密集网络为微基站,那么微基站即为该方法的执行主体。
具体的,在本发明实施例中,广域覆盖网络与高速密集网络共享频谱协同为用户提供多播传输服务。广域覆盖网络能够为异构网络系统中的所有用户提供广域的低速覆盖传输;高速密集网络由密集微基站组成,可以为小覆盖范围内的用户提供高速传输。其中,广域覆盖网络可以为卫星网络,宏基站网络,本发明实施例对广域覆盖网络的形式不进行具体限制。
异构网络系统(包括卫星,微基站,用户终端等)中,对用户(具体是指用户终端)按照其需求的数据进行分组,需求同样数据的用户被归为同一分组中。具体的,在通信时,用户先申请其需要的数据,根据用户申请的数据就能够将用户进行分组。
处于多网系覆盖范围内用户同时接收来自不同网系信号。由于网络的覆盖差异,以及信道的波动性,单网系覆盖时的瓶颈用户在协同传输情况下,能获得更大的增益,改善系统性能。由于不同分组用户之间存在干扰,需要优化异构网络系统的波束资源,最优化异构网络系统的性能。
下面对干扰的产生进行举例,假设有10组用户,这10组用户都会同时接收到这10组用户所有的信号,而对于每一组用户来说,其它组用户所需要的信号都属于干扰信号,所以需要进行波束资源的设计,使得用户的接收信噪比越高越好。
下文中再对收集异构网络到用户的下行信道信息的过程进行详细介绍,在此不再赘述。
S104、基于异构网络协同多播的传输方式确定波束优化问题,其中,波束优化问题表示在满足功率约束下,最大化最小用户的加权信噪比,波束优化问题中包含下行信道信息;
在得到异构网络到用户的下行信道信息后,基于异构网络协同多播的传输方式确定波束优化问题,该波束优化问题中包含下行信道信息,并且该波束优化问题表示在满足功率约束下,最大化最小用户的加权信噪比。下文中再对该过程进行详细描述,在此不再赘述。
S106、对波束优化问题进行求解,得到优化波束向量;
在得到波束优化问题后,对波束优化问题进行求解,得到优化波束向量。下文中再对该过程进行详细描述,在此不再赘述。
S108、基于优化波束向量进行异构网络系统的波束资源分配,以优化异构网络系统性能。
在得到优化波束向量后,基于优化波束向量进行异构网络系统的波束资源分配,以优化异构网络系统性能。
具体的,在得到优化波束向量后,基站I(即高速密集网络)的发射信号为广域覆盖网络的发射信号为其中,ωI,j为高速密集网络的优化波束向量,νj为广域覆盖网络的优化波束向量,sj表示发送给分组j的信号,也就是ωI,j和νj为要求解的参量。
现有的单网系多播传输方法中,由于单网系覆盖的局限性,信道状况不佳,信号的传输效果差,或者波束边缘的用户,通信质量相对较差,系统的性能不好。与现有的单网系多播传输方法相比,本发明实施例的异构网络协同多播的传输方法中,先收集异构网络到用户的下行信道信息,然后,基于异构网络协同多播的传输方式确定波束优化问题,对波束优化问题进行求解,得到优化波束向量;基于优化波束向量进行异构网络系统的波束资源分配,以优化异构网络系统性能,该方法能够优化异构网络系统的波束资源分配,进而优化异构网络系统的性能,通过多网系协同覆盖,单网系覆盖时的瓶颈用户能够获得更大增益,改善了单网系系统性能,提高了信号的传输效果,缓解了现有的单网系多播传输方法中,信号的传输效果差,存在通信瓶颈用户,系统性能不好的技术问题。
上述内容对异构网络协同多播的传输方法进行了简要介绍,下面对其中涉及到的具体内容进行详细描述。
在一个可选地实施方式中,参考图2,收集异构网络到用户的下行信道信息包括:
S201、利用导频信号进行信道估计,得到高速密集网络到目标用户的第一下行信道信息,其中,目标用户包括:高速密集网络覆盖范围内的用户,与高速密集网络相邻的高速密集网络覆盖范围内的用户;
具体的,利用导频信号,估计高速密集网络中所有基站到其覆盖范围内用户以及相邻基站覆盖范围内用户的第一下行信道信息。也就是,得到高速密集网络(即基站)到其覆盖范围内的用户的信道信息以及高速密集网络到与高速密集网络相邻的高速密集网络覆盖范围内的用户的信道信息。
假设基站数量为NB,天线数N,从基站i发出,到达属于基站I,分组J内的用户K的信道为hi,I,J,K
由于地面信道衰减速率较快,对于每个用户,只考虑以用户为中心7个基站的信号,包括用户所属基站,以及相邻6个基站。以基站I为中心的基站集合为BI,|BI|=7,有
具体的,i指的是信号发送的基站编号,I指的是接收用户所属范围内的基站的编号。
S202、利用导频信号进行信道估计,得到广域覆盖网络到其覆盖范围内的所有用户的第二下行信道信息;
利用导频信号,估计广域覆盖网络到所有用户的信道信息;
假设广域覆盖网络发射天线数为M,广域覆盖网络到基站I覆盖范围内,分组J内的用户K的信道为gI,J,K
S203、将第一下行信道信息和第二下行信道信息作为下行信道信息。
在得到第一下行信道信息和第二下行信道信号,将第一下行信道信息和第二下行信道信息作为下行信道信息。
上述内容描述了收集异构网络到用户的下行信道信息的详细内容,下面对基于异构网络协同多播的传输方式确定波束优化问题的过程进行具体介绍。
可选地,参考图3,基于异构网络协同多播传输方式确定波束优化问题包括:
S301、基于异构网络协同多播的传输方式确定各个用户在异构网络中的接收信噪比,其中,各个用户为在异构网络中的用户;
不同于单网系多播的传输方式,在异构网络协同多播的传输方法中,对于基站I覆盖范围内,分组J内的用户K的接收信噪比为:
其中,为噪声功率。在上述的接收信噪比中,只有ωi,j、νj和γI,J,K为未知量,其它量为已知量。
ωi,J表示基站i发送的,分组J的波束向量,ωi,j表示基站i发送的,分组j的波束向量,其中,i可取以基站I为中心7个基站编号,J为接收用户所属的分组,j可取除J外所有分组编号;
νJ表示广域覆盖网络发送的分组J的波束向量,νj表示广域覆盖网络发送的分组j的波束向量,其中,J为接收用户所属的分组,j可取除J外所有分组编号。
S302、对接收信噪比进行加权处理,得到各个用户的加权信噪比;
在得到接收信噪比后,对接收信噪比进行加权处理,得到用户的加权信噪比:其中,γI,J,K,tar表示加权系数,为已知量。
S303、在各个用户的加权信噪比中,最大化最小用户的加权信噪比,得到波束优化问题。
在得到各个用户的加权信噪比后,最大化最小用户的加权信噪比,得到波束优化问题(即F问题):
需要说明的是,最大化最小用户的加权信噪比需要满足功率约束条件,所以波束优化问题表示为:
F:
其中,NB为基站数量,NG为分组数量,|GI,J|为基站I内分组J的用户数量,PB,I,max为基站最大传输功率,PS,max为广域网络最大传输功率,PB,I为基站当前的使用功率,PS为广域覆盖网络的使用功率,s.t.表示受约束。
其中,为要实现的目标,表示功率的约束,即求解需要满足该约束条件。ωi,j和νj为未知量,PB,I和PS为未知量(可以根据ωI,j和νj求解得到),其它量为已知量。ωI,j表示基站I发送的,分组j的波束向量,I可取所有基站编号。
这里目标函数中的νj取J之外的所有值,而约束PS中的νj可取所有值。
上述内容介绍了基于异构网络协同多播传输方式确定波束优化问题的详细内容,下面对波束优化问题进行求解,得到优化波束向量的具体过程进行详细描述。
可选地,参考图4,对波束优化问题进行求解,得到优化波束向量包括:
S401、通过预设矩阵对波束优化问题进行转换,得到简化的波束优化问题,其中,简化的波束优化问题中使得波束优化问题中的预设约束条件松弛;
在得到波束优化问题后,通过预设矩阵对波束优化问题进行转换,得到简化的波束优化问题。
具体的,令
其中,D表示对角矩阵。
所以,上述的波束优化问题可以转化为简化的波束优化问题(即FX,r问题):
FX,r:
s≥0.
其中,t表示目标用户的加权信噪比(即最小的加权信噪比),XJ为要求解的值,tr()为矩阵的迹,表示半正定,并且略去了rank(XJ)=1这一约束,rank()表示矩阵的秩。
通过略去秩的约束,将原问题进行松弛,得到新的简化问题FX,r
S402、确定与简化的波束优化问题所对应的异构网络系统的QoS波束优化问题,其中,QoS波束优化问题表示在满足用户的最小接收信噪比的约束下,最小化传输功率;
在得到简化的波束优化问题后,无法对该简化的波束优化问题进行求解,所以,确定与简化的波束优化问题所对应的异构网络系统的QoS波束优化问题(即QX,r问题):
QX,r:
表示在满足用户的最小接收信噪比的约束下,最小化传输功率。
该QoS波束优化问题为标准的半正定规划问题,可以利用SDP工具求解,从而得到相应的优化波束矩阵XJ,进而也就得到的简化的波束优化问题的解XJ,下面描述具体的求解过程。
S403、确定简化的波束优化问题和QoS波束优化问题之间的关系;
在得到QoS波束优化问题后,确定简化的波束优化问题和QoS波束优化问题之间的关系。
FX,rtar,P,PT)代表问题FX,r代表相应最优解,QX,rtar,P)代表问题QX,r,QoS波束优化问题和简化的波束优化问题之间有以下关系:
t*=FX,rtar,P,QX,r(t*γtar,P)+s*)
PT-s*=QX,r(FX,rtar,P,PTtar,P)
其中,t*代表问题FX,r中得到的解,也即最大最小用户的加权信噪比,γtar表示加权信噪比的加权因子,s*是问题FX,r中的s,代表波束分配后未使用的功率,PT是异构网络系统两个网络加起来的总功率约束,问题FX,rtar,P,PT)代表加权因子为γtar,两个网络分别的功率约束组成的向量为P,总功率约束为PT时的MMF问题FX,r
问题QX,rtar,P)代表最小信噪比约束为γtar,两个网络分别的功率约束组成的向量为P时的QoS问题QX,r
S404、基于关系通过对QoS波束优化问题进行求解,得到简化的波束优化问题的优化波束矩阵;
得到上述的关系后,基于关系通过对QoS波束优化问题进行求解,得到简化的波束优化问题的优化波束矩阵。下文中再对该过程进行详细描述。
S405、采用高斯随机方法对优化波束矩阵进行处理,生成待处理优化波束向量;
上述过程得到的是优化波束矩阵,而实际中要得到的为向量的形式,所以需要进行矩阵和向量之间的转换,得到待处理优化波束向量。
具体的,使用高斯随机方法,基于得到的XJ生成波束向量。
XJ可利用特征值分解得到如下结果:
其中,ΣJ为对角阵,该对角阵中的值为矩阵XJ的特征值,UJ为特征向量组成的矩阵。
相应分组J的波束向量可以通过以下方法生成:
其中,为遵循0均值,标准方程的独立高斯随机变量组成。
S406、基于待处理优化波束向量对功率资源进行优化,得到异构网络系统的最优功率分配;
在得到待处理优化波束向量后,该待处理优化波束向量与优化波束向量不完全等价,功率资源不一定得到充分利用,进一步基于高斯随机方法生成的待处理优化波束向量ωjoint,J进行功率资源的优化,得到异构网络系统的最优功率分配。具体内容,将在下文中进行详细描述,在此不再赘述。
S407、基于待处理优化波束向量和最优功率分配确定优化波束向量。
在得到待处理优化波束向量和最优功率分配后,进一步确定优化波束向量。
具体的:(1)将待处理优化波束向量和最优功率分配相乘,得到乘积向量;
(2)将乘积向量作为优化波束向量。
在一个可选地实施方式中,参考图5,基于关系通过对QoS波束优化问题进行求解,得到简化的波束优化问题的优化波束矩阵包括:
S501、获取二分法迭代的初始上限加权信噪比和初始下限加权信噪比;
本发明实施例中,采用了二分法迭代求解t(即最小用户的加权信噪比,也就是最小的加权信噪比)的最大值,得到t的最大值后,对于该特定t值,通过求解相应的QoS波束优化问题,可得到当前t值对应的波束资源分配方法(即优化波束矩阵)。
先获取二分法迭代的初始上限加权信噪比和初始下限加权信噪比,具体的,tL=tmin=0,其中,tL表示初始下限加权信噪比,tR表示初始上限加权信噪比,PT表示QoS波束优化问题中的能量约束,为预先设定的值,σ2表示噪声功率,其它参量在上文中已经进行了解释,在此不再赘述。
S502、确定初始上限加权信噪比和初始下限加权信噪比的平均信噪比;
也就是,设定平均信噪比为
执行下述迭代过程:
S503、基于关系将平均信噪比代入QoS波束优化问题,得到待求解QoS波束优化问题;
将平均信噪比代入QoS波束优化问题,具体的,用tγI,J,K,tar替换QoS波束优化问题中的γI,J,K,tar,替换完成后,得到待求解QoS波束优化问题。
S504、采用SDP工具对待求解QoS波束优化问题进行求解;
进而采用SDP工具对待求解QoS波束优化问题进行求解,就能得到一个与对应的优化波束矩阵XJ。因为关系的存在,用tγI,J,K,tar替换QoS波束优化问题中的γI,J,K,tar,进而求解得到的优化波束矩阵XJ为简化的波束优化问题的优化波束矩阵。
S505、如果待求解QoS波束优化问题无解或得到的解所对应的能量大于能量约束,则对历史上限加权信噪比进行更新,得到更新的上限加权信噪比,其中,更新的上限加权信噪比为平均信噪比;
S506、如果待求解QoS波束优化问题有解,则记录得到的解,并对历史下限加权信噪比进行更新,得到更新的下限加权信噪比,其中,更新的下限加权信噪比为平均信噪比;
S507、判断当前的上限加权信噪比和当前的下限加权信噪比之差是否满足预设精度;
S508、如果满足预设精度,且待求解QoS波束优化问题有解,则将解作为简化的波束优化问题的优化波束矩阵;
S509、如果不满足预设精度,则基于更新的上限加权信噪比或更新的下限加权信噪比,确定平均信噪比,并执行上述迭代过程,直至满足预设精度为止。
以通俗的语言对该过程进行描述,具体过程如下:
(1)设定tL=tmin=0,
(2)设定将tγI,J,K,tar替换QoS波束优化问题中的γI,J,K,tar,替换完成后,得到待求解QoS波束优化问题,采用SDP工具对待求解QoS波束优化问题(即QX,r(tγtar,P))进行求解;
(3)若问题QX,r(tγtar,P)无解,或者得到的解XJ对应的最小能量Pm=QX,r(tγtar,P)>PT,令tR=t,否则令tL=t;
(4)若|tR-tL|达到精度,停止迭代,否则返回步骤(2)继续迭代,直至满足精度为止。
在一个可选地实施方式中,参考图6,基于待处理优化波束向量对功率资源进行优化,得到异构网络系统的最优功率分配包括:
S601、结合波束优化问题,QoS波束优化问题和待处理优化波束向量确定关于功率的波束优化问题和关于功率的QoS波束优化问题;
关于功率的波束优化问题(即Fp问题):
Fp:
pJ≥0,J∈[1,NG].
其中,pJ为分组J的功率分配因子。该Fp问题与波束优化问题(即F问题)都是求解同一个系统的最大化最小用户的加权信噪比,该优化目标一样,但一个是求波束(F问题),一个是已知波束求加权功率因子(Fp问题)。
同理,该问题无法直接求解,需要借助关于功率的QoS波束优化问题进行求解。
具体的,关于功率的QoS波束优化问题(与QoS波束优化问题等价,QoS波束优化问题为矩阵形式,而关于功率的QoS波束优化问题为向量形式)为:
Qp:
pJ≥0,J∈[1,NG].
该关于功率的QoS波束优化问题为标准线性规划问题,可基于优化理论直接进行求解,得到最优功率分配。下文中对求解过程进行详细描述。
S602、确定关于功率的波束优化问题和关于功率的QoS波束优化问题之间的关系;
关于功率的波束优化问题和关于功率的QoS波束优化问题之间的关系为:
t*=Fptar,P,Qp(t*γtar,P)+s*)
PT-s*=Qp(Fptar,P,PTtar,P)
S603、基于关系通过对关于功率的QoS波束优化问题进行求解,得到关于功率的波束优化问题的最优功率分配;
同理,基于二分法迭代求解t的最大值,对于某个特定t值,通过求解相应的关于功率的QoS波束优化问题,可得到当前t值对应的功率分配。
也就是:
(1)设定tL=tmin=0,tR=tmax
(2)设定将tγI,J,K,tar替换关于功率的QoS波束优化问题中的γI,J,K,tar,替换完成后,采用优化理论对替换后的关于功率的QoS波束优化问题进行求解,得到p;
(3)若关于功率的QoS波束优化问题无解,令tR=t,否则令tL=t;
(4)若|tR-tL|达到精度,停止迭代,否则返回步骤(2)继续迭代,直至满足精度为止。
S604、将最优功率分配作为异构网络系统的最优功率分配。
本发明提出了一种异构网络协同多播的传输方法及装置,异构网络共享频谱协同对用户进行多播传输,并利用MMF(max min fair的缩写,最大最小公平)波束优化问题和QoS波束优化问题之间的关系,求解得到最大化最小用户加权信噪比的波束资源分配方法(即波束向量)。
本发明的异构网络协同多播传输的系统示意图如图7所示,其中广域覆盖网络以卫星网络为实例。传输载频为2GHz,带宽为10MHz。地面基站数量为2,天线数为2,发射功率为43dBm。卫星天线数为4,发射功率为50dBm。参考图8(协同与非协同传输情况下传输速率的对比示意图),可以看出相对于非协同传输,协同传输能够显著改善瓶颈用户的传输质量,系统速率增加60%。
实施例二:
一种异构网络协同多播的传输装置,参考图9,该装置包括:
收集模块11,用于收集异构网络到用户的下行信道信息,其中,异构网络包括:高速密集网络,广域覆盖网络;
确定模块12,用于基于异构网络协同多播的传输方式确定波束优化问题,其中,波束优化问题表示在满足功率约束下,最大化最小用户的加权信噪比,波束优化问题中包含下行信道信息;
求解模块13,用于对波束优化问题进行求解,得到优化波束向量;
波束资源分配模块14,用于基于优化波束向量进行异构网络系统的波束资源分配,以优化异构网络系统性能。
本发明实施例的异构网络协同多播的传输装置中,先收集异构网络到用户的下行信道信息,然后,基于异构网络协同多播的传输方式确定波束优化问题,对波束优化问题进行求解,得到优化波束向量;基于优化波束向量进行异构网络系统的波束资源分配,以优化异构网络系统性能,该装置能够优化异构网络系统的波束资源分配,进而优化异构网络系统的性能,通过多网系协同覆盖,单网系覆盖时的瓶颈用户能够获得更大增益,改善了单网系系统性能,提高了信号的传输效果,缓解了现有的单网系多播传输方法中,信号的传输效果差,存在通信瓶颈用户,系统性能不好的技术问题。
可选地,收集模块包括:
第一信道估计单元,用于利用导频信号进行信道估计,得到高速密集网络到目标用户的第一下行信道信息,其中,目标用户包括:高速密集网络覆盖范围内的用户,与高速密集网络相邻的高速密集网络覆盖范围内的用户;
第二信道估计单元,用于利用导频信号进行信道估计,得到广域覆盖网络到其覆盖范围内的所有用户的第二下行信道信息;
设定单元,用于将第一下行信道信息和第二下行信道信息作为下行信道信息。
可选地,确定模块包括:
第一确定单元,用于基于异构网络协同多播的传输方式确定各个用户在异构网络中的接收信噪比,其中,各个用户为在异构网络中的用户;
加权处理单元,用于对接收信噪比进行加权处理,得到各个用户的加权信噪比;
最大化单元,用于在各个用户的加权信噪比中,最大化最小用户的加权信噪比,得到波束优化问题。
可选地,求解模块包括:
转换单元,用于通过预设矩阵对波束优化问题进行转换,得到简化的波束优化问题,其中,简化的波束优化问题中使得波束优化问题中的预设约束条件松弛;
第二确定单元,用于确定与简化的波束优化问题所对应的异构网络系统的QoS波束优化问题,其中,QoS波束优化问题表示在满足用户的最小接收信噪比的约束下,最小化传输功率;
第三确定单元,用于确定简化的波束优化问题和QoS波束优化问题之间的关系;
求解单元,用于基于关系通过对QoS波束优化问题进行求解,得到简化的波束优化问题的优化波束矩阵;
处理单元,用于采用高斯随机方法对优化波束矩阵进行处理,生成待处理优化波束向量;
功率资源优化单元,用于基于待处理优化波束向量对功率资源进行优化,得到异构网络系统的最优功率分配;
第四确定单元,用于基于待处理优化波束向量和最优功率分配确定优化波束向量。
可选地,求解单元包括:
获取子单元,用于获取二分法迭代的初始上限加权信噪比和初始下限加权信噪比;
确定初始上限加权信噪比和初始下限加权信噪比的平均信噪比;
迭代子单元,用于执行下述迭代过程:
基于关系将平均信噪比代入QoS波束优化问题,得到待求解QoS波束优化问题;
采用SDP工具对待求解QoS波束优化问题进行求解;
如果待求解QoS波束优化问题无解或得到的解所对应的能量大于能量约束,则对历史上限加权信噪比进行更新,得到更新的上限加权信噪比,其中,更新的上限加权信噪比为平均信噪比;
如果待求解QoS波束优化问题有解,则记录得到的解,并对历史下限加权信噪比进行更新,得到更新的下限加权信噪比,其中,更新的下限加权信噪比为平均信噪比;
判断当前的上限加权信噪比和当前的下限加权信噪比之差是否满足预设精度;
如果满足预设精度,且待求解QoS波束优化问题有解,则将解作为简化的波束优化问题的优化波束矩阵;
如果不满足预设精度,则基于更新的上限加权信噪比或更新的下限加权信噪比,确定平均信噪比,并执行上述迭代过程,直至满足预设精度为止。
可选地,功率资源优化单元包括:
第一确定子单元,用于结合波束优化问题,QoS波束优化问题和待处理优化波束向量确定关于功率的波束优化问题和关于功率的QoS波束优化问题;
第二确定子单元,用于确定关于功率的波束优化问题和关于功率的QoS波束优化问题之间的关系;
求解子单元,用于基于关系通过对关于功率的QoS波束优化问题进行求解,得到关于功率的波束优化问题的最优功率分配;
第一设定子单元,用于将最优功率分配作为异构网络系统的最优功率分配。
可选地,第五确定单元包括:
相乘子单元,用于将待处理优化波束向量和最优功率分配相乘,得到乘积向量;
第二设定子单元,用于将乘积向量作为优化波束向量。
该实施例二中的具体内容可以参考上述实施例一中具体描述,在此不再赘述。
本发明实施例所提供的异构网络协同多播的传输方法及装置的计算机程序产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行前面方法实施例中所述的方法,具体实现可参见方法实施例,在此不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (8)

1.一种异构网络协同多播的传输方法,其特征在于,所述方法包括:
收集异构网络到用户的下行信道信息,其中,所述异构网络包括:高速密集网络,广域覆盖网络;
基于异构网络协同多播的传输方式确定波束优化问题,其中,所述波束优化问题表示在满足功率约束下,最大化最小用户的加权信噪比,所述波束优化问题中包含所述下行信道信息;
对所述波束优化问题进行求解,得到优化波束向量;
其中,对所述波束优化问题进行求解,得到优化波束向量包括:
通过预设矩阵对所述波束优化问题进行转换,得到简化的波束优化问题,其中,所述简化的波束优化问题中使得所述波束优化问题中的预设约束条件松弛;
确定与所述简化的波束优化问题所对应的异构网络系统的QoS波束优化问题,其中,所述QoS波束优化问题表示在满足用户的最小接收信噪比的约束下,最小化传输功率;
确定所述简化的波束优化问题和所述QoS波束优化问题之间的关系;
基于所述关系通过对所述QoS波束优化问题进行求解,得到所述简化的波束优化问题的优化波束矩阵;
采用高斯随机方法对所述优化波束矩阵进行处理,生成待处理优化波束向量;
基于所述待处理优化波束向量对功率资源进行优化,得到所述异构网络系统的最优功率分配;
基于所述待处理优化波束向量和所述最优功率分配确定所述优化波束向量;
基于所述优化波束向量进行异构网络系统的波束资源分配,以优化所述异构网络系统性能;
其中,基于所述关系通过对所述QoS波束优化问题进行求解,得到所述简化的波束优化问题的优化波束矩阵包括:
获取二分法迭代的初始上限加权信噪比和初始下限加权信噪比;
确定所述初始上限加权信噪比和所述初始下限加权信噪比的平均信噪比;
执行下述迭代过程:
基于所述关系将所述平均信噪比代入所述QoS波束优化问题,得到待求解QoS波束优化问题;
采用SDP工具对所述待求解QoS波束优化问题进行求解;
如果所述待求解QoS波束优化问题无解或得到的解所对应的能量大于能量约束,则对历史上限加权信噪比进行更新,得到更新的上限加权信噪比,其中,所述更新的上限加权信噪比为所述平均信噪比;
如果所述待求解QoS波束优化问题有解,则记录得到的解,并对历史下限加权信噪比进行更新,得到更新的下限加权信噪比,其中,所述更新的下限加权信噪比为所述平均信噪比;
判断当前的上限加权信噪比和当前的下限加权信噪比之差是否满足预设精度;
如果满足所述预设精度,且所述待求解QoS波束优化问题有解,则将所述解作为所述简化的波束优化问题的优化波束矩阵;
如果不满足所述预设精度,则基于所述更新的上限加权信噪比或所述更新的下限加权信噪比,确定所述平均信噪比,并执行上述迭代过程,直至满足所述预设精度为止。
2.根据权利要求1所述的方法,其特征在于,收集异构网络到用户的下行信道信息包括:
利用导频信号进行信道估计,得到所述高速密集网络到目标用户的第一下行信道信息,其中,所述目标用户包括:所述高速密集网络覆盖范围内的用户,与所述高速密集网络相邻的高速密集网络覆盖范围内的用户;
利用所述导频信号进行信道估计,得到所述广域覆盖网络到其覆盖范围内的所有用户的第二下行信道信息;
将所述第一下行信道信息和所述第二下行信道信息作为所述下行信道信息。
3.根据权利要求1所述的方法,其特征在于,基于异构网络协同多播传输方式确定波束优化问题包括:
基于所述异构网络协同多播的传输方式确定各个用户在所述异构网络中的接收信噪比,其中,所述各个用户为在所述异构网络中的用户;
对所述接收信噪比进行加权处理,得到所述各个用户的加权信噪比;
在所述各个用户的加权信噪比中,最大化最小用户的加权信噪比,得到所述波束优化问题。
4.根据权利要求1所述的方法,其特征在于,基于所述待处理优化波束向量对功率资源进行优化,得到所述异构网络系统的最优功率分配包括:
结合所述波束优化问题,所述QoS波束优化问题和所述待处理优化波束向量确定关于功率的波束优化问题和关于功率的QoS波束优化问题;
确定所述关于功率的波束优化问题和所述关于功率的QoS波束优化问题之间的关系;
基于所述关系通过对所述关于功率的QoS波束优化问题进行求解,得到所述关于功率的波束优化问题的最优功率分配;
将所述最优功率分配作为所述异构网络系统的最优功率分配。
5.根据权利要求4所述的方法,其特征在于,基于所述待处理优化波束向量和所述最优功率分配确定所述优化波束向量包括:
将所述待处理优化波束向量和所述最优功率分配相乘,得到乘积向量;
将所述乘积向量作为所述优化波束向量。
6.一种异构网络协同多播的传输装置,其特征在于,所述装置包括:
收集模块,用于收集异构网络到用户的下行信道信息,其中,所述异构网络包括:高速密集网络,广域覆盖网络;
确定模块,用于基于异构网络协同多播的传输方式确定波束优化问题,其中,所述波束优化问题表示在满足功率约束下,最大化最小用户的加权信噪比,所述波束优化问题中包含所述下行信道信息;
求解模块,用于对所述波束优化问题进行求解,得到优化波束向量;
其中,所述求解模块还用于:
通过预设矩阵对所述波束优化问题进行转换,得到简化的波束优化问题,其中,所述简化的波束优化问题中使得所述波束优化问题中的预设约束条件松弛;
确定与所述简化的波束优化问题所对应的异构网络系统的QoS波束优化问题,其中,所述QoS波束优化问题表示在满足用户的最小接收信噪比的约束下,最小化传输功率;
确定所述简化的波束优化问题和所述QoS波束优化问题之间的关系;
基于所述关系通过对所述QoS波束优化问题进行求解,得到所述简化的波束优化问题的优化波束矩阵;
采用高斯随机方法对所述优化波束矩阵进行处理,生成待处理优化波束向量;
基于所述待处理优化波束向量对功率资源进行优化,得到所述异构网络系统的最优功率分配;
基于所述待处理优化波束向量和所述最优功率分配确定所述优化波束向量;
波束资源分配模块,用于基于所述优化波束向量进行异构网络系统的波束资源分配,以优化所述异构网络系统性能;
其中,所述求解模块还用于:
获取二分法迭代的初始上限加权信噪比和初始下限加权信噪比;
确定所述初始上限加权信噪比和所述初始下限加权信噪比的平均信噪比;
执行下述迭代过程:
基于所述关系将所述平均信噪比代入所述QoS波束优化问题,得到待求解QoS波束优化问题;
采用SDP工具对所述待求解QoS波束优化问题进行求解;
如果所述待求解QoS波束优化问题无解或得到的解所对应的能量大于能量约束,则对历史上限加权信噪比进行更新,得到更新的上限加权信噪比,其中,所述更新的上限加权信噪比为所述平均信噪比;
如果所述待求解QoS波束优化问题有解,则记录得到的解,并对历史下限加权信噪比进行更新,得到更新的下限加权信噪比,其中,所述更新的下限加权信噪比为所述平均信噪比;
判断当前的上限加权信噪比和当前的下限加权信噪比之差是否满足预设精度;
如果满足所述预设精度,且所述待求解QoS波束优化问题有解,则将所述解作为所述简化的波束优化问题的优化波束矩阵;
如果不满足所述预设精度,则基于所述更新的上限加权信噪比或所述更新的下限加权信噪比,确定所述平均信噪比,并执行上述迭代过程,直至满足所述预设精度为止。
7.根据权利要求6所述的装置,其特征在于,所述收集模块包括:
第一信道估计单元,用于利用导频信号进行信道估计,得到所述高速密集网络到目标用户的第一下行信道信息,其中,所述目标用户包括:所述高速密集网络覆盖范围内的用户,与所述高速密集网络相邻的高速密集网络覆盖范围内的用户;
第二信道估计单元,用于利用所述导频信号进行信道估计,得到所述广域覆盖网络到其覆盖范围内的所有用户的第二下行信道信息;
设定单元,用于将所述第一下行信道信息和所述第二下行信道信息作为所述下行信道信息。
8.根据权利要求6所述的装置,其特征在于,所述确定模块包括:
第一确定单元,用于基于所述异构网络协同多播的传输方式确定各个用户在所述异构网络中的接收信噪比,其中,所述各个用户为在所述异构网络中的用户;
加权处理单元,用于对所述接收信噪比进行加权处理,得到所述各个用户的加权信噪比;
最大化单元,用于在所述各个用户的加权信噪比中,最大化最小用户的加权信噪比,得到所述波束优化问题。
CN201810318310.6A 2018-04-10 2018-04-10 异构网络协同多播的传输方法及装置 Active CN108632767B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810318310.6A CN108632767B (zh) 2018-04-10 2018-04-10 异构网络协同多播的传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810318310.6A CN108632767B (zh) 2018-04-10 2018-04-10 异构网络协同多播的传输方法及装置

Publications (2)

Publication Number Publication Date
CN108632767A CN108632767A (zh) 2018-10-09
CN108632767B true CN108632767B (zh) 2019-04-12

Family

ID=63705068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810318310.6A Active CN108632767B (zh) 2018-04-10 2018-04-10 异构网络协同多播的传输方法及装置

Country Status (1)

Country Link
CN (1) CN108632767B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167106B (zh) * 2019-05-30 2020-06-26 电子科技大学 雾架构下基于基站选择的多用户资源分配方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664668A (zh) * 2012-04-12 2012-09-12 清华大学 异构网络系统中基于有限反馈的多点协作传输方法
CN104247289A (zh) * 2012-02-23 2014-12-24 韩国电子通信研究院 大规模天线系统中的多输入和多输出通信方法
CN104618946A (zh) * 2015-01-08 2015-05-13 西安电子科技大学 基于有源天线三维波束模型的lte异构网络干扰协调方法
CN106102173A (zh) * 2016-06-08 2016-11-09 上海交通大学 基于多播波束成形的无线回传及基站分簇联合优化方法
CN107172705A (zh) * 2017-04-24 2017-09-15 北京理工大学 无线携能异构网络的波束优化方法及系统
CN107276660A (zh) * 2017-06-22 2017-10-20 清华大学 非正交多址空地协同通信系统中资源分配方法及装置
WO2018012904A1 (en) * 2016-07-13 2018-01-18 Samsung Electronics Co., Ltd. Access control method and apparatus for use in mobile communication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247289A (zh) * 2012-02-23 2014-12-24 韩国电子通信研究院 大规模天线系统中的多输入和多输出通信方法
CN102664668A (zh) * 2012-04-12 2012-09-12 清华大学 异构网络系统中基于有限反馈的多点协作传输方法
CN104618946A (zh) * 2015-01-08 2015-05-13 西安电子科技大学 基于有源天线三维波束模型的lte异构网络干扰协调方法
CN106102173A (zh) * 2016-06-08 2016-11-09 上海交通大学 基于多播波束成形的无线回传及基站分簇联合优化方法
WO2018012904A1 (en) * 2016-07-13 2018-01-18 Samsung Electronics Co., Ltd. Access control method and apparatus for use in mobile communication
CN107172705A (zh) * 2017-04-24 2017-09-15 北京理工大学 无线携能异构网络的波束优化方法及系统
CN107276660A (zh) * 2017-06-22 2017-10-20 清华大学 非正交多址空地协同通信系统中资源分配方法及装置

Also Published As

Publication number Publication date
CN108632767A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
Sun et al. Deep learning-based long-term power allocation scheme for NOMA downlink system in S-IoT
CN111475301B (zh) 卫星资源分配方法、装置和电子设备
CN107276660B (zh) 非正交多址空地协同通信系统中资源分配方法及装置
CN105744628B (zh) 一种数能一体化通信网络的资源分配最优化方法
CN113038616B (zh) 一种基于联邦学习的频谱资源管理分配方法
CN107682935B (zh) 一种基于系统稳定性的无线自回传资源调度方法
CN105680920B (zh) 一种多用户多天线数能一体化通信网络吞吐量优化方法
KR101935782B1 (ko) 다중 셀룰러 네트워크에서 신호의 송수신 방법 및 장치
Verenzuela et al. Scalable D2D communications for frequency reuse>> 1 in 5G
CN111555795A (zh) 一种基于用户分组调度的网络资源分配方法和装置
CN110769514A (zh) 一种异构蜂窝网络d2d通信资源分配方法及系统
CN104080091A (zh) 分层异构网络中基于负载预测分组的家庭基站频谱分配方法
Hassan et al. A near optimal interference minimization resource allocation algorithm for D2D communication
CN108632767B (zh) 异构网络协同多播的传输方法及装置
CN114423028A (zh) 基于多智能体深度强化学习的CoMP-NOMA协作成簇与功率分配方法
CN107690180A (zh) 功率分配方法以及使用所述方法的基站
CN113507716A (zh) 一种基于swipt的cr-noma网络中断与能效的优化方法
CN107835514B (zh) 一种多宿主业务场景下无线网络资源匹配的建模方法
CN116684883A (zh) 频谱优化方法及装置
CN108449119B (zh) 异构网络时分协同多播的传输方法及装置
CN113595599B (zh) 面向5g的群簇协作通信异构系统和干扰抑制的方法
Gautam et al. Weighted Sum-SINR and Fairness Optimization for SWIPT-Multigroup Multicasting Systems With Heterogeneous Users
CN111343722B (zh) 边缘计算中基于认知无线电的能效优化方法
Ahmed et al. A dynamic coalition formation framework for interference management in dense small‐cell networks
CN107509248B (zh) 一种用户终端的调度处理方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant