CN108611609B - 一种金属纳米线网络、及其制备方法 - Google Patents

一种金属纳米线网络、及其制备方法 Download PDF

Info

Publication number
CN108611609B
CN108611609B CN201810471588.7A CN201810471588A CN108611609B CN 108611609 B CN108611609 B CN 108611609B CN 201810471588 A CN201810471588 A CN 201810471588A CN 108611609 B CN108611609 B CN 108611609B
Authority
CN
China
Prior art keywords
metal
film
nanowire network
layer
metal nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810471588.7A
Other languages
English (en)
Other versions
CN108611609A (zh
Inventor
杨为家
刘均炎
何鑫
沈耿哲
刘俊杰
刘铭全
王诺媛
刘艳怡
江嘉怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN201810471588.7A priority Critical patent/CN108611609B/zh
Publication of CN108611609A publication Critical patent/CN108611609A/zh
Application granted granted Critical
Publication of CN108611609B publication Critical patent/CN108611609B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种金属纳米线网络、及其制备方法,该纳米线包括由下至上排列的衬底和金属纳米线,其制备步骤包括S1)、将清洗干净的衬底放入溅射仪中,然后抽真空,在10‑2Pa时,通入氩气,溅射金属靶材,得到厚度为5‑30nm的非晶态的金属非晶纳米薄膜;S2)、将制备好的金属非晶纳米薄膜转移到管式退火炉中,先以0.4L/min的流量通入15min的纯度99.999%的氮气,排空管式炉中的氧气,然后将氮气的流量调整为0.1‑0.3L/min,按照2‑5℃/min的升温速率将管式退火炉中的温度升至300‑600℃,保温0.5‑20min,非晶态的金属非晶纳米薄膜在高温下缓慢结晶,薄膜缓慢收缩,在氮气的辅助下逐步形成结晶态的金属纳米线网络,本发明制备简单、适用范围广、导电性能好,金属纳米线网络的可控生长,制备成本低。

Description

一种金属纳米线网络、及其制备方法
技术领域
本发明涉及一种纳米材料技术领域,尤其是一种金属纳米线网络、及其制备方法。
背景技术
金属纳米线具有导电性能好、适用性广等优点,因而受到了人们的重视。随着人们生活水平的提高,人们对医疗健康产品提出了更高的要求,穿戴式医疗器件受到了人们的青睐,可穿戴式压力医疗器件要求柔软、轻便、舒适,而满足这些要求通常是有机材料,例如PDMS、PET等。有机薄膜通常是不导电的,为了获得良好的电学性能,通常会在PDMS材料中掺入金属纳米线、碳纳米管和石墨烯等。而金属纳米线可以作为纳米器件的电极材料,随着微纳加工技术的不断成熟,金属纳米线将会对纳米器件的发展产生积极的影响。
但是,目前制备金属纳米线一般采用腐蚀剥离法、外延法和水热法等,这些方法制备的金属纳米线在形成导电网络时,大多是通过物理接触而构建,这样构建的金属纳米线网络导电性能查,很难满足实际需求。
发明内容
针对现有技术的不足,本发明提供一种金属纳米线网络、及其制备方法。
本发明的技术方案为:一种金属纳米线网络,包括由下至上排列的衬底和金属纳米线,所述的金属纳米线的直径为150-950nm。
本发明还提供一种金属纳米线网络的制备方法,包括以下步骤:
S1)、将清洗干净的衬底放入溅射仪中,然后抽真空,在10-2Pa时,通入氩气,溅射金属靶材,得到厚度为5-30nm的非晶态的金属非晶纳米薄膜;
S2)、将制备好的金属非晶纳米薄膜转移到管式退火炉中,先以0.4L/min的流量通入15min的纯度99.999%的氮气,排空管式炉中的氧气,然后将氮气的流量调整为0.1-0.3L/min,按照2-5℃/min的升温速率将管式退火炉中的温度升至300-600℃,保温0.5-20min,非晶态的金属非晶纳米薄膜在高温下缓慢结晶,薄膜缓慢收缩,在氮气的辅助下逐步形成结晶态的金属纳米线网络。
进一步的,步骤S1)中,所述的金属靶材为Pt,Al,Au,Ag,Ni,Fe,Sn,Mn,W,Cu,Ti,Mo,Zn中的一种或者几种的组合,其纯度为99.9%以上。
进一步的,步骤S1)中,溅射条件为:氩气压强为1-0.1Pa,溅射电流为8-10A,溅射时间为30-120s。
进一步的,步骤S1)中,衬底为Si、蓝宝石、掺钇氧化锆(YSZ)中的任意一种。
本发明制备的金属纳米线网络应用于光电探测器、气敏探测器和太阳能电池。
进一步的,所述的光电探测器从下至上依次包括衬底层、金属纳米线网络、n型ZnO薄膜外延层、和电极。
进一步的,所述的气敏探测器从下至上依次包括衬底层、金属纳米线网络,ZnO纳米柱、电极。
进一步的,所述的太阳能电池从下至上依次包括衬底层、金属纳米线网络、ZnO薄膜层,和具有成分梯度的MgxZn1-xO缓冲层、n型掺硅MgxZn1-xO外延层、MgxZn1-xO多量子阱层、p型掺镁的MgxZn1-xO层。
本发明的有益效果为:制备简单、适用范围广、导电性能好,可以在多种衬底上实现各种金属纳米线网络的可控生长,金属纳米线网络的材质可以是Pt,Al,Au,Ag,Ni,Fe,Sn,Mn,W,Cu,Ti,Mo,Zn中的单一纯金属或者两种以上组成合金,有利于降低生产成本。
附图说明
图1为本发明的实施例1制备的金属Pt纳米线网络的扫描电子显微镜(SEM)图;
图2为本发明实施例1制备的金属Pt纳米线网络的X射线衍射(XRD)图谱;
图3为本发明实施例3光电探测器结构的截面示意图;
图4为本发明实施例4太阳能电池的截面示意图;
图5为本发明实施例5气敏探测器的截面示意图;
图中,11-衬底层,12金属Pt纳米线网络,13-n型ZnO薄膜外延层,14-电极,23-ZnO薄膜层,24-MgxZn1-xO缓冲层,25-n型掺硅MgxZn1-xO外延层,26-MgxZn1-xO多量子阱层,27-MgxZn1-xO层;33-ZnO纳米柱,34-电极。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
实施例1
一种金属纳米线网络的制备方法,包括以下步骤:
S1)、将清洗干净的衬底放入溅射仪中,然后抽真空,在10-2Pa时,通入氩气,溅射金属靶材Pt,得到厚度为8nm的非晶态的金属Pt非晶纳米薄膜,其中,溅射条件为:氩气压强为0.1Pa,溅射电流为10A,溅射时间为100s;
S2)、将制备好的金属Pt非晶纳米薄膜转移到管式退火炉中,先以0.4L/min的流量通入15min的纯度99.999%的氮气,排空管式炉中的氧气,然后将氮气的流量调整为0.2L/min,按照5℃/min的升温速率将管式退火炉中的温度升至600℃,保温2min,非晶态的金属非晶纳米薄膜在高温下缓慢结晶,薄膜缓慢收缩,在氮气的辅助下逐步形成结晶态的金属Pt纳米线网络。
本实施例制备的金属纳米线网络的直径为200-300nm,从图2中可以看出Pt的(111)(110)(220)特征衍射峰,说明本实施例制备的金属Pt纳米线网络的结晶状态较好,从图1中可以看出,金属Pt纳米线完全连接成为一个完整的网络,说明其具有较好的导电性。
实施例2
一种金属纳米线网络的制备方法,包括以下步骤:
S1)、将清洗干净的衬底放入溅射仪中,然后抽真空,在10-2Pa时,通入氩气,溅射金属靶材Au,得到厚度为10nm的非晶态的金属Au非晶纳米薄膜,其中,溅射条件为:氩气压强为0.1Pa,溅射电流为10A,溅射时间为80s;
S2)、将制备好的金属Pt非晶纳米薄膜转移到管式退火炉中,先以0.4L/min的流量通入15min的纯度99.999%的氮气,排空管式炉中的氧气,然后将氮气的流量调整为0.3L/min,按照2℃/min的升温速率将管式退火炉中的温度升至400℃,保温5min,非晶态的金属非晶纳米薄膜在高温下缓慢结晶,薄膜缓慢收缩,在氮气的辅助下逐步形成结晶态的金属Au纳米线网络。
实施例3
将实施例1制备的金属Pt纳米线用于制备光电探测器,通过在金属Pt纳米线继续外延生长ZnO并制备光电探测器,如图3所示,该光电探测器从下至上依次包括衬底层、金属Pt纳米线网络、n型ZnO薄膜外延层、和电极,其具体的制备过程为:在金属Pt纳米线网络上生长Al掺杂n型ZnO薄膜外延层,其厚度为600nm,其载流子浓度为3.75×1016cm-3。最后电子束蒸发形成欧姆接触和肖特基结。在此基础上通过在O2气氛下退火,提高了n型ZnO薄膜的载流子浓度和迁移率,所制备的ZnO紫外光电探测器在1V偏压下,暗电流仅为47pA,并且器件在1V偏压下,在359nm处响应度的最大值达到了0.637A/W,
实施例4
将实施例1制备的金属Pt纳米线用于制备ZnO基太阳能电池器件,通过在金属Pt纳米线继续外延生长并制备了ZnO基太阳能电池器件,如图4所示,该太阳能电池从下至上依次包括衬底层、金属Pt纳米线网络、ZnO薄膜层,和具有成分梯度的MgxZn1-xO缓冲层、n型掺硅MgxZn1-xO外延层、MgxZn1-xO多量子阱层、p型掺镁的MgxZn1-xO层;
具体的制备过程为:在金属Pt纳米线网络上生长高质量的ZnO薄膜,具有成分梯度的MgxZn1-xO缓冲层,x为0~0.25;然后生长n型掺硅MgxZn1-xO外延层,其厚度为3.25μm,其载流子的浓度为8.3×1018cm-3
接着生长MgxZn1-xO多量子阱层,其厚度为150nm,周期数为15,其中Mg0.2Zn0.8O阱层为2nm,Mg0.08Zn0.92N垒层为8nm;
再生长Mg掺杂的p型MgxZn1-xO层,其厚度为300nm,其载流子浓度为2.7×1016cm-3,最后电子束蒸发形成欧姆接触。在此基础上通过在O2气氛下退火,提高了n型ZnO薄膜的载流子浓度和迁移率,所制备的InGaN太阳能电池器件室温下的光电转化效率为6.7%,短路光电流密度为31mA/cm2
实施例5
将实施例1制备的金属Pt纳米线用于制备ZnO纳米柱气敏传感器,通过使用水热法在金属Pt纳米线上生长ZnO纳米柱并制备气敏传感器,如图5所示,其从下至上依次包括衬底层、金属Pt纳米线网络,ZnO纳米柱、电极;
具体制备过程为:在金属Pt纳米线网络上生长Mg掺杂p型ZnO纳米柱,纳米柱的直径为10nm,最后电子束蒸发形成电极。所制备的ZnO纳米柱气敏传感器探测精度高,对H2S可达到5ppm。
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (7)

1.一种金属纳米线网络的制备方法,其中,所述的金属纳米线网络包括由下至上排列的衬底和金属纳米线,所述的金属纳米线的直径为150-950nm;
其特征在于,包括以下步骤:
S1)、将清洗干净的衬底放入溅射仪中,然后抽真空,在10-2Pa时,通入氩气,溅射金属靶材,得到厚度为5-30nm的非晶态的金属非晶纳米薄膜;
S2)、将制备好的金属非晶纳米薄膜转移到管式退火炉中,先以0.4L/min的流量通入15min的纯度99.999%的氮气,排空管式炉中的氧气,然后将氮气的流量调整为0.1-0.3L/min,按照2-5℃/min的升温速率将管式退火炉中的温度升至300-600℃,保温0.5-20min,非晶态的金属非晶纳米薄膜在高温下缓慢结晶,薄膜缓慢收缩,在氮气的辅助下逐步形成结晶态的金属纳米线网络;
所述的金属纳米线网络可用于光电探测器、气敏探测器或太阳能电池。
2.根据权利要求1所述的一种金属纳米线网络的制备方法,其特征在于:步骤S1)中,所述的金属靶材为纯度为99.9%以上的Pt,Al,Au,Ag,Ni,Fe,Sn,Mn,W,Cu,Ti,Mo,Zn中的一种或者几种的组合。
3.根据权利要求1所述的一种金属纳米线网络的制备方法,其特征在于:步骤S1)中,溅射条件为:氩气压强为1-0.1Pa,溅射电流为8-10A,溅射时间为30-120s。
4.根据权利要求1所述的一种金属纳米线网络的制备方法,其特征在于:步骤S1)中,衬底为Si、蓝宝石、掺钇氧化锆YSZ中的任意一种。
5.根据权利要求1所述的一种金属纳米线网络的制备方法,其特征在于:所述的光电探测器从下至上依次包括衬底层、金属纳米线网络、n型ZnO薄膜外延层和电极。
6.根据权利要求1所述的一种金属纳米线网络的制备方法,其特征在于:所述的气敏探测器从下至上依次包括衬底层、金属纳米线网络,ZnO纳米柱、电极。
7.根据权利要求1所述的一种金属纳米线网络的制备方法,其特征在于:太阳能电池从下至上依次包括衬底层、金属纳米线网络、ZnO薄膜层,和具有成分梯度的MgxZn1-xO缓冲层、n型掺硅MgxZn1-xO外延层、MgxZn1-xO多量子阱层、p型掺镁的MgxZn1-xO层。
CN201810471588.7A 2018-05-17 2018-05-17 一种金属纳米线网络、及其制备方法 Active CN108611609B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810471588.7A CN108611609B (zh) 2018-05-17 2018-05-17 一种金属纳米线网络、及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810471588.7A CN108611609B (zh) 2018-05-17 2018-05-17 一种金属纳米线网络、及其制备方法

Publications (2)

Publication Number Publication Date
CN108611609A CN108611609A (zh) 2018-10-02
CN108611609B true CN108611609B (zh) 2020-03-24

Family

ID=63663600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810471588.7A Active CN108611609B (zh) 2018-05-17 2018-05-17 一种金属纳米线网络、及其制备方法

Country Status (1)

Country Link
CN (1) CN108611609B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582486B (zh) * 2020-12-15 2023-09-26 广西大学 一种NiO紫外光电探测器及其制备方法
CN114530509B (zh) * 2022-01-24 2024-01-30 西安理工大学 具有中红外高光吸收特性的超导纳米线单光子探测器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235129B2 (en) * 2004-04-13 2007-06-26 Industrial Technology Research Institute Substrate having a zinc oxide nanowire array normal to its surface and fabrication method thereof
CN107731971B (zh) * 2017-10-24 2023-07-21 江门市奥伦德光电有限公司 一种基于光子晶体的垂直结构led芯片及其制备方法
CN107681030B (zh) * 2017-10-24 2023-08-18 江门市奥伦德光电有限公司 一种新型P-GaN薄膜结构的LED芯片及其制备方法
CN107731953B (zh) * 2017-10-24 2023-10-31 江门市奥伦德光电有限公司 一种光电探测器及其制备方法
CN107681028B (zh) * 2017-10-24 2023-08-29 江门市奥伦德光电有限公司 一种垂直结构ZnO基LED芯片及其制备方法
CN108022982A (zh) * 2017-11-02 2018-05-11 五邑大学 一种基于ZnO基透明太阳能电池的智能窗及其制备方法

Also Published As

Publication number Publication date
CN108611609A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
Hsu et al. Vertical p-type Cu-doped ZnO/n-type ZnO homojunction nanowire-based ultraviolet photodetector by the furnace system with hotwire assistance
Ok et al. Electrically addressable hybrid architectures of zinc oxide nanowires grown on aligned carbon nanotubes
Lin et al. Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties
Rondiya et al. Synthesis of CdS thin films at room temperature by RF-magnetron sputtering and study of its structural, electrical, optical and morphology properties
Tsai et al. p-Cu 2 O-shell/n-TiO 2-nanowire-core heterostucture photodiodes
CN108611609B (zh) 一种金属纳米线网络、及其制备方法
Xu et al. Recent progress on infrared photodetectors based on InAs and InAsSb nanowires
Shewale et al. The effects of pulse repetition rate on the structural, surface morphological and UV photodetection properties of pulsed laser deposited Mg-doped ZnO nanorods
JP2009200419A (ja) 太陽電池の製造方法
CN111341839B (zh) 一种p型氮掺杂氧化镓薄膜及其制备方法
Serre et al. Percolating silicon nanowire networks with highly reproducible electrical properties
Wu et al. Direct synthesis of high-density lead sulfide nanowires on metal thin films towards efficient infrared light conversion
Farhat et al. Fabrication and characterization of ZnO nanowires by wet oxidation of Zn thin film deposited on Teflon substrate
CN113702447B (zh) 氧化镓纳米结构器件及其制备方法和应用
Tyagi et al. Direct growth of self-aligned single-crystalline GaN nanorod array on flexible Ta foil for photocatalytic solar water-splitting
CN109056057B (zh) 一种大尺寸单晶氧化镓纳米片的制备方法
Han et al. Highly efficient and flexible photosensors with GaN nanowires horizontally embedded in a graphene sandwich channel
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
Young et al. Synthesis and optoelectronic properties of Ga-doped ZnO nanorods by hydrothermal method
Labis et al. Pulsed laser deposition growth of 3D ZnO nanowall network in nest-like structures by two-step approach
Rastialhosseini et al. Three-dimensional ZnO nanorods growth on ZnO nanorods seed layer for high responsivity UV photodetector
CN104894640A (zh) 一种石墨烯衬底上ZnO分级纳米阵列及其制备方法及应用
Costa et al. Unusual effects of nanowire-nanowire junctions on the persistent photoconductivity in SnO2 nanowire network devices
Zhang et al. Fabrication of two types of ordered InP nanowire arrays on a single anodic aluminum oxide template and its application in solar cells
CN109881246B (zh) 一种大尺寸单晶β-氧化镓纳米带的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant