CN114530509B - 具有中红外高光吸收特性的超导纳米线单光子探测器 - Google Patents

具有中红外高光吸收特性的超导纳米线单光子探测器 Download PDF

Info

Publication number
CN114530509B
CN114530509B CN202210080291.4A CN202210080291A CN114530509B CN 114530509 B CN114530509 B CN 114530509B CN 202210080291 A CN202210080291 A CN 202210080291A CN 114530509 B CN114530509 B CN 114530509B
Authority
CN
China
Prior art keywords
nanowire
refractive index
layer
thickness
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210080291.4A
Other languages
English (en)
Other versions
CN114530509A (zh
Inventor
赵雨辰
�田�浩
刘江凡
宋忠国
席晓莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202210080291.4A priority Critical patent/CN114530509B/zh
Publication of CN114530509A publication Critical patent/CN114530509A/zh
Application granted granted Critical
Publication of CN114530509B publication Critical patent/CN114530509B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开的具有中红外高光吸收特性的超导纳米线单光子探测器,包括自上而下依次设置的纳米线层、二氧化硅腔、分布式布拉格反射镜以及衬底,纳米线层采用单层NbN纳米线或双层NbN纳米线。然后以3‑5μm波长范围内光吸收率的最小值作为目标函数,通过粒子群算法/PSO来寻求初始结构中二氧化硅腔、DBR的高折射率薄膜和低折射率薄膜这三者厚度的最优解,实现了具有3‑5μm宽带高光吸收率以及较好带内平坦度特性的SNSPD设计。当入射光垂直入射时,在3‑5μm目标波长范围内,优化后的单层NbN纳米线结构的光吸收率最小值为0.526,最大值为0.779,带内平坦度可以低至0.253;双层NbN纳米线结构的最小值和最大值则分别达到了0.748和0.974,带内平坦度可以低至0.226。

Description

具有中红外高光吸收特性的超导纳米线单光子探测器
技术领域
本发明属于红外光电探测器技术领域,涉及一种具有中红外高光吸收特性的超导纳米线单光子探测器。
背景技术
超导纳米线单光子探测器/SNSPD因其所具有的暗计数低、响应频谱宽、时间抖动小、重复速度快等优点,已在过去的二十年中得到了飞速的发展并被广泛应用于各个相关的前沿技术领域,例如远距离量子通信,单光子成像等。而随着新需求的不断涌现,对于SNSPD的光子响应机制、极化不敏感结构设计等多个方面的研究也正在不断深入。而具有中红外高探测效率的SNSPD因其在诸如光谱分析、天文观测等领域的重要应用价值,正受到越来越多的关注。
SNSPD在近红外波段现有技术已经较为成熟,其通常采用线宽约100nm左右的超导纳米蜿蜒线结构并引入纳米天线、光学腔、多层介质结、高折射率介质、分形结构、波导集成等结构进一步提高光吸收率。而在中红外波段,虽然采用线宽约30-50nm左右的超窄纳米蜿蜒线结构能够较为有效地解决单个光子能量的显著降低以及由此导致的热点难以触发纳米线阻态的问题,但是SNSPD的高光吸收率设计,特别是宽带光吸收设计时较好的带内平坦度设计仍然有待进一步研究。
发明内容
本发明的目的是提供一种具有中红外高光吸收特性的超导纳米线单光子探测器,解决了现有技术中存在的探测器宽带光吸收效率设计时难以同时保证高光吸收率峰值和较好带内平坦度的问题。
本发明所采用的技术方案是,具有中红外高光吸收特性的超导纳米线单光子探测器,包括自上而下依次设置的纳米线层、二氧化硅腔、分布式布拉格反射镜以及衬底。
本发明的特点还在于,
分布式布拉格反射镜由高折射率薄膜和低折射率薄膜交替构成,高折射率薄膜采用氧化钇稳定氧化锆,折射率为5;低折射率薄膜采用二氧化硅,折射率为1.444;所述分布式布拉格反射镜的周期数为4。
衬底采用BK7玻璃衬底,厚度为400μm,折射率为1.5055。
纳米线层采用单层氮化铌纳米线结构,所述氮化铌纳米线厚度为4nm,线宽为30nm,占空比为1/3。
纳米线层采用单层氮化铌纳米线结构时,二氧化硅腔厚度为650nm,氧化钇稳定氧化锆高折射率薄膜厚度为187nm,所述二氧化硅低折射率薄膜厚度为663nm。
纳米线层采用双层氮化铌纳米线结构,包括自上而下依次设置的氮化铌纳米线、二氧化硅隔离层和氮化铌纳米线,所述氮化铌纳米线厚度为4nm,线宽为30nm,占空比为1/3;所述二氧化硅隔离层厚度为3nm。
纳米线层采用双层氮化铌纳米线结构时,二氧化硅腔厚度为658nm,氧化钇稳定氧化锆高折射率薄膜厚度为187nm,二氧化硅低折射率薄膜厚度为636nm。
本发明的有益效果是:
本发明的具有中红外高光吸收特性的超导纳米线单光子探测器,利用氮化铌(NbN)纳米线、二氧化硅腔以及DBR构建非对称F-P腔结构,并设计了单层NbN和双层NbN纳米线两种结构,之后以3-5μm波长范围内光吸收率的最小值作为目标函数,采用粒子群算法(PSO)来寻求初始模型中二氧化硅腔、DBR的高折射率薄膜和低折射率薄膜这三者厚度的最优解,实现了具有3-5μm宽带高光吸收率以及较好带内平坦度特性的SNSPD设计。同时,这里将带内平坦度定义为:在3-5μm波长范围内,光吸收率的最大值与最小值之差,该值越接近于0表明吸收率的带内平坦度越好。当入射光垂直入射时,优化后的单层NbN纳米线结构的光吸收率最小值为0.526,最大值为0.779,带内平坦度可以低至0.253;双层NbN纳米线结构的最小值和最大值则分别达到了0.748和0.974,带内平坦度可以低至0.226。
附图说明
图1是本发明具有中红外高光吸收特性的超导纳米线单光子探测器中采用单层NbN纳米线的结构示意图;
图2是本发明具有中红外高光吸收特性的超导纳米线单光子探测器中采用双层NbN纳米线的结构示意图;
图3是本发明具有中红外高光吸收特性的超导纳米线单光子探测器中DBR高折射率薄膜材料类型选择时两种结构的光吸收率曲线;
图4是本发明具有中红外高光吸收特性的超导纳米线单光子探测器中DBR周期数选择时的均值曲线;
图5是本发明具有中红外高光吸收特性的超导纳米线单光子探测器中两种结构使用不同计算方法得到的光吸收率曲线对比图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明具有中红外高光吸收特性的超导纳米线单光子探测器,利用NbN纳米线、二氧化硅腔以及DBR构建非对称F-P腔结构,并设计了单层NbN和双层NbN纳米线两种结构,采用单层氮化铌纳米线时探测器结构M1,如图1所示,包括自上而下依次设置的NbN纳米线、二氧化硅腔、分布式布拉格反射镜、400μm厚的BK7玻璃衬底;采用双层NbN纳米线时探测器结构M2,如图2所示,包括自上而下依次设置的氮化铌纳米线、二氧化硅隔离层、氮化铌纳米线、二氧化硅腔、分布式布拉格反射镜、400μm厚的BK7玻璃衬底。分布式布拉格反射镜由高折射率薄膜H和低折射率薄膜L交替构成。
使用时域有限差分方法即FDTD进行仿真时,入射光从器件结构上方垂直入射,上下两个边界采用完美匹配层PML,左右两个边界采用周期边界PBC。通过将PML下边界设置在BK7玻璃衬底的不同位置,可以模拟衬底有限大和无限大两种情况,如图1、图2中虚线和点虚线所示,本发明采用了PML下边界在衬底内的无限大衬底设置以大幅减少仿真时间,并且这样做并不会显著影响到实际的仿真与设计精度。
两种结构中DBR的低折射率薄膜材料为二氧化硅(SiO2),折射率为1.444,高折射率薄膜材料的备选类型为五氧化二钽Ta2O5、硅Si、氧化钇稳定氧化锆YSZ,中红外波段的折射率分别为2.05、3.478、5。在确定DBR高折射率薄膜材料的过程中,首先使用Ta2O5、Si、YSZ三种高折射率薄膜备选材料的折射率分别计算其各自的反射带宽,设计波长设置为3.8μm,计算结果分别为793nm、2225nm、3283nm。舍弃不满足本次设计需求即2μm反射带宽的Ta2O5,进一步对Si、YSZ做分析。
DBR中高折射率薄膜材料类型进一步分析的结果如图3所示,以初始周期数为13的DBR为例,分别使用YSZ和Si作为高折射率薄膜材料,计算得到两种结构优化后的吸收率曲线。从图中可以看出,两种结构无论使用YSZ还是Si作为高折射率薄膜,都能在3.8μm附近达到几乎相同的带内吸收率峰值,但区别在于,使用折射率更高的YSZ能够显著提高带内吸收率的最小值,从而提高了带内平坦度。同时可以发现,双层NbN纳米线结构M2的吸收率明显高于单层NbN纳米线结构M1。
两种结构中DBR的周期数选取,以YSZ作为DBR中高折射率薄膜,对两种结构分别使用不同周期数的DBR进行优化设计,取5个相互独立的设计结果的平坦度和器件总厚度,绘制出均值曲线图,如图4所示。结果表明,当周期数大于4之后,两种结构的总厚度不断增加但平坦度变化几乎饱和。因此本发明最终的设计结果中DBR将以YSZ作为高折射率薄膜材料,且周期数设置为4。
上述过程完成之后,再一次通过PSO算法对两种结构中的二氧化硅腔、DBR中高折射率薄膜、低折射率薄膜三者厚度进行优化。优化结果为:单层NbN纳米线结构中二氧化硅腔的厚度为650nm,YSZ高折射率薄膜厚度为187nm,SiO2低折射率薄膜厚度为663nm;双层NbN纳米线结构中二氧化硅腔的厚度为658nm,YSZ高折射率薄膜厚度为187nm,SiO2低折射率薄膜厚度为636nm。
图5中使用FDTD对基于传输矩阵法TMM的两种结构优化结果进行了验证,不同方法所得曲线之间的良好吻合证明了所得设计的正确性。此外,这里将带内平坦度定义为:在3-5μm波长范围内,光吸收率的最大值与最小值之差,该值越接近于0表明吸收率的带内平坦度越好。优化后的单层NbN纳米线结构的光吸收率最小值为0.526,最大值为0.779,带内平坦度为0.253;双层NbN纳米线结构的最小值和最大值则分别达到了0.748和0.974,带内平坦度为0.226。
通过以上方式,本发明的具有中红外高光吸收率特性的超导纳米线单光子探测器,利用氮化铌NbN纳米线、二氧化硅腔以及DBR构建非对称F-P腔结构,并设计了单层NbN和双层NbN纳米线两种结构,之后以3-5μm波长范围内光吸收率的最小值作为目标函数,采用粒子群算法(PSO)来寻求初始结构中二氧化硅腔、DBR的高折射率薄膜和低折射率薄膜这三者厚度的最优解,实现了具有3-5μm宽带高光吸收率以及较好带内平坦度特性的SNSPD设计。结构简单且易于操作,当入射光垂直入射时,在3-5μm目标波长范围内,优化后的单层NbN纳米线结构的光吸收率最小值为0.526,最大值为0.779,带内平坦度可以低至0.253;双层NbN纳米线结构的最小值和最大值则分别达到了0.748和0.974,带内平坦度可以低至0.226。

Claims (2)

1.具有中红外高光吸收特性的超导纳米线单光子探测器,其特征在于,包括自上而下依次设置的纳米线层、二氧化硅腔、分布式布拉格反射镜以及衬底;
所述分布式布拉格反射镜由高折射率薄膜和低折射率薄膜交替构成,高折射率薄膜采用氧化钇稳定氧化锆,折射率为5;低折射率薄膜采用二氧化硅,折射率为1.444;所述分布式布拉格反射镜的周期数为4;
所述纳米线层采用单层氮化铌纳米线结构,所述氮化铌纳米线厚度为4nm,线宽为30nm,占空比为1/3;所述二氧化硅腔厚度为650nm;所述氧化钇稳定氧化锆高折射率薄膜厚度为187nm,所述二氧化硅低折射率薄膜厚度为663nm;
所述纳米线层采用双层氮化铌纳米线结构,包括自上而下依次设置的氮化铌纳米线、二氧化硅隔离层和氮化铌纳米线,所述氮化铌纳米线厚度为4nm,线宽为30nm,占空比为1/3;所述二氧化硅隔离层厚度为3nm;所述二氧化硅腔厚度为658nm;所述氧化钇稳定氧化锆高折射率薄膜厚度为187nm,二氧化硅低折射率薄膜厚度为636nm。
2.根据权利要求1所述的具有中红外高光吸收特性的超导纳米线单光子探测器,其特征在于,所述衬底采用BK7玻璃衬底,厚度为400µm,折射率为1.5055。
CN202210080291.4A 2022-01-24 2022-01-24 具有中红外高光吸收特性的超导纳米线单光子探测器 Active CN114530509B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210080291.4A CN114530509B (zh) 2022-01-24 2022-01-24 具有中红外高光吸收特性的超导纳米线单光子探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210080291.4A CN114530509B (zh) 2022-01-24 2022-01-24 具有中红外高光吸收特性的超导纳米线单光子探测器

Publications (2)

Publication Number Publication Date
CN114530509A CN114530509A (zh) 2022-05-24
CN114530509B true CN114530509B (zh) 2024-01-30

Family

ID=81621678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210080291.4A Active CN114530509B (zh) 2022-01-24 2022-01-24 具有中红外高光吸收特性的超导纳米线单光子探测器

Country Status (1)

Country Link
CN (1) CN114530509B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356271A (ja) * 2003-05-28 2004-12-16 Matsushita Electric Ind Co Ltd 面発光型半導体素子およびその製造方法
WO2011150321A1 (en) * 2010-05-28 2011-12-01 Massachusetts Institute Of Technology Photon detector based on superconducting nanowires
CN108611609A (zh) * 2018-05-17 2018-10-02 五邑大学 一种金属纳米线网络、及其制备方法
CN108666409A (zh) * 2018-05-10 2018-10-16 东南大学 一种提高超导纳米线吸收效率的结构
CN112050935A (zh) * 2020-09-14 2020-12-08 中国科学院上海微系统与信息技术研究所 超导纳米线单光子探测器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305250B2 (en) * 2017-08-23 2019-05-28 The Regents Of The University Of Michigan III-Nitride nanowire array monolithic photonic integrated circuit on (001)silicon operating at near-infrared wavelengths
TWI780579B (zh) * 2020-02-03 2022-10-11 美商應用材料股份有限公司 具有整合化氮化鋁晶種或波導層的超導奈米線單光子偵測器
TWI753759B (zh) * 2020-02-03 2022-01-21 美商應用材料股份有限公司 具有整合化氮化鋁種晶或波導層的超導奈米線單光子偵測器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356271A (ja) * 2003-05-28 2004-12-16 Matsushita Electric Ind Co Ltd 面発光型半導体素子およびその製造方法
WO2011150321A1 (en) * 2010-05-28 2011-12-01 Massachusetts Institute Of Technology Photon detector based on superconducting nanowires
CN108666409A (zh) * 2018-05-10 2018-10-16 东南大学 一种提高超导纳米线吸收效率的结构
CN108611609A (zh) * 2018-05-17 2018-10-02 五邑大学 一种金属纳米线网络、及其制备方法
CN112050935A (zh) * 2020-09-14 2020-12-08 中国科学院上海微系统与信息技术研究所 超导纳米线单光子探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Light Absorption Optimization for Superconducting Nanowire Single-Photon Detector Based on PSO;赵雨辰等;《2021 IEEE 4th International Conference on Computer and Communication Engineering Technology》;1-5 *

Also Published As

Publication number Publication date
CN114530509A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
Liu et al. Advance in photonic crystal solar cells
Wu et al. A review of spectral controlling for renewable energy harvesting and conserving
CN110133771B (zh) 一种利用结构对称性破缺实现超窄带吸收和传感的方法
CN102829884B (zh) 具有强吸收结构的高速snspd及其制备方法
CN110346854B (zh) 一种与偏振无关的超窄多频带可调谐完美吸收器
CN104656170A (zh) 一种宽波段光全吸收器及其制备方法
CN103681897B (zh) 一种红外光电探测器及其制备方法
Zhou et al. Ultra-broadband metamaterial perfect solar absorber with polarization-independent and large incident angle-insensitive
US11289878B2 (en) Nanolaser based on depth-subwavelength graphene-dielectric hyperbolic dispersive cavity
Zhang et al. Analysis of a bidirectional metamaterial perfect absorber with band-switchability for multifunctional optical applications
US20220308264A1 (en) Fano resonant optical coating
Pan et al. A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021
Wang et al. Light management with grating structures in optoelectronic devices
CN114530509B (zh) 具有中红外高光吸收特性的超导纳米线单光子探测器
CN110797419A (zh) 一种叉指电极结构偏振相关窄带探测器、其制备和应用
CN108515743B (zh) 一种金属/介质超宽带吸收薄膜及其制备方法
CN110890434A (zh) 一种铜氧基高温超导单光子探测器及其制备方法
CN110673249A (zh) 一种反射滤光片
CN111863984A (zh) 光电探测器及其制作方法
CN110391314A (zh) 一种窄带光电探测器及其制备方法
CN108375812B (zh) 基于光学Tamm态的三频吸收器
CN210040233U (zh) 一种窄光谱响应的热电子光电探测器
Shao et al. Five-layer planar hot-electron photodetectors at telecommunication wavelength of 1550 nm
Li et al. Design of Fabrication-Tolerant and Compact Waveguide Superconducting Single-Photon Detector Based on TM 0 Mode Absorption
CN108917925B (zh) 一种基于光学奇异点设计的多层膜光探测器及其探测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant