CN108607591B - 一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其制备方法和应用 - Google Patents

一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其制备方法和应用 Download PDF

Info

Publication number
CN108607591B
CN108607591B CN201810298950.5A CN201810298950A CN108607591B CN 108607591 B CN108607591 B CN 108607591B CN 201810298950 A CN201810298950 A CN 201810298950A CN 108607591 B CN108607591 B CN 108607591B
Authority
CN
China
Prior art keywords
carbon
bismuth
silver bromide
bismuth oxybromide
alkene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810298950.5A
Other languages
English (en)
Other versions
CN108607591A (zh
Inventor
唐国钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjiang College
Original Assignee
Zhenjiang College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenjiang College filed Critical Zhenjiang College
Priority to CN201810298950.5A priority Critical patent/CN108607591B/zh
Publication of CN108607591A publication Critical patent/CN108607591A/zh
Application granted granted Critical
Publication of CN108607591B publication Critical patent/CN108607591B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其制备方法和应用,该材料为三元纳米复合物,其中,基体材料为溴氧铋,碳氮烯与溴化银为增强及稳定相,碳氮烯占5~10wt%,溴化银占5~20wt%,余量为溴氧铋,溴化银纳米颗粒均匀的生长在碳氮烯/溴氧铋复合纳米片上。本发明采用简易的工艺合成高光催化性能碳氮烯/溴化银共修饰溴氧铋复合纳米材料,所得复合纳米材料对工业废水中的有机染料具有很好的降解效率,50min内对RhB(罗丹明B)的降解率可达95%以上,因此在光催化、气敏、污水处理等领域中具有重要的应用,有望用于大规模的工业生产。

Description

一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其 制备方法和应用
技术领域
本发明涉及纳米材料领域,具体涉及一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其制备方法和应用。
背景技术
近年来,半导体光催化剂作为解决能源危机和环境问题的绿色技术,已经成为当前全球关注的热点之一。直到今天,各种各样的半导体光催化剂被用来降解有机污染物,而TiO2由于其高光催化性能、低价、无毒及良好的化学稳定性,已经被证明是最有效的光催化剂的之一。然而,传统的光催化剂的活性主要在紫外光区,较大的禁带宽度限制了光生电子的效率,不利于光催化性能的提高。因此,开发和发展高性能及稳定性的可见光光催化剂已成为当前光催化技术研究的前沿。更重要的是,许多文献也证明可见光光催化降解过程是非常安全、有效、绿色和可持续发展的。
随着可见光驱动光催化剂的发展,以BiOBr为代表的铋基光催化剂由于其独特的自组装结构、有趣的电子结构和高效可见光光催化性能受到了广泛的关注。许多铋基化合物都具有窄的禁带宽度及优异的光催化性能,这主要归结于O 2p和Bi 6s2杂化。专利CN103007967 B、CN 107321369 A、CN 104667951 B、CN 105836799 B等相继报道纯的BiOBr纳米材料的合成方法并应用于典型有机染料的降解。而对于提升传统的光催化剂活性,引入其他的半导体材料协同增强是当前的光催化领域研究的趋势,石墨烯、高活性银基光催化剂常常作为增强组分用于光催化材料的复合,CN 104096578 B、CN 104607214 B等专利报道了AgBr增强传统光催化材料的应用,但是很少有多组分复合光催化材料的报道。
发明内容
针对现有技术的不足,本发明的目的在于提供一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其制备方法和应用,采用碳氮烯、溴化银共修饰溴氧铋复合纳米材料,形成三元增强复合光催化剂,提升溴氧铋的可见光光催化性能,拓展其可见光条件下在光催化处理工业废水及光催化分解水产氧等领域的应用,其制备方法,成本低廉、工艺简单、得到的光催化剂产率高。
本发明是通过以下技术方案实现的:
一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料,所述材料为三元纳米复合物,其中,基体材料为溴氧铋,碳氮烯与溴化银为增强及稳定相,碳氮烯占5~10wt%,溴化银占5~20wt%,余量为溴氧铋,溴化银纳米颗粒均匀的生长在碳氮烯/溴氧铋复合纳米片上。
一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料的制备方法,包括以下步骤:
步骤1)碳氮烯/氧化铋前驱体的合成:将尿素、铋盐及氯化钠混合物按比例置于反应釜内,采用熔盐法制备Bi2O3掺杂的多孔的g-C3N4片状材料,即为碳氮烯/氧化铋前驱体;
步骤2)碳氮烯/溴氧铋复合纳米片的合成:将步骤1)制备的碳氮烯/氧化铋前驱体加入溴源与表面活性剂的混合溶液,采用混合溶剂法合成碳氮烯/溴氧铋复合纳米片,并清洗、干燥;
步骤3)碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料的合成:将步骤2)制备的碳氮烯/溴氧铋复合纳米片分散到去离子水中,再采用滴加的方式引入Br-,通过离子置换的方式合成所述碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料。
优选的,步骤1)所述铋盐为硝酸铋或氯化铋;所述氯化钠的含量为混合物质量的40~80%。
优选的,步骤2)所述表面活性剂为聚乙烯吡咯烷酮、十六烷基三甲基溴化铵、聚乙二醇或者泊洛沙姆,其添加量为0.2~1g。
优选的,所述表面活性剂为聚乙二醇,其添加量为0.2~1g。
一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料在净化工业废水中有机污染物上的应用。
本发明的有益效果如下:
本发明采用简易的工艺合成高光催化性能的碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料,所得复合纳米材料对工业废水中的有机染料具有很好的降解效率,50min内对RhB(罗丹明B)的降解率可达95%以上,因此在光催化、气敏、污水处理等领域中具有重要的应用,有望用于大规模的工业生产。
附图说明
图1为纯BiOBr、g-C3N4、g-C3N4/BiOBr和g-C3N4/BiOBr/AgBr的XRD图谱;
图2为g-C3N4/BiOBr/AgBr的X射线光电子能谱(XPS);
图3为实施例1中g-C3N4/BiOBr的SEM图;
图4为实施例1中g-C3N4/BiOBr/AgBr的SEM图;
图5为不同g-C3N4添加量(5~20%)的g-C3N4/BiOBr/AgBr复合光催化材料对罗丹明B在可见光条件下的降解曲线;
图6为不同AgBr添加量(5~15%)的g-C3N4/BiOBr/AgBr复合光催化材料对罗丹明B的降解曲线。
具体实施方式
以下通过附图与实施例进一步描述本发明,由技术常识可知,本发明也可通过其它的不脱离本发明技术特征的方案来描述,因此所有在本发明范围内或等同本发明范围内的改变均被本发明包含。本发明所采用的所有试剂均为商业产品,可经过市售途径获得。
实施例1
(1)分别称取0.65g尿素、1.17g硝酸铋及10g氯化钠球磨混合均匀后转入不锈钢坩埚中,在管式炉中650℃条件下保温2h,升温速率为5℃/min,最终得到g-C3N4/Bi2O3复合材料前驱体。其中g-C3N4制备的产率为10%。
(2)将(1)中合成的前驱体1g加到60mL的去离子水中,机械搅拌30min后加入0.2g聚乙二醇作为表面活性剂,超声分散2h,再加入10mL的KBr溶液(1mol/L)搅拌混合均匀后传入水热反应釜,在80℃条件下水热反应6h,将反应产物用乙醇和去离子水反复洗涤离心,真空干燥箱60℃条件下干燥8h得g-C3N4/BiOBr的复合纳米材料。
(3)将(2)合成产物加入到50mL的去离子水中,超声分散30min后,在保持持续机械搅拌的条件下,逐滴滴加0.05mol/L的银氨溶液于上述溶液,通过控制银氨溶液加入体积控制AgBr的含量,本实施例中滴加银氨溶液的体积为5mL,上述溶液在避光的条件下继续机械搅拌4h,再将产物用乙醇和去离子水反复洗涤离心,真空干燥箱60℃条件下干燥8h,其产率为92%,其中g-C3N4的含量为5%,AgBr为5%,余量为BiOBr。
图1为纯BiOBr、g-C3N4、g-C3N4/BiOBr和g-C3N4/BiOBr/AgBr的XRD图谱,从图中可以看出,对于纯g-C3N4,在13.1°和27.5°位置出现一个衍射峰,分别对应于六方相g-C3N4标准卡片JCPDS no.87-1526一致;纯BiOBr的衍射峰与四方相结构BiOBr标准卡片JCPDSno.09-0393一致。而在二元和三元复合光催化材料中存在明显BiOBr的特征峰,g-C3N4的特征峰不明显,这可能与其较低的含量有关。同时,在三元复合材料中,30.9°位置出现一个新的峰,对应于立方相AgBr的(200)晶面,证明了复合材料中AgBr的存在。
图2为g-C3N4/BiOBr/AgBr的X射线光电子能谱(XPS),其表明产物主要组成元素为C、N、Br、O、Bi和Ag,进一步证明了产物中g-C3N4的存在。
实施例1中的g-C3N4/BiOBr和g-C3N4/BiOBr/AgBr的SEM图如图3、4所示,由图3中可以清晰的看出BiOBr与g-C3N4的复合片层结构的存在,而在图4的三元体系中,片层结构的表面出现了AgBr的颗粒。
实施例2
(1)分别称取6.5g尿素、12g三氯化铋及16g氯化钠球磨混合均匀后转入不锈钢坩埚中,在管式炉中680℃条件下保温2h,升温速率为2℃/min,最终得到g-C3N4/Bi2O3复合材料前驱体。其中g-C3N4制备的产率为10%。
(2)将(1)中合成的前驱体1g加到60mL的去离子水中,机械搅拌30min后加入0.6g聚乙二醇作为表面活性剂,超声分散2h,再加入12mL的KBr溶液(1mol/L)搅拌混合均匀后传入水热反应釜,在80℃条件下水热反应6h,将反应产物用乙醇和去离子水反复洗涤离心,真空干燥箱60℃条件下干燥8h得g-C3N4/BiOBr的复合纳米材料。
(3)将(2)合成产物加入到50mL的去离子水中,超声分散30min后,在保持持续机械搅拌的条件下,逐滴滴加0.05mol/L的银氨溶液于上述溶液,通过控制银氨溶液加入体积控制AgBr的含量,本实施例中滴加银氨溶液的体积为10mL,上述溶液在避光的条件下继续机械搅拌4h,再将产物用乙醇和去离子水反复洗涤离心,真空干燥箱60℃条件下干燥8h,其产率为92%,其中g-C3N4的含量为5%,AgBr为10%,余量为BiOBr。
实施例3
(1)分别称取13g尿素、9g硝酸铋及12g氯化钠球磨混合均匀后转入不锈钢坩埚中,在管式炉中650℃条件下保温2h,升温速率为5℃/min,最终得到g-C3N4/Bi2O3复合材料前驱体。其中g-C3N4制备的产率为10%。
(2)将(1)中合成的前驱体1g加到60mL的去离子水中,机械搅拌30min后加入1g聚乙二醇作为表面活性剂,超声分散2h,再加入10mL的KBr溶液(1mol/L)搅拌混合均匀后传入水热反应釜,在80℃条件下水热反应6h,将反应产物用乙醇和去离子水反复洗涤离心,真空干燥箱60℃条件下干燥8h得g-C3N4/BiOBr的复合纳米材料。
(3)将(2)合成产物加入到50mL的去离子水中,超声分散30min后,在保持持续机械搅拌的条件下,逐滴滴加0.05mol/L的银氨溶液于上述溶液,通过控制银氨溶液加入体积控制AgBr的含量,本实施例中滴加银氨溶液的体积为20mL,上述溶液在避光的条件下继续机械搅拌4h,再将产物用乙醇和去离子水反复洗涤离心,真空干燥箱60℃条件下干燥8h,其产率为95%,其中g-C3N4的含量为10%,AgBr为20%,余量为BiOBr。
实施例1~3中,步骤(1)中的铋盐还可以采用溴化铋;步骤(2)中的表面活性剂还可以采用聚乙烯吡咯烷酮、十六烷基三甲基溴化铵或者泊洛沙姆,其添加量为0.2~1g。
上述实施例中,g-C3N4与AgBr的含量对BiOBr为基体的三元光催化材料的性能有着重要的影响,在保持原有合成条件的基础上,调控碳氮烯(5~20%)与溴化银(5~15%)含量的各组分节点,同时在上述实施例的基础上,我们分别考察碳氮烯、溴化银含量对复合材料的影响,得到了最佳优选条件。
不同g-C3N4添加量(5~20%)的g-C3N4/BiOBr/AgBr复合光催化材料对罗丹明B在可见光条件下的降解曲线如图5所示,结果表明,不同g-C3N4添加量的g-C3N4/BiOBr/AgBr复合光催化材料对罗丹明B都具有很好降解能力,特别是含量为10%时具有最佳的降解性能。
不同AgBr添加量(5~15%)的g-C3N4/BiOBr/AgBr复合光催化材料对罗丹明B的降解曲线如图6所示,结果表明,添加各种AgBr含量的g-C3N4/BiOBr/AgBr复合光催化材料对罗丹明B都具有很好降解能力,而含量为10%时具有更好的光催化活性,50min内的降解率约为95%。

Claims (3)

1.一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料的制备方法,所述碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料为三元纳米复合物,其中,基体材料为溴氧铋,碳氮烯与溴化银为增强及稳定相,碳氮烯占5~10wt%,溴化银占5~20wt%,余量为溴氧铋,溴化银纳米颗粒均匀的生长在碳氮烯/溴氧铋复合纳米片上,其特征在于,包括以下步骤:
步骤1)碳氮烯/氧化铋前驱体的合成:将尿素、铋盐及氯化钠混合物按比例置于反应釜内,采用熔盐法制备Bi2O3掺杂的多孔的g-C3N4片状材料,即为碳氮烯/氧化铋前驱体,其中,所述铋盐为硝酸铋或氯化铋;所述氯化钠的含量为混合物质量的40~80%;
步骤2)碳氮烯/溴氧铋复合纳米片的合成:将步骤1)制备的碳氮烯/氧化铋前驱体加入溴源与表面活性剂的混合溶液,采用混合溶剂法合成碳氮烯/溴氧铋复合纳米片,并清洗、干燥;
步骤3)碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料的合成:将步骤2)制备的碳氮烯/溴氧铋复合纳米片分散到去离子水中,再采用滴加的方式引入Br-,通过离子置换的方式合成所述碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料。
2.根据权利要求1所述的一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料的制备方法,其特征在于,步骤2)所述表面活性剂为聚乙烯吡咯烷酮、十六烷基三甲基溴化铵、聚乙二醇或者泊洛沙姆,其添加量为0.2~1g。
3.根据权利要求2所述的一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料的制备方法,其特征在于,所述表面活性剂为聚乙二醇,其添加量为0.2~1g。
CN201810298950.5A 2018-04-04 2018-04-04 一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其制备方法和应用 Active CN108607591B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810298950.5A CN108607591B (zh) 2018-04-04 2018-04-04 一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810298950.5A CN108607591B (zh) 2018-04-04 2018-04-04 一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108607591A CN108607591A (zh) 2018-10-02
CN108607591B true CN108607591B (zh) 2020-05-01

Family

ID=63659573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810298950.5A Active CN108607591B (zh) 2018-04-04 2018-04-04 一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108607591B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759122B (zh) * 2019-03-19 2021-06-01 辽宁大学 一种溴氧化铋三元异质结构光催化剂及其制备方法和应用
CN114471658A (zh) * 2022-01-27 2022-05-13 大连理工大学 一种温度调控双功能原子级分散金属的g-C3N4光催化剂的制备方法
CN115799518B (zh) * 2023-02-02 2023-05-05 暨南大学 铋/氧化铋纳米点/碳片复合材料、制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107626335B (zh) * 2017-09-21 2020-09-18 浙江工商大学 一种铋系/氮化碳复合催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN108607591A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
Zinatloo-Ajabshir et al. Green synthesis and characterization of Dy2Ce2O7 nanostructures using Ananas comosus with high visible-light photocatalytic activity of organic contaminants
Chen et al. Synthesis and characterization of Bi4Si3O12, Bi2SiO5, and Bi12SiO20 by controlled hydrothermal method and their photocatalytic activity
Zhang et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst
KR100865422B1 (ko) 나노 크기 결정을 가지는 금속산화물 입자의 생성방법
CN106824213B (zh) 一种钴氧化物掺杂的碱式碳酸铋/氯氧化铋光催化剂及其制备方法
Yan et al. Microwave-assisted synthesis of monoclinic–tetragonal BiVO 4 heterojunctions with enhanced visible-light-driven photocatalytic degradation of tetracycline
CN108607591B (zh) 一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其制备方法和应用
CN103949234B (zh) 硼掺杂石墨烯/TiO2纳米棒光催化材料的制备方法
CN107837816B (zh) Fe2O3/g-C3N4复合体系及制备方法和应用
CN101024188A (zh) 卤氧化物光催化材料及其制备方法
Devaraju et al. Eu3+: Y2O3 microspheres and microcubes: A supercritical synthesis and characterization
CN112875755B (zh) 一种钨酸铋纳米粉体的制备方法
CN106811832A (zh) 一种珠帘状BiFeO3微纳米纤维的制备方法及所得产品
Wang et al. Environmentally benign chitosan as reductant and supporter for synthesis of Ag/AgCl/chitosan composites by one-step and their photocatalytic degradation performance under visible-light irradiation
CN106365194B (zh) 一种钛酸镧纳米材料的制备方法
Ray et al. A review on monoclinic metal molybdate photocatalyst for environmental remediation
CN108686658B (zh) 一种C-QDs-Fe2O3/TiO2复合光催化剂及其制备方法
CN110743575B (zh) 一种具有吸附-光催化协同效应的AgIn5S8/SnS2固溶体催化剂的制备方法
CN108855170B (zh) 一种康乃馨样石墨烯基铋系纳米复合材料的制备方法及纳米复合材料
CN108525695B (zh) 一种二维层状结构的石墨烯/碳氮烯/溴氧铋复合纳米光催化材料及其制备方法和应用
Thakur et al. Photocatalytic behaviors of bismuth-based mixed oxides: Types, fabrication techniques and mineralization mechanism of antibiotics
Chen et al. Review on the preparation and performance improvement methods of bismuth photocatalyst materials
CN108187701B (zh) 一种管状AgCl结构的AgCl/BiOCl光催化剂制备方法
CN106423259A (zh) 一种利用天然凹凸棒石制备Ag‑AgBr/Al‑MCM‑41复合功能材料的方法
Yuan et al. Photocatalytic activity of Tb3+/Eu3+-doped Bi2Sn2O7 microspheres

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant