CN108601841A - Abcg2抑制剂与sacituzumab govitecan(immu-132)的组合克服表达trop-2的癌中对sn-38的抗性 - Google Patents

Abcg2抑制剂与sacituzumab govitecan(immu-132)的组合克服表达trop-2的癌中对sn-38的抗性 Download PDF

Info

Publication number
CN108601841A
CN108601841A CN201780008716.8A CN201780008716A CN108601841A CN 108601841 A CN108601841 A CN 108601841A CN 201780008716 A CN201780008716 A CN 201780008716A CN 108601841 A CN108601841 A CN 108601841A
Authority
CN
China
Prior art keywords
cancer
antibody
adc
cell
trop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780008716.8A
Other languages
English (en)
Inventor
张健行
D.M.戈尔登贝格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immunomedics Inc
Original Assignee
Immunomedics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immunomedics Inc filed Critical Immunomedics Inc
Priority to CN202211361578.0A priority Critical patent/CN115969970A/zh
Publication of CN108601841A publication Critical patent/CN108601841A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3061Blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4535Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a heterocyclic ring having sulfur as a ring hetero atom, e.g. pizotifen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/473Quinolines; Isoquinolines ortho- or peri-condensed with carbocyclic ring systems, e.g. acridines, phenanthridines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0038Radiosensitizing, i.e. administration of pharmaceutical agents that enhance the effect of radiotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/68037Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a camptothecin [CPT] or derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • A61K51/1045Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants
    • A61K51/1057Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants the tumor cell being from liver or pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3007Carcino-embryonic Antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3015Breast
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3023Lung
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3038Kidney, bladder
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3046Stomach, Intestines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3053Skin, nerves, brain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3069Reproductive system, e.g. ovaria, uterus, testes, prostate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3092Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated mucins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/77Internalization into the cell
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Urology & Nephrology (AREA)
  • Reproductive Health (AREA)
  • Hematology (AREA)
  • Neurology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Biomedical Technology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Endocrinology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及治疗性ADCs,其包含与抗癌抗体或抗原结合抗体片段连接的药物。优选地,所述药物是SN‑38。更优选地,所述抗体或其片段结合于Trop‑2,并且所述治疗用于治疗Trop‑2阳性癌。最优选地,所述抗体是hRS7。所述ADC与ABCG2抑制剂组合施用于患有癌的受试者。所述组合治疗可以有效治疗对单独的药物和/或对单独的ADC有抗性的癌。

Description

ABCG2抑制剂与SACITUZUMAB GOVITECAN(IMMU-132)的组合克 服表达TROP-2的癌中对SN-38的抗性
发明人:Chien-Hsing Chang和David M.Goldenberg
受让人:Immunomedics,Inc.
相关申请
本申请根据35U.S.C.119(e)要求2016年2月10日提交的美国临时专利申请号62/293,530、2016年4月29日提交的美国临时专利申请号62/329,788和2016年5月16日提交的美国临时专利申请号62/336,985的权益,所述申请的每一个的文本通过全文引用并入本文。
序列表
本申请含有已通过EFS网以ASCII格式提交,并且通过全文引用并入本文的序列表。所述ASCII拷贝于2017年2月8日创建,命名为IMM366WO1_SL.txt,并且大小是21,436字节。
发明领域
本发明涉及采用抗Trop-2抗体药物缀合物(antibody drug conjugates,ADCs)和ABC(ATP结合盒)转运蛋白(优选ABCG2)的抑制剂的组合治疗的用途,所述ABC转运蛋白通过促进主动药物流出负责药物抗性。该组合提供了针对癌细胞和其它对某些细胞毒性(化学治疗)剂有抗性的疾病相关细胞的有效治疗,所述细胞毒性剂例如喜树碱(例如SN-38、拓扑替康)、蒽环类药物(例如阿霉素、柔红霉素)、蒽二酮(例如米托蒽醌)、紫杉烷(例如紫杉醇)、长春花生物碱(例如长春新碱、长春花碱)、表鬼臼毒素(例如依托泊苷、替尼泊苷)和铂化合物(例如,顺铂)。采用ADCs和ABCG2抑制剂的组合治疗为原本对缀合药物和/或ADC有抗性的癌提供了有效的治疗。在某些优选的实施方案中,缀合药物可以是SN-38,并且ADC可以是IMMU-132(sacituzumab govitecan或HSR7 CL2A SN-38)。在其它优选的实施方案中,ABCG2抑制剂可以是烟曲霉素C、KO143、YHO-13351或其它已知的ABCG2抑制剂(例如姜黄色素、GF120 918(依克立达)、YHO-13177)。在替代的实施方案中,已知涉及药物抗性的其它ABC转运蛋白,例如ABCB1或ABCC1的抑制剂,也可用于与一种或多种ADCs的组合治疗。优选地,组合治疗对于治疗在包括伊立替康治疗的治疗后复发或对包括伊立替康治疗的治疗显示抗性的患者中的Trop-2阳性癌,例如胰腺癌、三阴性乳腺癌、小细胞肺癌和非小细胞肺癌是有效的。
发明背景
癌细胞对化学治疗的抗性已成为数十年来的主要治疗难题,并导致约90%的癌治疗失败(Pluchino等,2012,Drug Resistance Updates 15:98-105)。某些癌表现出对化学治疗剂的固有抗性,而在其它癌中,在治疗过程中发展药物抗性(Lippert等,2011,Int JMed Sci 8:245-253;Ricci等,2015,J Develop Drugs 4:138)。多药物抗性(MDR)是最常见的方式之一,其中癌细胞发展对化学治疗剂的抗性,主要是由于ATP结合盒(ABC)转运蛋白催化的主动药物流出(Ricci等,2015,J Develop Drugs 4:138)。尽管ABC转运蛋白包括具有不同功能的非常大的亚家族,这些转运蛋白中似乎仅有几种涉及MDR,包括ABCB1、ABCC1和ABCG2(Ricci等,2015,J Develop Drugs 4:138)。在这些之中,ABCG2转运蛋白是在实体瘤中表达的主要一种(Ricci等,2015,J Develop Drugs 4:138)。
尽管采用全身药物施用的化学治疗已被广泛应用于癌治疗,但最近以来抗体-药物缀合物形式的靶向药物递送改进了抗癌剂的效力和安全性。这种ADCs给表达疾病相关抗原如肿瘤相关抗原(TAAs)的细胞提供缀合药物的靶向递送,同时减少具有较低表达水平或不表达靶抗原的正常组织的全身暴露。通常,药物缀合物在ADC的内化后在细胞内释放,虽然在某些情况下也可能发生从细胞结合的ADC的胞外释放。在任一情况下,由于ABC转运蛋白的活性,肿瘤仍可能表现出固有的或发展的对抗癌剂的抗性。因此,尽管在治疗多种癌方面取得了显著的成功,但化学治疗药物,包括抗体-药物缀合物(ADCs),随着时间的推移,丧失了临床活性,如伊立替康(Xu等,2002,Ann Oncol 13:1841-51)、阿霉素(Miller等,1988,J Clin Oncol 6:880-8)、紫杉醇(Orr等,2003,Oncogene 22:7280-95)、顺铂(Siddik,2003,Oncogene 22:7265-79)、gemtuzumab ozogamicin(Walter等,2007,Blood 109:4168-70)、奥英妥珠单抗(inotuzumab ozogamicin)(Takeshita等,2009,Br J Haematol 146-34-43)和其它药物(Szakacs等,2006,Nat Rev Drug Discov 5:219-34)所例示的。
癌细胞中药物抗性的发生可由多种因素引起((Housman等,2014,Cancers 6:1769-92),如减少的可溶性药物的摄取、药物解毒系统的活化、药物靶的调节或突变、有缺陷的凋亡途径,以及最重要的,ATP结合盒(ABC)超家族的一个或多个流出泵的超量表达(Gottesman等,2002,Nat Rev Cancer 2:48-58)。人基因组包含ABC超家族中的总共49个基因(Vasiliou等,2009,Hum Genom 3:281-90),每一个都基于跨膜(TM)结构域和核苷酸结合折叠(NBFs)的顺序和序列同源性被分配到七个亚家族(A到G)中的一个。到目前为止,ABCB1(也称为MDR1或P-gp)、ABCC1(也称为MRPl)和ABCG2(也称为BCRP、MXR或ABC-P),占MDR的大多数研究(Ambudkar等,2003,Oncogene 22:7468-85;Cole,2014,J Biol Chem 289:30880-8;Doyle and Ross,2003,Oncogene 22:7340-58)。
ABC超家族的成员是跨膜蛋白,表达为完整转运蛋白或半转运蛋白。完整转运蛋白通常包含两个跨膜(TM)结构域和两个核苷酸结合折叠(NBFs),其中TM结构域参与底物识别和跨膜转运,而胞质NBFs通过结合的ATP的水解提供转运的驱动力。相反,半转运蛋白只有一个TM结构域和一个NBF,并且必须形成同型二聚体或异二聚体以发挥功能。完整转运蛋白的一个显著例子是ABCB1,其底物包括长春花生物碱、蒽环类药物、表鬼臼毒素、紫杉烷、伊立替康和SN-38(Szakacs等,2006,Nat Rev Drug Discov 5:219-34)。ABCG亚家族的五个成员都是半转运蛋白(Vasiliou等,2009,Hum Genom 3:281-90),其中ABCG2已被鉴定出其介导对SN-38的细胞抗性的作用(Brangi等,1999,Cancer Res 59:5938-46;Kawabata等,2001,Biochem Biophys Res Commun 280:1216-23),以及酪氨酸激酶抑制剂(Ozvegy-Laczka等,2005,Drug Resist Updat 8:15-26)。
随着癌中内在和获得的药物抗性的分子机理越来越多地被描述,出现了多种规避MDR的方法。例如,可以用pSC-833有效地恢复Dudi和Raii淋巴瘤的表达ABCB1的亚系中奥英妥珠单抗的敏感性(Walter等,2007,Blood 109:4168-70),所述pSC-833是ABCB1的第二代调节剂(Twentyman and Bleehan,1991,Eur J Cancer 27:1639-42)。用于将DM1缀合于抗体的亲水性接头的使用也使得这种ADCs能够逃避ABCB1介导的抗性(Kovton等,2010,Cancer Res 70:2528-37),推测是由于产生了由表达ABCB1的细胞更好地保留的细胞毒性代谢物。此外,靶向性解毒酶,如谷胱甘肽S-转移酶,以及细胞内活化的前药被发现是有希望的(Ramsay and Dilda,2014,Front Pharmacol 5:181)。然而,使用ABC转运蛋白抑制剂克服MDR的原理在临床试验中几乎没有成功,这可能部分是由于不完善的抑制剂和不足的研究设计两者。这正在通过开发具有更大的底物特异性、更高的效能、更低的毒性和改进的药代动力学性质的更新的药剂来解决。
Sacituzumab govitecan,下文称作IMUMU-132,是伊立替康的活性代谢物SN-38的Trop-2靶向ADC。IMUMU-132与大多数ADC在其使用中等、非超毒性药物、其高的药物与抗体比率(DAR)而不损害靶亲和力和药代动力学以及其选择pH敏感、可裂解的接头以给肿瘤和旁观细胞二者赋予细胞毒性方面与大多数ADCs不同(Cardillo等,2011,Clin Cancer Res17:3157-69;Cardillo等,2015,Bioconjugate Chem 26:919-31;Goldenberg等,2015,Oncotarget 6:22496-512)。目前正在对晚期三阴性乳腺癌(Starodub等,2015,ClinCancer Res 21:3870-8)、尿道上皮膀胱癌(Faltas等,2016,Clin Genitourinary Cancer14:e75-9)和其它实体癌患者进行这种新的ADC的临床试验。由于这些患者都用化学治疗进行了大量的预治疗,高度可能存在伴有MDR基因表达的获得性抗性,这可能影响IMMU-132的治疗结果。需要改进的使用ADCs如IMMU-132的方法,以治疗对化学治疗有抗性的肿瘤。
发明概述
本发明通过提供改进的方法和组合物解决了现有技术中未满足的需要,所述方法和组合物用于采用抗Trop-2ADC和ABC转运蛋白抑制剂,优选ABCG2抑制剂的组合来治疗药物抗性肿瘤。更优选地,ADC缀合于SN-38。但是,普通技术人员将认识到替代的药物可以掺入ADC中。公开的方法和组合物可以用于治疗多种难治的或对其它形式的治疗反应性较低的疾病和状况。可以用主题组合治疗进行治疗的优选的疾病或状况包括例如Trop-2阳性癌,如转移性胰腺癌、三阴性乳腺癌、尿道上皮癌、小细胞肺癌或非小细胞肺癌。
优选地,ADC掺入了抗Trop-2抗体、抗体片段、双特异性或其它多价抗体、或其它基于抗体的分子或化合物。所述抗体可以是多种同种型的,优选地人IgG1、IgG2、IgG3或IgG4,更优选地包含人IgG1铰链及恒定区序列。抗体或其片段可以是嵌合的人-小鼠、嵌合的人-灵长类动物、人源化(人构架及鼠高变(CDR)区)、或全人抗体以及其变型,如半IgG4抗体(称为“单抗体(unibodies)”),如由van der Neut Kolfschoten等人(Science 2007;317:1554-1557)所描述。更优选地,抗体或其片段可被设计或选择以包含属于特定同种异型的人恒定区序列,这可以造成在向人受试者施用ADC时降低的免疫原性。供施用的优选同种异型包括非G1m1同种异型(nG1m1),如G1m3、G1m3,1、G1m3,2或G1m3,1,2。更优选地,同种异型选自nG1ml、G1m3、nG1m1,2及Km3同种异型。
在替代实施方案中,抗Trop-2ADC和ABCG2的组合可以单独施用或与另外的抗癌抗体进一步组合。针对多种人肿瘤相关抗原(TAAs)的抗体是已知的。这种TAAs包括但不限于碳酸酐酶IX、甲胎蛋白(AFP)、α-辅肌动蛋白-4、A3、A33抗体的特异性抗原、ART-4、B7、Ba733、BAGE、BrE3-抗原、CA125、CAMEL、CAP-1、CASP-8/m、CCL19、CCL21、CD1、CD1a、CD2、CD3、CD4、CD5、CD8、CD11A、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD29、CD30、CD32b、CD33、CD37、CD38、CD40、CD40L、CD44、CD45、CD46、CD52、CD54、CD55、CD59、CD64、CD66a-e、CD67、CD70、CD70L、CD74、CD79a、CD80、CD83、CD95、CD126、CD132、CD133、CD138、CD147、CD154、CDC27、CDK-4/m、CDKN2A、CTLA-4、CXCR4、CXCR7、CXCL12、HIF-1α、结肠特异性抗原-p(CSAp)、CEA(CEACAM5)、CEACAM6、c-Met、DAM、EGFR、EGFRvIII、EGP-1(TROP-2)、EGP-2、ELF2-M、Ep-CAM、成纤维细胞生长因子(FGF)、Flt-1、Flt-3、叶酸受体、G250抗原、GAGE、gp100、GRO-β、HLA-DR、HM1.24、人绒毛膜促性腺激素(HCG)及其亚基、HER2/neu、HMGB-1、低氧诱导因子(HIF-1)、HSP70-2M、HST-2、Ia、IGF-1R、IFN-γ、IFN-α、IFN-β、IFN-λ、IL-4R、IL-6R、IL-13R、IL-15R、IL-17R、IL-18R、IL-2、IL-6、IL-8、IL-12、IL-15、IL-17、IL-18、IL-23、IL-25、胰岛素样生长因子-1(IGF-1)、KC4-抗原、KS-1-抗原、KS1-4、Le-Y、LDR/FUT、巨噬细胞迁移抑制因子(MIF)、MAGE、MAGE-3、MART-1、MART-2、NY-ESO-1、TRAG-3、mCRP、MCP-1、MIP-1A、MIP-1B、MIF、MUC1、MUC2、MUC3、MUC4、MUC5ac、MUC13、MUC16、MUM-1/2、MUM-3、NCA66、NCA95、NCA90、PAM4抗原、胰腺癌黏蛋白、PD-1受体、胎盘生长因子、p53、PLAGL2、前列腺酸性磷酸酶、PSA、PRAME、PSMA、PlGF、ILGF、ILGF-1R、IL-6、IL-25、RS5、RANTES、T101、SAGE、S100、存活蛋白、存活蛋白-2B、TAC、TAG-72、生腱蛋白、TRAIL受体、TNF-α、Tn抗原、Thomson-Friedenreich抗原、肿瘤坏死抗原、VEGFR、ED-B纤连蛋白、WT-1、17-1A-抗原、补体因子C3、C3a、C3b、C5a、C5、血管生成标记物、bcl-2、bcl-6、Kras、癌基因标记物以及癌基因产物(参见,例如Sensi等人,Clin Cancer Res 2006,12:5023-32;Parmiani等人,JImmunol 2007,178:1975-79;Novellino等人Cancer Immunol Immunother 2005,54:187-207)。优选地,抗体结合于CEACAM5、CEACAM6、TROP-2、MUC-16、AFP、MUC5ac、CD74、CD19、CD20、CD22或HLA-DR。
可以利用的示例性抗体包括但不限于:hR1(抗IGF-1R,2010年3月12日提交的美国专利申请序列号12/722,645)、hPAM4(抗黏蛋白,美国专利号7,282,567)、hA20(抗CD20,美国专利号7,251,164)、hA19(抗CD19,美国专利号7,109,304)、hIMMU31(抗AFP,美国专利号7,300,655)、hLL1(抗CD74,美国专利号7,312,318)、hLL2(抗CD22,美国专利号7,074,403)、hMu-9(抗CSAp,美国专利号7,387,773)、hL243(抗HLA-DR,美国专利号7,612,180)、hMN-14(抗CEACAM5,美国专利号6,676,924)、hMN-15(抗CEACAM6,美国专利号7,541,440)、hRS7(抗EGP-1,美国专利号7,238,785)、hMN-3(抗CEACAM6,美国专利号7,541,440),每个引用的专利或申请的实施例部分通过引用并入本文。更优选地,所述抗体是IMMU-31(抗AFP)、hRS7(抗TROP-2)、hMN-14(抗CEACAM5)、hMN-3(抗CEACAM6)、hMN-15(抗CEACAM6)、hLL1(抗CD74)、hLL2(抗CD22)、hL243或IMMU-114(抗HLA-DR)、hA19(抗CD19)或hA20(抗CD20)。如本文所用,术语依帕珠单抗(epratuzumab)与hLL2是可互换的,术语维妥珠单抗(veltuzumab)与hA20、hL243g4P、hL243γ4P和IMMU-114也是可互换的。
有用的替代抗体包括但不限于阿昔单抗(abciximab)(抗糖蛋白IIb/IIIa)、阿仑单抗(alemtuzumab)(抗CD52)、贝伐单抗(bevacizumab)(抗VEGF)、西妥昔单抗(cetuximab)(抗EGFR)、吉妥单抗(gemtuzumab)(抗CD33)、替伊莫单抗(ibritumomab)(抗CD20)、帕尼单抗(panitumumab)(抗EGFR)、利妥昔单抗(rituximab)(抗CD20)、托西莫单抗(tositumomab)(抗CD20)、曲妥珠单抗(trastuzumab)(抗ErbB2)、兰罗利珠单抗(lambrolizumab)(抗PD-1受体)、纳武单抗(nivolumab)(抗PD-1受体)、伊匹单抗(ipilimumab)(抗CTLA-4)、阿巴伏单抗(abagovomab)(抗CA-125)、阿德木单抗(adecatumumab)(抗EpCAM)、阿利珠单抗(atlizumab)(抗IL-6受体)、贝那珠单抗(benralizumab)(抗CD125)、奥滨尤妥珠单抗(obinutuzumab)(GA101,抗CD20)、CC49(抗TAG-72)、AB-PG1-XG1-026(抗PSMA,美国专利申请11/983,372,以ATCC PTA-4405和PTA-4406保藏)、D2/B(抗PSMA,WO 2009/130575)、托珠单抗(tocilizumab)(抗IL-6受体)、巴利昔单抗(basiliximab)(抗CD25)、达利珠单抗(daclizumab)(抗CD25)、依法珠单抗(efalizumab)(抗CD11a)、GA101(抗CD20;GlycartRoche)、莫罗莫那(muromonab)-CD3(抗CD3受体)、那他珠单抗(natalizumab)(抗α4整联蛋白)、奥马珠单抗(omalizumab)(抗IgE);抗TNF-α抗体诸如CDP571(Ofei等,2011,Diabetes45:881-85)、MTNFAI、M2TNFAI、M3TNFAI、M3TNFABI、M302B、M303(Thermo Scientific,Rockford,IL)、英夫利昔单抗(infliximab)(Centocor,Malvern,PA)、聚乙二醇化赛妥珠单抗(certolizumab pegol)(UCB,Brussels,Belgium)、抗CD40L(UCB,Brussels,Belgium)、阿达木单抗(adalimumab)(Abbott,Abbott Park,IL)、Benlysta(Human Genome Sciences);用于阿尔茨海默氏病的治疗的抗体诸如Alz50(Ksiezak-Reding等,1987,J Biol Chem263:7943-47)、甘特如单抗(gantenerumab)、苏兰珠单抗(solanezumab)和英夫利昔单抗;抗纤维蛋白抗体如59D8、T2G1s、MH1;抗CD38抗体诸如MOR03087(MorphoSys AG)、MOR202(Celgene)、HuMax-CD38(Genmab)或达雷木单抗(daratumumab)(Johnson&Johnson)。
在一个优选实施方案中,化学治疗部分选自喜树碱(CPT)及其类似物和衍生物且更优选地是SN-38。然而,可以利用的其它化学治疗部分包括紫杉烷类(例如浆果赤霉素III,紫杉酚)、埃坡霉素、蒽环类药物(例如阿霉素(DOX)、表柔比星、吗啉代阿霉素(吗啉代-DOX)、氰基吗啉代-阿霉素(氰基吗啉代-DOX)、2-吡咯啉并阿霉素(2-PDOX)或2-PDOX的前药形式(前-2-PDOX);参见例如Priebe W(编),ACS symposium series 574,由AmericanChemical Society,Washington D.C.出版,1995(332pp)及Nagy等人,Proc.Natl.Acad.Sci.USA 93:2464-2469,1996)、由格尔德霉素例示的苯安莎霉素(benzoquinoid ansamycins)(DeBoer等人,Journal of Antibiotics23:442-447,1970;Neckers等人,Invest.New Drugs17:361-373,1999)等等。优选地,抗体或其片段连接于至少一个化学治疗部分;优选地1至约5个化学治疗部分;更优选地6个或更多个化学治疗部分,最优选地约6至约8个化学治疗部分。
各种实施方案可涉及使用主题方法和组合物来治疗癌,包括但不限于非霍奇金氏淋巴瘤、B细胞急性及慢性淋巴细胞性白血病、伯基特淋巴瘤、霍奇金氏淋巴瘤、急性大B细胞淋巴瘤、毛细胞白血病、急性髓细胞性白血病、慢性髓细胞性白血病、急性淋巴细胞性白血病、慢性淋巴细胞性白血病、T细胞淋巴瘤及白血病、多发性骨髓瘤、瓦尔登斯特伦氏巨球蛋白血症(Waldenstrom′s macroglobulinemia)、癌、黑素瘤、肉瘤、神经胶质瘤、骨癌以及皮肤癌。癌可以包括以下的癌:口腔、食道、胃肠道、呼吸道(pulmonary tract)、肺、胃、结肠、乳腺、卵巢、前列腺、子宫、子宫内膜、子宫颈、膀胱、尿道上皮、胰腺、骨、脑、结缔组织、肝、胆囊、膀胱、尿道上皮、肾、皮肤、中枢神经系统以及睾丸。优选地,所述癌表达Trop-2抗原。
在某些涉及癌治疗的实施方案中,使用抗Trop-2 ADC和ABCG2抑制剂的治疗可以与标准抗癌治疗组合使用,所述标准抗癌治疗如手术、放射治疗、化学治疗、使用裸抗体的免疫治疗、放射免疫治疗、免疫调节剂、疫苗等。这些组合治疗可以允许降低有待以这种组合给予的每种治疗剂的剂量,由此减少某些严重副作用并且潜在地缩短所需的疗程。当不存在重叠毒性或存在最小重叠毒性时,也可给予全剂量的每种治疗剂。
ADC的优选最优给药可以包括3mg/kg至18mg/kg的剂量,优选每周、每周两次或每隔一周给予。最优给药方案可以包括以下治疗周期:连续两周的治疗,接着休息一周、两周、三周或四周;或者交替周的治疗与休息;或者一周治疗,接着休息两周、三周或四周;或者三周治疗,接着休息一周、两周、三周或四周;或者四周治疗,接着休息一周、两周、三周或四周;或者五周治疗,接着休息一周、两周、三周、四周或五周;或者每两周施用一次、每三周施用一次或每月施用一次。治疗可以延续任何周期数,优选至少2、至少4、至少6、至少8、至少10、至少12、至少14或至少16个周期。剂量可以最多24mg/kg。示例性的使用剂量可以包括1mg/kg、2mg/kg、3mg/kg、4mg/kg、5mg/kg、6mg/kg、7mg/kg、8mg/kg、9mg/kg、10mg/kg、11mg/kg、12mg/kg、13mg/kg、14mg/kg、15mg/kg、16mg/kg、17mg/kg和18mg/kg。优选剂量是4、6、8、9、10或12mg/kg。普通技术人员将认识到,多种因素如年龄、一般健康状况、具体器官功能或体重以及先前治疗对于具体器官系统(例如骨髓)的影响可以在选择ADC的最优剂量时加以考虑,并且施用的剂量和/或频率可以在疗程中增加或减少。剂量可以根据需要重复,在少至4至8剂之后观察到肿瘤缩小的证据。本文所公开的最优化剂量和施用方案在人受试者中显示出乎意料的优良效力和降低的毒性。令人惊讶地,优良的效力允许治疗先前被发现对一种或多种标准抗癌治疗有抗性的肿瘤,所述标准抗癌治疗包括母体化合物CPT-11(伊立替康),在体内由其衍生出SN-38。
主题方法可以包括使用CT和/或PET/CT或MRI定期测量肿瘤反应。还可监测肿瘤标记物如CEA(癌胚抗原)、CA19-9、AFP、CA 15.3或PSA的血液水平。剂量和/或施用方案可以根据成像和/或标记物血液水平的结果按需要进行调整。
本申请要求保护的组合物及方法的令人惊讶的结果是对高剂量抗体-药物缀合物的出乎意料的耐受性,甚至在重复输注时也如此,仅观察到恶心与呕吐的相对低级的毒性,或可控制的中性粒细胞减少症。进一步令人惊讶的结果是缺乏抗体-药物缀合物的积累,这与具有缀合于白蛋白、PEG或其它载体的SN-38的其它产物不相似。积累的缺乏与改善的耐受性以及即使在重复或增加给药之后的严重毒性的缺乏有关。这些令人惊讶的结果允许剂量及递送方案的最优化,具有出乎意料高的效力及低毒性。要求保护的方法在患有先前具有抗性的癌的个体中提供15%或更多、优选20%或更多、优选30%或更多、更优选40%或更多的实体瘤大小的缩小(如通过最长直径测量的)。普通技术人员将认识到,肿瘤大小可以通过多种不同技术来测量,如总肿瘤体积、在任何维度上的最大肿瘤大小或在几个维度上的大小测量的组合。这可以使用标准放射学操作如计算机断层摄影术、超声波检查法和/或正电子发射断层摄影术来完成。测量大小的手段与观察用ADC和ABCG2抑制剂治疗减小肿瘤大小的趋势(优选地导致肿瘤的消除)相比重要性较低。
虽然ADC可以作为定期快速浓注施用,但在替代实施方案中,ADC可以通过连续输注抗体-药物缀合物来施用。为了提高ADC在血液中的Cmax并延长PK,连续输注可以例如通过留置导管来施用。这种装置在本领域中是已知的,如导管(参见,例如Skolnik等人,Ther Drug Monit 32:741-48,2010)并且可以使用任何这种已知的留置导管。多种连续输注泵也是本领域中已知的并且可以使用任何这种已知的输注泵。连续输注的剂量范围可以在每日0.1与3.0mg/kg之间。更优选地,这些ADCs可以在2至5小时、更优选地2-3小时的相对短时间段中通过静脉内输注施用。
在特别优选的实施方案中,ADC及给药方案在对标准治疗有抗性的患者中可以是有效的。例如,可以向对使用伊立替康(SN-38的母体药剂)的先前治疗无反应的患者施用与ABCG2抑制剂组合的抗Trop-2 hRS7-SN-38 ADC。令人惊讶的是,对伊立替康有抗性的患者可以对hRS7-SN-38和ABCG2抑制剂显示部分或甚至是完全反应。ADC特异性地靶向肿瘤组织的能力可以通过治疗剂的改进的靶向和增强的递送来克服肿瘤抗性,同时ADC和ABCG2抑制剂的组合在具有主动转运机制的肿瘤中可以有效消除SN-38。其它抗体-SN-38 ADCs,如IMMU-130(抗CEACAM-5-SN-38)或(抗HLA-DR-SN-38)当与ABCG2抑制剂一起使用时,与替代的标准治疗性治疗相比,可以显示相似的改进的效力和/或降低的毒性。具体优选的受试者可以是转移性结肠直肠癌患者、转移性胰腺癌患者、三阴性乳腺癌患者、HER+、ER+、孕酮+乳腺癌患者、转移性非小细胞肺癌(NSCLC)患者、转移性小细胞肺癌患者、转移性胃癌患者、转移性肾癌患者、转移性膀胱癌患者、转移性卵巢癌患者、转移性尿道上皮癌患者或转移性子宫癌患者。
附图简述
图1.用hRS7(抗Trop-2)、hPAM4(抗MUC5ac)、hMN-14(抗CEACAM5)或非特异性对照hA20(抗CD20)的SN-38缀合物对携带Capan 1人胰腺癌的无胸腺裸鼠的临床前体内治疗。
图2.与对照相比,用抗TROP2-CL2A-SN-38缀合物对携带BxPC3人胰腺癌的无胸腺裸鼠的临床前体内治疗。
图3.多种hRS7-ADCs与hRS7 IgG相比的ADCC。
图4A.CL2-SN-38和CL2A-SN-38的结构。
图4B.使用COLO 205结肠腺癌,连接于CL2接头与CL2A接头的抗Trop-2 ADC与hA20ADC和盐水对照的比较效力。如箭头所指出的,每周治疗动物两次,持续4周。用0.4mg/kgADC治疗COLO 205小鼠(N=6),并且每周测量肿瘤两次。
图4C.使用Capan-1胰腺腺癌(pancreatic adenocarcinoma),连接于CL2接头与CL2A接头的抗Trop-2 ADC与hA20 ADC和盐水对照的比较效力。如箭头所指出的,每周治疗动物两次,持续4周。用0.2mg/kg ADC治疗Capan-1小鼠(N=10),并且每周测量肿瘤。
图5A.hRS7-SN-38 ADC在几种实体瘤-异种移植物疾病模型中的疗效。在携带人非小细胞肺、结肠直肠、胰腺或鳞状细胞肺肿瘤异种移植物的小鼠中研究hRS7-CL2-SN-38和hRS7-CL2A-SN-38 ADC治疗的效力。以指出的量施用所有的ADCs和对照(表示为每剂的SN-38量;长箭头=缀合物注射,短箭头=伊立替康注射)。给携带Calu-3肿瘤的小鼠(N=5-7)每4天注射hRS7-CL2-SN-38,总共注射4次(q4dx4)。
图5B.hRS7-SN-38 ADC在几种实体瘤-异种移植物疾病模型中的疗效。在携带人非小细胞肺、结肠直肠、胰腺或鳞状细胞肺肿瘤异种移植物的小鼠中研究hRS7-CL2-SN-38和hRS7-CL2A-SN-38 ADC治疗的效力。以指出的量施用所有的ADCs和对照(表示为每剂的SN-38量;长箭头=缀合物注射,短箭头=伊立替康注射)。给携带COLO 205肿瘤的小鼠(N=5)注射8次(q4dx8)ADC或每两天注射总共注射5次(q2dx5)伊立替尿的MTD。
图5C.hRS7-SN-38 ADC在几种实体瘤-异种移植物疾病模型中的疗效。在携带人非小细胞肺、结肠直肠、胰腺或鳞状细胞肺肿瘤异种移植物的小鼠中研究hRS7-CL2-SN-38和hRS7-CL2A-SN-38 ADC治疗的效力。以指出的量施用所有的ADCs和对照(表示为每剂的SN-38的量;长箭头=缀合物注射,短箭头=伊立替康注射)。用指出的药剂每周治疗Capan-1(N=10)两次,持续4周。
图5D.hRS7-SN-38 ADC在几种实体瘤-异种移植物疾病模型中的疗效。在携带人非小细胞肺、结肠直肠、胰腺或鳞状细胞肺肿瘤异种移植物的小鼠中研究hRS7-CL2-SN-38和hRS7-CL2A-SN-38 ADC治疗的效力。以指出的量施用所有的ADCs和对照(表示为每剂的SN-38的量;长箭头=缀合物注射,短箭头=伊立替康注射)。用指出的药剂每周治疗携带BxPC-3肿瘤的小鼠(N=10)两次,持续4周。
图5E.hRS7-SN-38 ADC在几种实体瘤-异种移植物疾病模型中的疗效。在携带人非小细胞肺、结肠直肠、胰腺或鳞状细胞肺肿瘤异种移植物的小鼠中研究hRS7-CL2-SN-38和hRS7-CL2A-SN-38 ADC治疗的效力。以指出的量施用所有的ADCs和对照(表示为每剂的SN-38的量;长箭头=缀合物注射,短箭头=伊立替康注射)。除了每周两次给予ADC持续4周,携带SK-MES-1肿瘤(N=8)的小鼠接受CPT-11的MTD(q2dx5)。
图6A.hRS7-CL2A-SN-38在Swiss-Webster小鼠中的耐受性。间隔3天给56只Swiss-Webster小鼠腹膜内施用2剂缓冲液或hRS7-CL2A-SN-38(每剂4、8或12mg/kg的SN-38;每剂250、500或750mg缀合物蛋白/kg)。最后一次注射后7和15天,使来自每组的7只小鼠安乐死,进行血液计数和血清化学。图形显示每组中具有升高水平的AST的动物的百分比。
图6B.hRS7-CL2A-SN-38在Swiss-Webster小鼠中的耐受性。间隔3天给56只Swiss-Webster小鼠腹膜内施用2剂缓冲液或hRS7-CL2A-SN-38(每剂4、8或12mg/kg的SN-38;每剂250、500或750mg缀合物蛋白/kg)。最后一次注射后7和15天,使来自每组的7只小鼠安乐死,进行血液计数和血清化学。图形显示每组中具有升高水平的ALT的动物的百分比。
图6C.hRS7-CL2A-SN-38在猕猴中的耐受性。以每剂0.96mg/kg或1.92mg/kg的SN-38当量(60和120mg/kg缀合物蛋白)间隔3天给每组6只猕猴注射两次缓冲液(对照)或hRS7-CL2A-SN-38。所有动物在第1、3和6天取血。在0.96mg/kg组中,4只猴在第11天取血,1.92mg/kg组中3只猴在第11天取血。猕猴中的中性粒细胞计数改变。
图6D.hRS7-CL2A-SN-38在猕猴中的耐受性。以每剂0.96mg/kg或1.92mg/kg的SN-38当量(60和120mg/kg缀合物蛋白)间隔3天给每组6只猕猴注射两次缓冲液(对照)或hRS7-CL2A-SN-38。所有动物在第1、3和6天取血。在0.96mg/kg组中,4只猴在第11天取血,1.92mg/kg组中3只猴在第11天取血。猕猴中的血小板计数改变。
图7A.抗Trop-2 ADCs(hRS7-SN-38与MAB650-SN-38)在Capan-1人胰腺腺癌中的体外效力比较。
图7B.抗Trop-2 ADCs(hRS7-SN-38与MAB650-SN-38)在BxPC-3人胰腺腺癌中的体外效力比较。
图7C.抗Trop-2 ADCs(hRS7-SN-38与MAB650-SN-38)在NCI-N87人胃腺癌中的体外效力比较。
图8A.162-46.2-SN-38与hRS7-SN-38在BxPC-3人胰腺腺癌细胞中的体外效力比较。
图8B.162-46.2-SN-38与hRS7-SN-38在MDA-MB-468人乳腺腺癌中的体外效力比较。
图9.关于通过RECIST标准判断的最佳反应的IMMU-132I/II期数据。
图10.关于进展时间和和最佳反应(RECIST)的IMMU-132I/II期数据。
图11.携带NCI-N87人胃腺癌异种移植物的小鼠中鼠抗Trop-2-SN-38ADC(162-46.2-SN-38)与hRS7-SN-38相比的疗效。
图12.当作为游离伊立替康与IMMU-132 ADC施用时,带有Capan-1人胰腺癌异种移植物的裸鼠的肿瘤中的SN-38积累。
图13.胰腺癌患者中I/II期IMMU-132抗Trop-2 ADC的个体患者人口统计资料和先前治疗。
图14.胰腺癌患者中对IMMU-132抗Trop-2 ADC的反应评估。
图15.施用IMMU-132抗Trop-2 ADC的人胰腺癌患者中的进展时间(TTP)结果概括。
图16.多种肿瘤类型中IMMU-132 I期研究中观察到的不良事件。
图17.sacituzumab govitecan治疗的患者中的反应评价。(A)综合示意图显示根据RECIST 1.1从靶病变测量值确定的最佳反应(y轴)和进展时间(Z周,TTP以月表示),所述进展时间是从第一剂的日期直到根据RECIST的进展的CT记录测量的。最佳反应柱是颜色编码的,以鉴别4个起始剂量水平。25个用疾病进展分类的患者中的4个(6、9、14和23号;2PDC、1 GC和1 SCLC)没有显示,因为他们没有进行带有靶病变测量值的随访CT,或他们尽管具有稳定的靶病变测量值,但具有新的病变。对于两个PD患者显示的柱中断(//)表示靶病变增加了>30%,而图表顶部框中的TTP值显示超过9个月的患者。先前治疗次数(括号中)和接受先前拓扑异构酶I治疗的患者(星号)在图表下指出。(B)显示根据生存分类的患者,也显示他们的TTP。对于2个PDC患者没有获得生存数据(第6和17号,其TTP为1.0和2.9个月)。
图18.靶病变减少>30%的3个患者中的2个患者中的CT反应评估。22号患者是患有低分化SCLC的65岁女性(通过免疫组织学测定有Trop-2表达,3+),其接受过两个月的卡铂/依托泊苷(拓扑异构酶-II抑制剂)和1个月的拓扑替康(拓扑异构酶-I抑制剂)没有反应,然后局部放射6周(3000 cGy),但进展了。4周后,患者以12mg/kg(2剂)开始sacituzumabgovitecan,其减少到9.0mg/kg(1剂),并最终减少到6.75mg/kg 9剂。患者最初表现为靶病变的最长直径之和(SLD)总计19.3em。显示最佳缩小的靶病变中的两个显示在基线(A和C)。4次治疗后,她的靶病变缩小38%,包括主要肺病变的实质性缩小(5.8至2.7cm;图片B和D)。在12周后她的下一次CT评估时,患者进展了。3号患者是62岁女性,在她初次诊断结肠癌和手术后5个月由于肝转移进行了肝切除,然后接受了7个月的FOLFOX治疗和1个月的仅5-氟尿嘧啶。她以多个病变(主要是在肝中(左侧图片A、C和E))而适于sacituzumab govitecan试验。免疫组织学显示她的原发癌的2+染色;她的血浆CEA是781ng/mL。治疗以8mg/kg开始,随后6次治疗(12周),3个靶病变从7.9em减少到5.0cm(-37%;PR)。6.6周后(10剂后)证实了反应,进一步缩小到3.8cm(-52%)。图片B、D和F显示治疗开始后32周和接受18剂后这3个病变的缩小(此时减少59%)。该患者继续治疗,在治疗开始后10个月(28剂)实现了65%的最大肿瘤缩小。18剂后血浆CEA降低到26.5ng/mL,但此后尽管有进一步疾病减轻或稳定的持续放射学证据(靶和非靶病变),血浆CEA开始增加。从治疗开始后大约1年(给予了31剂),3个靶病变之一进展了。
图19.具有不同DARs的IMMU-132的疗效。如方法部分的描述建立NCI-N87人胃癌异种移植物(皮下)。(A)给4组小鼠(N=9)静脉注射2x 0.5mg(箭头)以DAR=6.89,3.28或1.64制备的IMMU-132缀合物。对照动物接受盐水。在施用肿瘤细胞(大小为0.248±0.047cm3)后7天开始治疗。基于进展到≥1.0cm3的时间生成生存曲线,并且通过对数秩检验(显著性为P<0.05)分析。(B)用0.5mg IMMU-132(DAR=6.89)或1.0mg DAR=3.28每周两次治疗携带NCI-N87肿瘤的小鼠(N=7-9;初始大小=0.271±0.053em3)两周(箭头)。使小鼠安乐死并且一旦肿瘤生长到>1.0cm3则认为小鼠死于疾病。通过线性曲线建模(linear-curvemodeling)获得个体肿瘤生长分布图(profiles)。肿瘤生长的统计学分析是基于直到组内的第一只动物由于疾病进展被安乐死时进行的曲线下面积(AUC)。在生长曲线的统计学分析前,采用f检验确定组之间的方差齐性。使用双尾t检验评估各个治疗组和对照之间的统计学显著性,盐水对照除外,其中使用了单尾t检验(显著性为P≤0.05)。
图20.IMMU-132在TNBC异种移植物模型中的疗效。(A)在皮下移植MDA-MB-468肿瘤(在治疗开始时肿瘤平均0.223±0.055cm3)后22天,每周两次给裸鼠(每组7-8只)静脉注射IMMU-132或对照hA20抗CD20-SN-38缀合物,持续2周(每剂0.12或0.20mg/kg SN-38当量)。其它动物每隔1天静脉给予伊立替康(10mg/kg/剂,SN-38当量基于质量=5.8mg/kg),持续10天,总共5次注射。(B)从治疗开始后第56天开始,给予对照hA20-SN-38组中的所有动物IMMU-132(4x0.2mg/kg SN-38当量)。给出了从肿瘤移植开始后该组的个体动物中的肿瘤大小。红色箭头指出何时首次给予hA20-SN-38缀合物,紫色箭头指出何时开始用IMMU-132治疗。(C)用IMMU-132或对照hA20-SN-38缀合物(0.4mg/kg SN-38当量)、伊立替康(6.5mg/kg;约3.8mg/kg SN-38当量)或hRS7 IgG(25mg/kg)+伊立替康(6.5mg/kg)的组合治疗携带MDA-MB-231 TNBC细胞系(0.335±0.078cm3)的小鼠(N=12)。
图21.IMMU-132的ADCC活性。通过IMMU-132介导的人PBMCs对靶细胞的特异性细胞溶解与亲本hRS7比较。在前一夜将靶细胞铺板,并且按照下文实施例的描述进行测定。(A)MDA-MB-468靶细胞。(B)NIH:OVCAR-3靶细胞。(C)BxPC-3靶细胞。*hRS7与所有其它测试药剂相比(P<0.0054)。**IMMU-132与阴性对照hLL2-SN-38和hLL2相比(P<0.0003)。***IMMU-132与阴性对照hLL2-CL2ASN-38相比(P<0.0019)。
图22.IMMU-132在小鼠中的药代动力学。给幼稚(naive)裸鼠(N=5)静脉注射200μg的IMMU-132。在多个时间点从这些小鼠取血并且获得血清并分析完整的缀合物和载体hRS7抗体,如下文实施例所述。为了比较,另一组小鼠注射200μg亲本hRS7。(A)注射亲本对照的小鼠的血清浓度和hRS7清除。来自注射IMMU-132的小鼠的(B)hRS7载体抗体与(C)完整缀合物相比的浓度和清除。绘图的数据显示为平均值±S.D。
图23.IMMU-132在携带人胃癌异种移植物的小鼠中的效力。每周两次用0.35mgIMMU-132治疗携带NCI-N87人胃肿瘤的小鼠(TV=0.249±0.049cm3),持续4周。(A)IMMU-132治疗的动物与盐水和非肿瘤靶向对照ADC,即hA20-CL2A-SN-38治疗的小鼠相比的平均肿瘤生长曲线。箭头指出治疗天数。(B)治疗的小鼠的生存曲线,所述小鼠的肿瘤进展的疾病终点大于1.0cm3
图24.携带胰腺和胃肿瘤异种移植物的小鼠中的多种IMMU-132给药方案。制备皮下携带BxPC-3或NCI-N87异种移植物的裸鼠(N=8-10)。(A)用两个周期的每14天1mg、每周0.5mg持续两周或0.25mg每周两次持续两周治疗携带BxPC-3的小鼠(箭头),对于所有小鼠,总共2mg IMMU-132。(B)携带NCIN87的小鼠的相似给药(箭头),1mg治疗组中的小鼠接受另外一个周期。(C)携带NCIN87的小鼠中的IMMU-132长期给药,在3周治疗周期中的两周中使用每周一次0.5mg持续2周,总共4个周期。对应的生存曲线(终点:肿瘤进展>1.0cm3)在每个肿瘤生长曲线右侧。
图25.在多次先前治疗失败后,52个用10mg/kg IMMU-132治疗的人TNBC患者中的反应。
图26.用10mg/kg IMMU-132治疗的TNBC患者中CR+PR+SD的进展时间。
图27.用10mg/kg IMMU-132治疗的TNBC患者中的无进展生存。
图28.29个用8-10mg/kg IMMU-132治疗的可评估人NSCLC患者中的最佳反应。
图29.用8-10mg/kg IMMU-132治疗的NSCLC患者中的进展时间。
图30.用8或10mg/kg IMMU-132治疗的NSCLC患者中的无进展生存。
图31.25个用8或10mg/kg IMMU-132治疗的可评估人SCLC患者中的最佳反应。
图32.用8-10mg/kg IMMU-132治疗的SCLC患者中的进展时间。
图33.用8或10mg/kg IMMU-132治疗的SCLC患者中的无进展生存。
图34.11个用IMMU-132治疗的可评估人尿道上皮癌患者中的最佳反应。
图35.用IMMU-132治疗的尿道上皮癌患者中的进展时间。
图36.通过流式细胞术对DSB的γH2AX测定。用或不用SN-38(250nM)治疗细胞3小时,通过流式细胞术每小时监测γH2AX的水平,并且显示为柱状图(A)中的MFI或显示为(B)中的未治疗的百分比。对于用SN-38治疗的MDA-MB-231-S120(C)并且对于SN-38或IMMU-132治疗的NCI-N87-S120(D)显示了FTC(10μM)增加DSB/γH2AX形成的效果。
图37.在不存在和存在YHO-13351或Ko143的情况下用不同浓度的SN-38治疗的亲本和S-120细胞的剂量反应曲线。YHO-13351对SN-38抗性的逆转对于MDA-MB-231-S120显示在(A)中,对于NCI-N87-S120显示在(B)中,并且Ko143对SN-38抗性的逆转对于NCI-N87-S120显示在(C)中。
图38.IMMU-132在携带SN-38抗性NCI-N87-S-120胃癌异种移植物的小鼠中的效力。(A)NCI-N87和NCI-N87-S-120异种移植物的平均肿瘤生长曲线。(B)按照图上指出并且在材料和方法部分描述的,用IMMU-132、伊立替康、YHO-13551或组合治疗携带NCI-N87-S-120SN-38抗性人胃肿瘤的小鼠。(C)用与携带NCI-N87-S-120肿瘤的动物中使用的剂量和方案相同的剂量和方案用IMMU-132或伊立替康治疗携带亲本NCI-N87肿瘤的小鼠。在(B)和(C)的生存曲线中,开始治疗的那天(当肿瘤体积接近大约0.25cm3)标记为第0天。一旦肿瘤生长到>1.0cm3的大小,使小鼠安乐死。
发明详述
定义
在随后的说明书中,使用许多术语并且提供以下定义以促进理解要求保护的主题。在本文中未明确定义的术语是根据其一般及普通含义来使用。
除非另有说明,一个一种是指“一个或多个”。
本文所用的术语意指一个值加或减百分之十(10%)。举例来说,“约100”是指在90与110之间的任何数值。
如本文所用的抗体是指全长(即天然存在或通过正常免疫球蛋白基因片段重组过程形成)免疫球蛋白分子(例如IgG抗体)或免疫球蛋白分子的抗原结合部分诸如抗体片段。抗体或抗体片段可在所要求保护的主题的范围内缀合或以其它方式衍生。这种抗体包括但不限于IgG1、IgG2、IgG3、IgG4(和IgG4亚形式(subforms))以及IgA同种型。如下文所用,缩写“MAb”可互换使用,用于指代抗体、抗体片段、单克隆抗体或多特异性抗体。
抗体片段是抗体的一部分,诸如F(ab′)2、F(ab)2、Fab′、Fab、Fv、scFv(单链Fv)、单结构域抗体(DABs或VHHs)等,包括上文提到的IgG4的半分子(van der Neut Kolfschoten等(Science 2007;317(9月14日):1554-1557))。无论结构如何,有用的抗体片段结合的抗原与由完整抗体识别的抗原相同。术语“抗体片段”也包括通过结合特异性抗原以形成复合物来充当抗体的合成或基因工程蛋白。例如,抗体片段包括由可变区组成的分离的片段,诸如由重链和轻链的可变区组成的“Fv”片段和其中轻链可变区和重链可变区由肽接头连接的重组单链多肽分子(“scFv蛋白”)。片段可以不同方式构建以产生多价和/或多特异性结合形式。
裸抗体通常是未缀合于治疗剂的完整抗体。裸抗体可例如通过Fc依赖性功能诸如补体固定(CDC)和ADCC(抗体依赖性细胞毒性)来展现治疗和/或细胞毒性作用。然而,其它机理诸如凋亡、抗血管生成、抗转移活性、抗粘附活性、抑制异型或同型粘附以及干扰信号传导路径也可提供治疗作用。裸抗体包括多克隆和单克隆抗体、天然存在的或重组抗体,诸如嵌合、人源化或人抗体及其片段。在一些情况下,“裸抗体”也可指“裸”抗体片段。如本文所定义,“裸”与“未缀合”同义,并且意指未连接或缀合于治疗剂。
嵌合抗体是重组蛋白,其含有源于一个物种的抗体(优选是啮齿动物抗体,更优选是鼠抗体)的重抗体链与轻抗体链两者的可变结构域,包括互补决定区(CDR),而抗体分子的恒定结构域源于人抗体的恒定结构域。对于兽医学应用,嵌合抗体的恒定结构域可源于诸如灵长类动物、猫或狗的其它物种的恒定结构域。
人源化抗体是重组蛋白,其中将来自一个物种的抗体(例如鼠抗体)的CDR从所述鼠抗体的重可变链和轻可变链转移至人重链可变结构域和轻链可变结构域(构架区)中。抗体分子的恒定结构域源于人抗体的恒定结构域。在一些情况下,人源化抗体的构架区的特定残基,特别是接触或接近于CDR序列的那些,可加以修饰,例如用来自原始鼠、啮齿动物、低于人类的灵长类动物或其它抗体的相应残基替换。
人抗体是例如从已被“工程化”以反应于抗原攻击来产生人抗体的转基因小鼠获得的抗体。在这个技术中,将人重链和轻链基因座的元件引入源于含有内源性重链和轻链基因座的靶向破坏的胚胎干细胞系的小鼠品系中。转基因小鼠可合成对多种抗原具有特异性的人抗体,并且小鼠可用于生产分泌人抗体的杂交瘤。用于从转基因小鼠获得人抗体的方法由Green等,Nature Genet.7:13(1994),Lonberg等,Nature 368:856(1994),以及Taylor等,Int.Immun.6:579(1994)描述。也可通过全部在本领域中是已知的遗传或染色体转染方法以及噬菌体展示技术来构建全人抗体。对于从来自未免疫的供体的免疫球蛋白可变结构域基因所有组成成分体外生产人抗体及其片段,参见例如McCafferty等,Nature348:552-553(1990)。在这个技术中,将人抗体可变结构域基因符合读框地克隆至丝状噬菌体的主要或次要外壳蛋白基因中,并且作为功能性抗体片段展示在噬菌体颗粒的表面上。因为丝状颗粒含有噬菌体基因组的单链DNA拷贝,所以基于抗体的功能性质的选择也导致对编码展现那些性质的抗体的基因的选择。以这个方式,噬菌体模拟B细胞的一些性质。噬菌体展示可以多种形式进行,对于它们的综述,参见例如Johnson和Chiswell,CurrentOpinion in Structural Biology 3:5564-571(1993)。人抗体也可由体外活化的B细胞产生。参见美国专利号5,567,610和5,229,275,其各自的实施例部分通过引用并入本文。
治疗剂是可用于治疗疾病的原子、分子或化合物。治疗剂的实例包括但不限于抗体、抗体片段、ADCs、药物、细胞毒性剂、促凋亡剂、毒素、核酸酶(包括DNA酶和RNA酶)、激素、免疫调节剂、螯合剂、硼化合物、光活性剂或染料、放射性核素、寡核苷酸、干扰RNA、siRNA、RNAi、抗血管生成剂、化学治疗剂、细胞因子、趋化因子、前药、酶、结合蛋白或肽或其组合。
ADC是缀合于治疗剂的抗体、抗原结合抗体片段、抗体复合物或抗体融合蛋白。缀合可为共价或非共价的。优选地,缀合是共价的。
如本文所用,术语抗体融合蛋白是重组产生的抗原结合分子,其中一个或多个天然抗体、单链抗体或抗体片段连接于另一部分,诸如蛋白或肽、毒素、细胞因子、激素等。在某些优选实施方案中,融合蛋白可包含两个或更多个融合在一起的相同或不同抗体、抗体片段或单链抗体,其可结合相同表位、同一抗原上的不同表位、或不同抗原。
免疫调节剂是当存在时改变、抑制或刺激身体的免疫系统的治疗剂。通常,有用的免疫调节剂刺激免疫细胞增殖或变得在免疫反应级联中活化,所述免疫细胞诸如巨噬细胞、树突细胞、B细胞和/或T细胞。然而,在一些情况下,免疫调节剂可抑制免疫细胞的增殖或活化。如本文所述的免疫调节剂的一个实例是细胞因子,其是约5-20 kDa的可溶性小蛋白,由一个细胞群体(例如致敏的T淋巴细胞)在与特异性抗原接触时释放,并且充当细胞之间的细胞间介质。如技术人员将理解的,细胞因子的实例包括淋巴因子、单核因子、白介素和几种相关信号传导分子诸如肿瘤坏死因子(TNF)和干扰素。趋化因子是细胞因子的一个亚组。某些白介素和干扰素是刺激T细胞或其它免疫细胞增殖的细胞因子的实例。示例性干扰素包括干扰素-α、干扰素-β、干扰素-γ和干扰素-λ。
抗Trop-2抗体
优选地,主题ADCs包括结合于Trop-2的至少一种抗体或其片段。在一个具体的优选实施方案中,抗Trop-2抗体可以是人源化RS7抗体(参见例如美国专利号7,238,785,通过全文引用并入本文),该抗体包含轻链CDR序列CDR1(KASQDVSIAVA,SEQ ID NO:14);CDR2(SASYRYT,SEQ ID NO:15);和CDR3(QQHYITPLT,SEQ ID NO:16)以及重链CDR序列CDR1(NYGMN,SEQ ID NO:17);CDR2(WINTYTGEPTYTDDFKG,SEQ ID NO:18)和CDR3(GGFGSSYWYFDV,SEQ ID NO:19)。
RS7抗体是针对人原代鳞状细胞肺癌的粗细胞膜制备物产生的鼠IgG1(Stein等,Cancer Res.50:1330,1990)。RS7抗体识别表征为簇13的46-48 kDa糖蛋白(Stein等,Int.J.Cancer Supp.8∶98-102,1994)。该抗原命名为EGP-1(上皮糖蛋白-1),但也称作Trop-2。
Trop-2是I型跨膜蛋白,并且已经从人(Fornaro等,Int J Cancer 1995;62:610-8)和小鼠(Sewedy等,Int J Cancer 1998;75:324-30)细胞两者克隆。除了其作为肿瘤相关钙信号转导物的作用(Ripani等,Int J Cancer 1998;76:671-6),人Trop-2的表达显示对于结肠癌细胞的肿瘤发生和侵袭是必要的,所述肿瘤发生和侵袭可以通过针对Trop-2的细胞外结构域的多克隆抗体有效地减少(Wang等,Mol Cancer Ther 2008;7:280-5)。
对Trop-2作为实体癌的治疗靶的不断增加的兴趣(Cubas等,Biochim BiophysActa 2009;1796:309-14)得到了进一步报道的证实,所述报道记录了超量表达的Trop-2在乳腺(Huang等,Clin Cancer Res 2005;11:4357-64)、结肠直肠(Ohmachi等,Clin CancerRes 2006;12:3057-63;Fang等,Int J Colorectal Dis 2009;24:875-84)和口腔鳞状细胞(Fong等,Modern Pathol 2008;21:186-91)癌中的临床意义。最近关于表达高水平Trop-2的前列腺基底细胞富集了体外和体内干细胞样(stem-like)活性的证据是特别值得注意的(Goldstein等,Proc Natl Acad Sci USA 2008;105:20882-7)。
流式细胞术和免疫组织化学染色研究显示了RS7MAb检测多种肿瘤类型上的抗原,与正常人组织的结合有限(Stein等,1990)。Trop-2主要由癌,诸如肺、胃、膀胱、乳腺、卵巢、子宫和前列腺的癌表达。使用放射性标记的鼠RS7MAb在动物模型中的定位和治疗研究证明了肿瘤靶向和治疗效力(Stein等,1990;Stein等,1991)。
已经在来自肺、乳腺、膀胱、卵巢、子宫、胃和前列腺的肿瘤中证明了强RS7染色(Stein等,Int.J.Cancer 55:938,1993)。肺癌病例包括鳞状细胞癌和腺癌两者(Stein等,Int.J.Cancer 55:938,1993)。两种细胞类型都是强染色,表明RS7抗体不能区分肺的非小细胞癌的组织学类型。
RS7MAb快速内化到靶细胞中(Stein等,1993)。RS7MAb的内化速度常数是介于另外两种快速内化的MAbs的内化速度常数之间的中间值,所述另外两种快速内化的MAbs已经证明对ADC生产有用(同上)。已经充分记录了ADCs的内化是抗肿瘤活性的需要(Pastan等,Cell 47:641,1986)。ADCs的内化已经描述为抗肿瘤效力中的主要因素(Yang等,Proc.Nat′l Acad.Sci.USA 85:1189,1988)。因此,RS7抗体展现用于治疗应用的几种重要性质。
尽管优选的是HS7抗体,其它抗Trop-2抗体是已知的和/或可公开获得的,并且在替代的实施方案中可以在主题ADCs中使用。尽管人源化或人抗体优选用于降低免疫原性,但在替代实施方案中,嵌合抗体可以是有用的。如下文所讨论的,抗体人源化的方法是本领域公知的,并且可以用于将可获得的鼠或嵌合抗体转化为人源化的形式。
抗Trop-2抗体可以从许多来源商业获得,并且包括LS-C126418、LS-C178765、LS-C126416、LS-C126417(LifeSpan BioSciences,Inc.,Seattle,WA);10428-MM01、10428-MM02、10428-R001、10428-R030(Sino Biological Inc.,Beijing,China);MR54(eBioscience,San Diego,CA);sc-376181、sc-376746,Santa Cruz Biotechnology(SantaCruz,CA);MM0588-49D6(Novus Biologicals,Littleton,CO);ab79976和ab89928(Cambridge,MA)。
专利文献中公开了其它抗Trop-2抗体。例如美国公开号2013/0089872公开了保藏在国际专利生物保藏所,Tsukuba,日本的抗Trop-2抗体K5-70(保藏号FERM BP-11251)、K5-107(保藏号FERM BP-11252)、K5-116-2-1(保藏号FERM BP-11253)、T6-16(保藏号FERM BP-11346)和T5-86(保藏号FERM BP-11254)。美国专利号5,840,854公开了抗Trop-2单克隆抗体BR110(ATCC No.HB11698)。美国专利号7,420,040公开了由以保藏号141205-05保藏在IDAC(加拿大国际保藏机构,Winnipeg,加拿大)的杂交瘤细胞系AR47A6.4.2生产的抗Trop-2抗体。美国专利号7,420,041公开了由以保藏号141205-03保藏在IDAC的杂交瘤细胞系AR52A301.5生产的抗Trop-2抗体。美国公开号2013/0122020公开了抗Trop-2抗体3E9、6G11、7E6、15E2、18B1。编码代表性抗体的杂交瘤以保藏号PTA-12871和PTA-12872保藏在美国典型培养物保藏中心(ATCC)。包含连接于微管蛋白抑制剂monomethylauristatin F(MMAF)的抗5T4(抗Trop-2)抗体的免疫缀合物PF 06263507可以从Pfizer,Inc.(Groton,CT)获得(参见例如Sapra等,2013,Mol Cancer Ther 12:38-47)。美国专利号8,715,662公开了由以保藏号PD 08019、PD 08020和PD 08021保藏在AID-ICLC(Genoa,意大利)的杂交瘤生产的抗Trop-2抗体。美国专利申请公开号20120237518公开了抗Trop-2抗体77220、KM4097和KM4590。美国专利号8,309,094(Wyeth)公开了由序列表确定的抗体A1和A3。在本段落上文引用的每个专利或专利申请的实施例部分在此通过引用并入本文。非专利公开文献Lipinski等(1981,Proc Natl.Acad Sci USA,78:5147-50)公开了抗Trop-2抗体162-25.3和162-46.2。
许多抗Trop-2抗体是本领域已知和/或可公开获得的。如下文所讨论的,制备针对已知抗原的抗体的方法是本领域的常规。人Trop-2蛋白的序列也是本领域已知的(参见,例如GenBank登录号CAA54801.1)。生产人源化、人或嵌合抗体的方法也是已知的。普通技术人员阅读本公开内容并且根据本领域的普通知识,就能够制备和在主题ADCs中使用该类抗Trop-2抗体。
已经公开了将针对Trop-2相关靶的抗体用于除ADCs之外的免疫治疗剂。已经将鼠抗Trop-1IgG2a抗体依决洛单抗(edrecolomab)用于结肠直肠癌的治疗,尽管该鼠抗体并不是非常适合人临床使用(Baeuerle&Gires,2007,Br.J Cancer 96:417-423)。报道了依决洛单抗的低剂量皮下施用诱导针对疫苗抗原的体液免疫反应(Baeuerle&Gires,2007)。阿德木单抗(MT201),即一种全人Trop-1抗体,已经用于转移性乳腺癌和早期前列腺癌,并且报道通过ADCC和CDC活性起作用(Baeuerle&Gires,2007)。MT110,即一种单链抗Trop-1/抗CD3双特异性抗体构建体,已经报道了针对卵巢癌的效力(Baeuerle&Gires,2007)。Proxinium,即一种包含与假单胞菌外毒素融合的抗Trop-1单链抗体的免疫毒素,已经在头颈和膀胱癌中进行了测试(Baeuerle&Gires,2007)。这些研究都没有包括关于使用抗Trop-2ADCs的公开内容。
ABCG2抑制剂
在优选实施方案中,用与一种或多种ABC转运蛋白抑制剂,优选ABCB1、ABCC1或ABCG2的抑制剂,更优选ABCG2的抑制剂组合的抗Trop-2ADC(如hRS7-CL2A-SN-38)进行组合治疗。Ricci等最近已经综述了ABCG2抑制剂在组合癌治疗中的作用(2015,J DevelopDrugs 4:138)。ABCG2在ABC转运蛋白中是独特的,因为尽管也发现它在许多造血肿瘤中与ABCB1和ABCC1一起超量表达,但它主要在药物抗性实体瘤中超量表达(Ricci等,2015,JDevelop Drugs 4:138)。尽管ABCG2可以转运许多化学治疗剂,最公知的包括拓扑替康、米托蒽醌、SN-38、阿霉素和柔红霉素(Ricci等,2015,J Develop Drugs 4:138)。已经报道了升高的ABCG2表达与小细胞肺癌、非小细胞肺癌、胰腺癌、套细胞淋巴瘤、急性髓细胞性白血病、卵巢癌、结肠直肠癌和乳腺癌中降低的生存率相关(Ricci等,2015,J Develop Drugs4:138)。
已经发现很多药物是ABCG2活性的抑制剂(参见表1)。但是,在这些之中,只在体内和/或人类中测试了少量,迄今为止在改进化学治疗效力方面具有相对有限的成功(Ricci等,2015,J Develop Drugs 4:138)。
表1.具有体内效力的ABCG2抑制剂*
*来自Ricci等,2015,J Develop Drugs 4:138
烟曲霉毒素(Fumitremorgin)C是第一个被描述逆转了结肠癌对MTX的化学抗性的ABCG2抑制剂(Rabindran等,1998,Cancer Res 58:5850-58)。从那时起,已经描述了超过60种在体外抑制ABCG2的作用的药剂(表1)。在它们之中,仅有15种抑制ABCG2活性的化合物在人癌异种移植物的动物模型中展现了体内抗癌活性(表1和2)。那些化合物中仅有6种是对ABCG2具有特异性的直接拮抗剂:姜黄色素、FTC、Ko143、GF120918(依克立达)、YHO-13177、YHO-13351,以及最近报道的化合物177、724和505(Shukla等,2009,Pharm Res 26:480-87;Garimella等,2005,Cancer Chemother Pharmacol 55:101-9;Allen等,2002,Mol CancerTher 1:417-25;Hyafil等,Cancer Res 53:4595-602;Yamazaki等,2011,Mol Cancer Ther10:1252-63;Strouse等,2013,J Biomol Screen 18:26-38;Strouse等,2013,AnalBiochem 437:77-87)。在特异性ABCG2拮抗剂中,仅YHO-13177和最近报道的化合物CID44640177、CID1434724和CID46245505(Ricci等,2016,Mol Cancer Ther 15:2853-62)被报道在与TPT组合时具有抗肿瘤作用(Ricci等,2015,J Develop Drugs 4:138)。
许多化合物在癌的动物模型中已经显示了效力(表2)(Ricci等,2015,J DevelopDrugs 4:138)。这些化合物中的一些对ABCG2具有间接抑制作用,并且包括抗疟疾剂、喜树碱的化学治疗类似物,和极光(aurora)激酶抑制剂(表2)(Ricci等,2015,J Develop Drugs4:138)。极光激酶抑制剂CCT129202能够增加阿霉素和若丹明123在超量表达ABCB1和ABCG2的人结肠癌细胞中的积累。
如下文实施例所讨论的,本研究证明了至少ABCG2抑制剂烟曲霉毒素C、Ko143和YHO-13351在具有对SN-38的诱导抗性的MDA-MB-231人乳腺癌细胞和NCI-N87-S120人胃癌细胞中恢复了SN-38的毒性,并且YHO-13351与IMMU-132(抗Trop-2 ADC)的组合延长了携带NCI-N87-S120异种移植物的小鼠的中位生存。这些结果支持ABCG2抑制剂与抗癌ADCs,优选抗Trop-2 ADCs,更优选IMMU-132一起用于药物抗性癌的组合治疗。这种组合治疗在对化学治疗剂具有先天抗性的癌或在治疗过程中发展抗性的癌中可以是有效的。本发明证明了用ABCG2抑制剂和抗癌ADCs的组合治疗的出乎意料的效力。
表2.在动物癌模型中体内拮抗ABCG2的化合物*
*来自Ricci等,2015,J Develop Drugs 4:138
一般抗体技术
用于制备针对基本上任何靶抗原的单克隆抗体的技术是本领域公知的。参见例如和Milstein,Nature256:495(1975),以及Coligan等(编),CURRENT PROTOCOLS INIMMUNOLOGY,第1卷,第2.5.1-2.6.7页(John Wiley&Sons 1991)。简要来说,可通过以下方式来获得单克隆抗体:用包含抗原的组合物注射小鼠,取出脾以获得B淋巴细胞,使B淋巴细胞与骨髓瘤细胞融合以产生杂交瘤,克隆杂交瘤,选择产生针对所述抗原的抗体的阳性克隆,培养产生针对所述抗原的抗体的克隆,以及从杂交瘤培养物分离抗体。普通技术人员将认识到当抗体要施用于人受试者时,抗体将结合人抗原。
可通过多种充分建立的技术从杂交瘤培养物分离和纯化MAbs。所述分离技术包括用蛋白A或蛋白G琼脂糖进行的亲和色谱法、尺寸排阻色谱法和离子交换色谱法。参见例如Coligan,第2.7.1-2.7.12页和第2.9.1-2.9.3页。也参见Baines等,“Purification ofImmunoglobulin G(IgG)”,METHODS IN MOLECULAR BIOLOGY,第10卷,第79-104页(TheHumana Press,Inc.1992)。
在初始产生针对免疫原的抗体之后,可对抗体测序,并且随后通过重组技术制备。鼠抗体和抗体片段的人源化和嵌合化是本领域技术人员公知的,如下所讨论。
技术人员将认识到所要求保护的方法和组合物可利用本领域中已知的多种抗体中的任一者。有用的抗体可从多种已知来源商业获得。例如,多种分泌抗体的杂交瘤系可从美国典型培养物保藏中心(American Type Culture Collection,ATCC,Manassas,VA)获得。许多针对各种疾病靶(包括但不限于肿瘤相关的抗原)的抗体已被保藏在ATCC和/或具有公布的可变区序列,并且可用于所要求保护的方法和组合物中。参见例如美国专利号7,312,318;7,282,567;7,151,164;7,074,403;7,060,802;7,056,509;7,049,060;7,045,132;7,041,803;7,041,802;7,041,293;7,038,018;7,037,498;7,012,133;7,001,598;6,998,468;6,994,976;6,994,852;6,989,241;6,974,863;6,965,018;6,964,854;6,962,981;6,962,813;6,956,107;6,951,924;6,949,244;6,946,129;6,943,020;6,939,547;6,921,645;6,921,645;6,921,533;6,919,433;6,919,078;6,916,475;6,905,681;6,899,879;6,893,625;6,887,468;6,887,466;6,884,594;6,881,405;6,878,812;6,875,580;6,872,568;6,867,006;6,864,062;6,861,511;6,861,227;6,861,226;6,838,282;6,835,549;6,835,370;6,824,780;6,824,778;6,812,206;6,793,924;6,783,758;6,770,450;6,767,711;6,764,688;6,764,681;6,764,679;6,743,898;6,733,981;6,730,307;6,720,155;6,716,966;6,709,653;6,693,176;6,692,908;6,689,607;6,689,362;6,689,355;6,682,737;6,682,736;6,682,734;6,673,344;6,653,104;6,652,852;6,635,482;6,630,144;6,610,833;6,610,294;6,605,441;6,605,279;6,596,852;6,592,868;6,576,745;6,572;856;6,566,076;6,562,618;6,545,130;6,544,749;6,534,058;6,528,625;6,528,269;6,521,227;6,518,404;6,511,665;6,491,915;6,488,930;6,482,598;6,482,408;6,479,247;6,468,531;6,468,529;6,465,173;6,461,823;6,458,356;6,455,044;6,455,040,6,451,310;6,444,206;6,441,143;6,432,404;6,432,402;6,419,928;6,413,726;6,406,694;6,403,770;6,403,091;6,395,276;6,395,274;6,387,350;6,383,759;6,383,484;6,376,654;6,372,215;6,359,126;6,355,481;6,355,444;6,355,245;6,355,244;6,346,246;6,344,198;6,340,571;6,340,459;6,331,175;6,306,393;6,254,868;6,187,287;6,183,744;6,129,914;6,120,767;6,096,289;6,077,499;5,922,302;5,874,540;5,814,440;5,798,229;5,789,554;5,776,456;5,736,119;5,716,595;5,677,136;5,587,459;5,443,953;5,525,338,其各自的实施例部分通过引用并入本文。这些仅是示例性的,并且多种其它抗体和它们的杂交瘤在本领域中是已知的。技术人员将认识到针对几乎任何疾病相关的抗原的抗体序列或分泌抗体的杂交瘤都可通过简单搜索ATCC、NCBI和/或USPTO数据库中针对所选疾病相关的感兴趣靶的抗体来获得。可使用本领域中公知的标准技术,将克隆的抗体的抗原结合结构域扩增、切除、连接至表达载体中、转染至适应的宿主细胞中并用于蛋白产生。可使用本文公开的技术使分离的抗体缀合于治疗剂,诸如喜树碱。
嵌合和人源化抗体
嵌合抗体是重组蛋白,其中人抗体的可变区已被例如小鼠抗体的可变区(包括所述小鼠抗体的互补决定区(CDRs))替换。当向受试者施用时,嵌合抗体展现降低的免疫原性和增加的稳定性。用于构建嵌合抗体的方法是本领域公知的(例如Leung等,1994,Hybridoma 13:469)。
可通过将来自小鼠免疫球蛋白的重可变链和轻可变链的小鼠CDRs转移至人抗体的相应可变结构域中来使嵌合单克隆抗体人源化。嵌合单克隆抗体中的小鼠构架区(FR)也用人FR序列替换。为保持人源化单克隆的稳定性和抗原特异性,一个或多个人FR残基可用小鼠对应残基替换。人源化单克隆抗体可用于受试者的治疗性治疗。用于生产人源化单克隆抗体的技术是本领域公知的。(参见例如Jones等,1986,Nature,321:522;Riechmann等,Nature,1988,332:323;Verhoeyen等,1988,Science,239:1534;Carter等,1992,Proc.Nat′l Acad.Sci.USA,89:4285;Sandhu,Crit.Rev.Biotech.,1992,12:437;Tempest等,1991,Biotechnology 9:266;Singer等,J.Immun.,1993,150:2844)。
其它实施方案可涉及非人灵长类动物抗体。用于产生在狒狒中治疗上有用的抗体的一般技术可例如见于Goldenberg等,WO 91/11465(1991)中以及Losman等,Int.J.Cancer46:310(1990)中。在另一实施方案中,抗体可为人单克隆抗体。所述抗体可从已被工程化以反应于抗原攻击来产生特异性人抗体的转基因小鼠获得,如下文所讨论。
人抗体
用于使用组合方法或用人免疫球蛋白基因座转化的转基因动物生产全人抗体的方法在本领域中是已知的(例如Mancini等,2004,New Microbiol.27:315-28;Conrad和Scheller,2005,Comb.Chem.High Throughput Screen.8:117-26;Brekke和Loset,2003,Curr.Opin.Phamacol.3:544-50;各自通过引用并入本文)。预期所述全人抗体比嵌合或人源化抗体展现甚至更少副作用,并且在体内作为基本上内源的人抗体起作用。在某些实施方案中,所要求保护的方法和程序可利用通过所述技术生产的人抗体。
在一个替代方案中,噬菌体展示技术可用于产生人抗体(例如,Dantas-Barbosa等,2005,Genet.Mol.Res.4:126-40,通过引用并入本文)。可从正常人或从展现诸如癌的特定疾状状态的人产生人抗体(Dantas-Barbosa等,2005)。从患病个体构建人抗体的优势在于循环抗体所有组成成分可偏向针对疾病相关的抗原的抗体。
在这个方法学的一个非限制性实例中,Dantas-Barbosa等人(2005)构建了来自骨肉瘤患者的人Fab抗体片段的噬菌体展示文库。通常,从循环血液淋巴细胞获得总RNA(同上)。从μ、γ和κ链抗体所有组成成分克隆重组Fab,并且插入噬菌体展示文库中(同上)。使RNAs转化为cDNAs,并且用于使用针对重链和轻链免疫球蛋白序列的特异性引物制备FabcDNA文库(Marks等,1991,J.Mol.Biol.222:581-97,通过引用并入本文)。根据Andris-Widhopf等(2000,Phage Display Laboratory Manual,Barbas等(编),第1版,Cold SpringHarbor Laboratory Press,Cold Spring Harbor,NY第9.1至9.22页,通过引用并入本文)进行文库构建。用限制性核酸内切酶消化最终Fab片段,并且插入噬菌体基因组中以制备噬菌体展示文库。可通过标准噬菌体展示方法来筛选所述文库。技术人员将认识到这个技术仅是示例性的,并且可利用用于通过噬菌体展示来制备和筛选人抗体或抗体片段的任何已知方法。
在另一替代方案中,已被基因工程化以生产人抗体的转基因动物可用于使用如上文讨论的标准免疫方案来生产针对基本上任何免疫原性靶的抗体。用于从转基因小鼠获得人抗体的方法由Green等,Nature Genet.7:13(1994),Lonberg等,Nature 368:856(1994),以及Taylor等,Int.Immun.6:579(1994)描述。这种系统的一个非限制性实例是来自Abgenix(Fremont,CA)的(例如Green等,1999,J.Immunol.Methods231:11-23,通过引用并入本文),其中小鼠抗体基因已被灭活并由功能性人抗体基因替换,而小鼠免疫系统的其余部分保持完整。
用种系构造的YACs(酵母人工染色体)转化转基因小鼠,所述YACs含有人IgH和Igκ基因座的部分,包括大多数可变区序列,以及附属基因和调控序列。人可变区所有组成成分可用于产生生产抗体的B细胞,所述细胞可通过已知技术来加工成杂交瘤。用靶抗原免疫的将通过正常免疫反应生产人抗体,所述抗体可通过上文讨论的标准技术来收获和/或生产。多种品系的基因工程小鼠是可获得的,其各自能够生产不同类别的抗体。已显示转基因生产的人抗体具有治疗潜力,同时保留正常人抗体的药代动力学性质(Green等,1999)。技术人员将认识到所要求保护的组合物和方法不限于使用系统,而是可利用已被基因工程化以生产人抗体的任何转基因动物。
抗体片段的生产
所要求保护的方法和/或组合物的一些实施方案可涉及抗体片段。这种抗体片段可例如通过常规方法用胃蛋白酶或木瓜蛋白酶消化完整抗体来获得。例如,抗体片段可通过用胃蛋白酶酶促裂解抗体以提供表示为F(ab′)2的5S片段来生产。这个片段可进一步使用硫醇还原剂以及任选使用用于由裂解二硫键产生的巯基的封闭基团加以裂解,以产生3.5S Fab′单价片段。或者,使用胃蛋白酶进行的酶促裂解会产生两个单价Fab片段和Fc片段。用于生产抗体片段的示例性方法公开于美国专利号4,036,945;美国专利号4,331,647;Nisonoff等,1960,Arch.Biochem.Biophys.,89:230;Porter,1959,Biochem.J.,73:119;Edelman等,1967,METHODS IN ENZYMOLOGY,第422页(Academic Press)以及Coligan等(编),1991,CURRENT PROTOCOLS IN IMMUNOLOGY,(John Wiley&Sons)中。
也可使用裂解抗体的其它方法,诸如分离重链以形成单价轻-重链片段,进一步裂解片段,或其它酶促、化学或遗传技术,只要片段结合由完整抗体识别的抗原即可。例如,Fv片段包含VH链和VL链的缔合。该缔合可为非共价的,如Inbar等,1972,Proc.Nat′l.Acad.Sci.USA,69:2659中所述。或者,可变链可通过分子间二硫键加以连接,或通过化学物质诸如戊二醛加以交联。参见Sandhu,1992,Crit.Rev.Biotech.,12:437。
优选地,Fv片段包含通过肽接头连接的VH链和VL链。这些单链抗原结合蛋白(scFv)通过构建包含编码VH结构域和VL结构域的DNA序列的结构基因来制备,所述编码VH结构域和VL结构域的DNA序列通过寡核苷酸接头序列连接。将结构基因插入表达载体中,所述表达载体随后引入宿主细胞诸如大肠杆菌中。重组宿主细胞合成带有桥接两个V结构域的接头肽的单个多肽链。用于生产scFv的方法是本领域公知的。参见Whitlow等,1991,Methods:ACompanion to Methods in Enzymology 2:97;Bird等,1988,Science,242:423;美国专利号4,946,778;Pack等,1993,Bio/Technology,11:1271以及Sandhu,1992,Crit.Rev.Biotech.,12:437。
另一形式的抗体片段是单结构域抗体(dAb),有时被称为单链抗体。用于生产单结构域抗体的技术在本领域中是熟知的(参见例如Cossins等,Protein Expression andPurification,2007,51:253-59;Shuntao等,Molec Immunol 2006,43:1912-19;Tanha等,J.Biol.Chem.2001,276:24774-780)。其它类型的抗体片段可包含一个或多个互补决定区(CDRs)。可通过构建编码感兴趣抗体的CDR的基因来获得CDR肽(“最小识别单元”)。例如通过使用聚合酶链反应以从生产抗体的细胞的RNA合成可变区来制备这种基因。参见Larrick等,1991,Methods:ACompanion to Methods in Enzymology 2:106;Ritter等(编),1995,MONOCLONAL ANTIBODIES:PRODUCTION,ENGINEERING AND CLINICAL APPLICATION,第166-179页(Cambridge University Press);Birch等,(编),1995,MONOCLONAL ANTIBODIES:PRINCIPLES AND APPLICATIONS,第137-185页(Wiley-Liss,Inc.)。
抗体变化
在某些实施方案中,可改变抗体的序列(诸如抗体的Fc部分)以使缀合物的生理特征,诸如在血清中的半衰期最优化。取代蛋白中氨基酸序列的方法在本领域中是广泛已知的,诸如通过位点定向诱变(例如Sambrook等,Molecular Cloning,A laboratory manual,第2版,1989)。在优选实施方案中,变化可涉及添加或移除Fc序列中一个或多个糖基化位点(例如美国专利号6,254,868,其实施例部分通过引用并入本文)。在其它优选实施方案中,可在Fc序列中进行特定氨基酸取代(例如Hornick等,2000,J Nucl Med 41:355-62;Hinton等,2006,J Immunol 176:346-56;Petkova等2006,Iht Immunol 18:1759-69;美国专利号7,217,797;各自通过引用并入本文)。
靶抗原和示例性抗体
在一个优选实施方案中,使用识别和/或结合在靶细胞上以高水平表达以及与正常组织相比主要或仅仅在患病细胞上表达的抗原的抗体。更优选地,抗体在结合之后快速内化。一种示例性快速内化抗体是LL1(抗CD74)抗体,其具有每天每个细胞约8x106个抗体分子的内化速度(例如Hansen等,1996,BiochemJ.320:293-300)。因此,“快速内化”抗体可为具有每天每个细胞约1x106至约1x107个抗体分子的内化速度的抗体。在所要求保护的组合物和方法中有用的抗体可包括具有上文提到的性质的MAbs。对例如癌的治疗有用的示例性抗体包括但不限于LL1(抗CD74)、LL2或RFB4(抗CD22)、维妥珠单抗(hA20,抗CD20)、利妥昔单抗(抗CD20)、奥滨尤妥珠单抗(GA101,抗CD20)、兰罗利珠单抗(抗PD-1受体)、纳武单抗(抗PD-1受体)、伊匹单抗(抗CTLA-4)、RS7(抗Trop-2)、PAM4(抗MUC-5ac)、MN-14(抗CEACAM-5)、MN-15或MN-3(抗CEACAM-6)、Mu-9(抗结肠特异性抗原p)、Immu 31(抗甲胎蛋白)、hR1(抗IGF-1R)、A19(抗CD 19)、TAG-72(例如CC49)、Tn、J591或HuJ591(抗PSMA(前列腺特异性膜抗原))、AB-PG1-XG1-026(抗PSMA二聚体)、D2/B(抗PSMA)、G250(抗碳酸酐酶IXMAb)、L243(抗HLA-DR)、阿仑单抗(抗CD52)、贝伐单抗(抗VEGF)、西妥昔单抗(抗EGFR)、吉妥单抗(抗CD33)、替伊莫单抗(ibritumomab tiuxetan)(抗CD20);帕尼单抗(抗EGFR);托西莫单抗(抗CD20)和曲妥珠单抗(抗ErbB2)。所述抗体在本领域中是已知的(例如美国专利号5,686,072;5,874,540;6,107,090;6,183,744;6,306,393;6,653,104;6,730.300;6,899,864;6,926,893;6,962,702;7,074,403;7,230,084;7,238,785;7,238,786;7,256,004;7,282,567;7,300,655;7,312,318;7,585,491;7,612,180;7,642,239;以及美国专利申请公开号20050271671;20060193865;20060210475;20070087001;各自的实施例部分通过引用并入本文)。有用的特定已知抗体包括hPAM4(美国专利号7,282,567)、hA20(美国专利号7,251,164)、hA19(美国专利号7,109,304)、hIMMU-31(美国专利号7,300,655)、hLL1(美国专利号7,312,318)、hLL2(美国专利号7,074,403)、hMu-9(美国专利号7,387,773)、hL243(美国专利号7,612,180)、hMN-14(美国专利号6,676,924)、hMN-15(美国专利号7,541,440)、hR1(美国专利申请12/772,645)、hRS7(美国专利号7,238,785)、hMN-3(美国专利号7,541,440)、AB-PG1-XG1-026(美国专利申请11/983,372,以ATCC PTA-4405和PTA-4406保藏)和D2/B(WO2009/130575),提到的各专利或申请的正文通过关于附图和实施例部分的引用并入本文。在一个特别优选的实施方案中,抗体是hRS7。
可使用描述的缀合物加以靶向的其它有用的抗原包括碳酸酐酶IX、B7、CCL19、CCL21、CSAp、HER-2/neu、BrE3、CD1、CD1a、CD2、CD3、CD4、CD5、CD8、CD11A、CD14、CD15、CD16、CD18、CD19、CD20(例如C2B8、hA20、1F5 MAbs)、CD21、CD22、CD23、CD25、CD29、CD30、CD32b、CD33、CD37、CD38、CD40、CD40L、CD44、CD45、CD46、CD52、CD54、CD55、CD59、CD64、CD67、CD70、CD74、CD79a、CD80、CD83、CD95、CD126、CD133、CD138、CD147、CD154、CEACAM5、CEACAM6、CTLA-4、甲胎蛋白(AFP)、VEGF(例如,贝伐单抗,纤连蛋白剪接变体)、ED-B纤连蛋白(例如L19)、EGP-1(Trop-2)、EGP-2(例如17-1A)、EGF受体(ErbB1)(例如西妥昔单抗)、ErbB2、ErbB3、因子H、FHL-1、Flt-3、叶酸受体、Ga 733、GRO-β、HMGB-1、缺氧诱导因子(HIF)、HM1.24、HER-2/neu、胰岛素样生长因子(ILGF)、IFN-γ、IFN-α、IFN-β、IFN-λ、IL-2R、IL-4R、IL-6R、IL-13R、IL-15R、IL-17R、IL-18R、IL-2、IL-6、IL-8、IL-12、IL-15、IL-17、IL-18、IL-25、IP-10、IGF-1R、Ia、HM1.24、神经节苷脂、HCG、L243结合的HLA-DR抗原、CD66抗原即CD66a-d或其组合、MAGE、mCRP、MCP-1、MIP-1A、MIP-1B、巨噬细胞迁移抑制因子(MIF)、MUC1、MUC2、MUC3、MUC4、MUC5ac、胎盘生长因子(PlGF)、PSA(前列腺特异性抗原)、PSMA、PD-1受体、NCA-95、NCA-90、A3、A33、Ep-CAM、KS-1、Le(y)、间皮素(mesothelin)、S100、生腱蛋白、TAC、Tn抗原、Thomas-Friedenreich抗原、肿瘤坏死抗原、肿瘤血管生成抗原、TNF-α、TRAIL受体(R1和R2)、Trop-2、VEGFR、RANTES、T101以及癌干细胞抗原、补体因子C3、C3a、C3b、C5a、C5和癌基因产物。
如通过流式细胞术显示以及可作为选择用于药物缀合的免疫治疗的合适抗体的指导的、对造血恶性细胞上的合适抗原(簇标号(Cluster Designation)或CD)靶的全面分析是Craig和Foon,Blood,2008年1月15日在线提前公开;DOL 10.1182/blood-2007-11-120535。
CD66抗原由5种具有相似结构的不同糖蛋白,即CD66a-e组成,CD66a-e分别由癌胚抗原(CEA)基因家族成员BCG、CGM6、NCA、CGM1和CEA编码。这些CD66抗原(例如CEACAM6)主要在粒细胞、消化道的正常上皮细胞以及各种组织的肿瘤细胞中表达。也包括为癌的合适靶的是癌睾丸抗原诸如NY-ESO-1(Theurillat等,Int.J.Cancer2007;120(11):2411-7),以及髓细胞性白血病(Kozlov等,Cancer Genet.Cytogenet.2005;163(1):62-7)以及B细胞疾病中的CD79a,和非霍奇金氏淋巴瘤的CD79b(Poison等,Blood 110(2):616-623)。许多上文提及的抗原公开于2002年11月15日提交的题为“Use of Multi-specific,Non-covalentComplexes for Targeted Delivery of Therapeutics”的美国临时申请序列号60/426,379中。认为是更具治疗抗性的前体恶性细胞群体的癌干细胞(Hill和Perris,J.Natl.Cancer Inst.2007;99:1435-40)具有可在某些癌类型中靶向的抗原,诸如前列腺癌(Maitland等,Ernst Schering Found.Sympos.Proc.2006;5:155-79)、非小细胞肺癌(Donnenberg等,J.Control Release 2007;122(3):385-91)和胶质母细胞瘤(Beier等,Cancer Res.2007;67(9):4010-5)中的CD133,以及结肠直肠癌(Dalerba等,Proc.Natl.Acad.Sci.USA 2007;104(24)10158-63)、胰腺癌(Li等,Cancer Res.2007;67(3):1030-7)和头颈鳞状细胞癌(Prince等,Proc.Natl.Acad.Sci.USA 2007;104(3)973-8)中的CD44。另一种用于乳腺癌治疗的有用的靶是Taylor等(Biochem.J.2003;375:51-9)描述的LIV-1抗原。CD47抗原是用于癌干细胞的另外的有用的靶(参见例如Naujokat等,2014,Immunotherapy 6:290-308;Goto等,2014,Eur J Cancer 50:1836-46;Unanue,2013,ProcNatl Acad Sci USA 110:10886-7)。
对于多发性骨髓瘤治疗,已描述针对例如CD38和CD138(Stevenson,Mol Med2006;12(11-12):345-346;Tassone等,Blood 2004;104(12):3688-96)、CD74(Stein等,同上)、CS1(Tai等,Blood 2008;112(4):1329-37)和CD40(Tai等,2005;Cancer Res.65(13):5898-5906)的合适的靶向抗体。
检查点(checkpoint)抑制剂抗体已用于癌治疗。免疫检查点是指免疫系统中负责维持自身耐受性和调节免疫系统反应的程度以使外周组织损伤最小化的抑制性途径。然而,肿瘤细胞也可激活免疫系统检查点,以降低针对肿瘤组织的免疫反应的有效性。可将针对细胞毒性T淋巴细胞抗原4(CTLA4,也称为CD152)、程序化细胞死亡蛋白1(PD1,也称为CD279)和程序化细胞死亡1配体1(PD-L1,也称为CD274)的示例性检查点抑制剂抗体与一种或多种其它药剂组合使用,以增强针对疾病细胞的免疫反应的有效性。示例性抗PD1抗体包括兰罗利珠单抗(MK-3475,MERCK)、纳武单抗(BMS-936558,BRISTOL-MYERS SQUIBB)、AMP-224(MERCK)和pidilizumab(CT-011,CURETECH LTD.)。抗PD1抗体是可商业获得的,例如来自(AB137132)、(EH12.2H7,RMP1-14)和AFFYMETRIXEBIOSCIENCE(J105,J116,MIH4)。示例性抗PD-L1抗体包括MDX-1105(MEDAREX)、MEDI4736(MEDIMMUNE)、MPDL3280A(GENENTECH)和BMS-936559(BRISTOL-MYERS SQUIBB)。抗PD-L1抗体也是可商业获得的,例如来自AFFYMETRIX EBIOSCIENCE(MIH1)。示例性抗CTLA4抗体包括伊匹单抗(Bristol-Myers Squibb)和曲美木单抗(tremelimumab)(PFIZER)。抗PD1抗体是可商业获得的,例如来自(AB134090)、SINO BIOLOGICAL INC.(11159-H03H,11159-H08H)和THERMO SCIENTIFIC PIERCE(PA5-29572、PA5-23967、PA5-26465、MA1-12205、MA1-35914)。伊匹单抗最近获得FDA批准用于治疗转移性黑素瘤(Wada等,2013,JTransl Med 11:89)。
巨噬细胞迁移抑制因子(MIF)是先天性和适应性免疫和凋亡的重要调控剂。已报道CD74是MIF的内源性受体(Leng等,2003,J Exp Med 197:1467-76)。拮抗性抗CD74抗体对MIF介导的细胞内途径的疗效可用于治疗多种疾病状况,诸如膀胱癌、前列腺癌、乳腺癌、肺癌、结肠癌和慢性淋巴细胞性白血病(例如Meyer-Siegler等,2004,BMC Cancer 12:34;Shachar和Haran,2011,Leuk Lymphoma 52:1446-54);自身免疫疾病诸如类风湿性关节炎和系统性红斑狼疮(Morand和Leech,2005,Front BiosCi 10:12-22;Shachar和Haran,2011,Leuk Lymphoma 52:1446-54);肾疾病诸如肾同种异体移植物排斥(Lan,2008,Nephron Exp Nephrol.109:e79-83);和许多炎性疾病(Meyer-Siegler等,2009,MediatorsInflamm 2009年3月22日电子出版;Takahashi等,2009,Respir Res10:33)。米拉珠单抗(Milatuzumab)(hLL1)是具有治疗MIF介导的疾病的治疗用途的示例性抗CD74抗体。
抗TNF-α抗体在本领域中是已知的,并且可用于治疗免疫疾病,诸如自身免疫疾病、免疫功能异常(例如移植物抗宿主疾病、器官移植物排斥)或糖尿病。针对TNF-α的已知抗体包括人抗体CDP571(Ofei等,2011,Diabetes 45:881-85);鼠抗体MTNFAI、M2TNFAI、M3TNFAI、M3TNFABI、M302B和M303(Thermo Scientific,Rockford,IL);英夫利昔单抗(Centocor,Malvern,PA);聚乙二醇赛妥珠单抗(UCB,Brussels,Belgium);和阿达木单抗(Abbott,Abbott Park,IL)。这些和许多其它已知的抗TNF-α抗体可用于所要求保护的方法和组合物中。可用于免疫失调或自身免疫疾病的治疗的其它抗体包括但不限于抗B细胞抗体诸如维妥珠单抗、依帕珠单抗、米拉珠单抗或hL243;托珠单抗(抗IL-6受体);巴利昔单抗(抗CD25);达利珠单抗(抗CD25抗体);依法珠单抗(抗CD1la);莫罗莫那-CD3(抗CD3受体);抗CD40L(UCB,Brussels,Belgium);那他珠单抗(抗α4整联蛋白)和奥马珠单抗(抗IgE)。
在另一优选实施方案中,使用快速内化的抗体,接着再表达、加工以及呈递在细胞表面上,从而使得能够由细胞对循环缀合物进行连续摄取和堆积。最优选的抗体/抗原对的实例是LL1,即一种抗CD74 MAb(不变链,II类特异性蛋白伴侣,Ii)(参见例如美国专利号6,653,104;7,312,318;各自的实施例部分通过引用并入本文)。CD74抗原在B细胞淋巴瘤(包括多发性骨髓瘤)和白血病、某些T细胞淋巴瘤、黑素瘤、结肠癌、肺癌和肾癌、胶质母细胞瘤以及某些其它癌上高表达(Ong等,Immunology98:296-302(1999))。在癌中使用CD74抗体的综述包含在通过引用并入本文的Stein等,Clin Cancer Res.2007年9月15日;13(18 Pt2):5556s-5563s中。
优选用抗CD74抗体治疗的疾病包括但不限于非霍奇金氏淋巴瘤、霍奇金氏病、黑素瘤、肺癌、肾癌、结肠癌、多形性胶质母细胞瘤、组织细胞瘤、髓细胞性白血病和多发性骨髓瘤。CD74抗原在靶细胞的表面上短时间连续表达,随后是抗原内化以及抗原再表达,使得靶向性LL1抗体能够连同它携带的任何化学治疗部分一起被内化。这使得高的、治疗性浓度的LL1-化学治疗药物缀合物积累在所述细胞内部。内化的LL1-化学治疗药物缀合物循环通过溶酶体和内体,并且化学治疗部分以活性形式释放在靶细胞内。
可用于治疗自身免疫疾病或免疫系统功能异常(例如移植物抗宿主疾病、器官移植物排斥)的抗体在本领域中是已知的,并且可使用公开的方法和组合物缀合于SN-38。可用于治疗自身免疫/免疫功能异常疾病的抗体可结合包括但不限于以下的示例性抗原:BCL-1、BCL-2、BCL-6、CD1a、CD2、CD3、CD4、CD5、CD7、CD8、CD10、CD11b、CD11c、CD13、CD14、CD15、CD16、CD19、CD20、CD21、CD22、CD23、CD25、CD33、CD34、CD38、CD40、CD40L、CD41a、CD43、CD45、CD55、CD74、TNF-α、干扰素和HLA-DR。结合这些和上文讨论的其它靶抗原的抗体可用于治疗自身免疫或免疫功能异常疾病。可用ADCs治疗的自身免疫疾病可包括急性特发性血小板减少性紫癜、慢性特发性血小板减少性紫癜、皮肌炎、西登哈姆氏舞蹈病(Sydenham′schorea)、重症肌无力、系统性红斑狼疮、狼疮肾炎、风湿热、多腺综合征、大疱性类天疱疮、糖尿病、Henoch-Schonlein紫癜、链球菌感染后肾炎、结节性红斑、高安动脉炎(Takayasu′sarteritis)、ANCA相关的血管炎、阿狄森氏病(Addison′s disease)、类风湿性关节炎、多发性硬化症、结节病、溃疡性结肠炎、多形性红斑、IgA肾病、结节性多动脉炎、强直性脊柱炎、古德帕斯彻氏综合征(Goodpasture′s syndrome)、血栓闭塞性脉管炎、干燥综合征、原发性胆汁性硬化、桥本氏甲状腺炎、甲状腺毒症、硬皮病、慢性活动性肝炎、多肌炎/皮肌炎、多软骨炎、大疱性类天疱疮、寻常天疱疮、韦格纳氏肉芽肿(Wegener′s granulomatosis)、膜性肾病、肌萎缩性侧索硬化、脊髓痨、巨细胞动脉炎/多肌痛、恶性贫血、快速进行性肾小球性肾炎、牛皮癣或纤维性肺泡炎。
上文讨论的抗体和针对疾病相关的抗原的其它已知抗体可在实施所要求保护的方法和组合物时用作喜树碱缀合物,更优选SN-38缀合物。在最优选的实施方案中,药物缀合的抗体是抗Trop-2-SN-38(例如hRS7-SN-38)缀合物。
双特异性和多特异性抗体
双特异性抗体可用于许多生物医学应用中。举例来说,具有肿瘤细胞表面抗原和T细胞表面受体的结合位点的双特异性抗体可指导由T细胞对特定肿瘤细胞的细胞溶解。识别神经胶质瘤和T细胞上的CD3表位的双特异性抗体已成功用于治疗人患者中的脑肿瘤(Nitta等Lancet.1990;355:368-371)。一种优选的双特异性抗体是抗CD3 X抗CD19抗体。在替代性实施方案中,可使抗CD3抗体或其片段附着于针对另一B细胞相关的抗原的抗体或片段,诸如抗CD3 X抗Trop-2、抗CD3 X抗CD20、抗CD3 X抗CD22、抗CD3 X抗HLA-DR或抗CD3 X抗CD74。在某些实施方案中,本文公开的用于治疗剂缀合的技术和组合物可与作为靶向部分的双特异性或多特异性抗体一起使用。
用以生产双特异性或多特异性抗体的众多方法是已知的,如公开于例如美国专利号7,405,320,其实施例部分通过引用并入本文。双特异性抗体可通过四价杂交瘤(quadroma)方法来生产,所述方法涉及使两种各自产生识别不同抗原位点的单克隆抗体的不同杂交瘤融合(Milstein和Cuello,Nature,1983;305:537-540)。
用于生产双特异性抗体的另一方法使用异双官能交联剂来化学栓系两种不同的单克隆抗体(Staerz等Nature,1985;314:628-631;Perez等Nature,1985;316:354-356)。双特异性抗体也可通过使两种亲本单克隆抗体各自还原成相应半分子,接着混合所述半分子并使其再氧化以获得杂合结构来生产(Staerz和Bevan.ProcNatl Acad Sci U S A.1986;83:1453-1457)。另一替代方案涉及使用合适接头使两种或三种分开纯化的Fab’片段交联。(参见例如欧洲专利申请0453082)。
其它方法包括通过将不同选择标记基因转移至各自的亲本杂交瘤(其随后融合)中来改进产生杂合杂交瘤的效率,所述基因转移是经由源自逆转录病毒的穿梭载(DeMonte等Proc Natl Acad Sci U S A.1990,87:2941-2945);或用含有不同抗体的重链和轻链基因的表达质粒转染杂交瘤细胞系。
可用具有适当组成和长度(通常由多于12个氨基酸残基组成)的肽接头连接相关VH结构域和VL结构域以形成具有结合活性的单链Fv(scFv)。制造scFvs的方法公开于美国专利号4,946,778和美国专利号5,132,405中,所述美国专利各自的实施例部分通过引用并入本文。使肽接头长度减少至少于12个氨基酸残基会阻止同一链上的VH结构域和VL结构域的配对,并且迫使VH结构域和VL结构域与其它链上的互补结构域配对,从而导致形成功能性多聚体。用介于3个与12个氨基酸残基之间的接头连接的VH结构域和VL结构域的多肽链主要形成二聚体(被称为双链抗体(diabodies))。在接头介于0个与2个氨基酸残基之间的情况下,促成三聚体(被称为三链抗体(triabody))和四聚体(被称为四链抗体(tetrabody)),但除接头长度之外,确切的寡聚模式似乎也取决于组成以及V结构域的方向(VH-接头-VL或VL-接头-VH)。
用于生产多特异性或双特异性抗体的这些技术展现在低产量、必需纯化、低稳定性或技术的劳动密集性方面的各种困难。最近以来,称为“dock and lock”的技术已用于生产几乎任何期望的抗体、抗体片段和其它效应物分子的组合(参见例如美国专利号7,521,056;7,527,787;7,534,866;7,550,143;7,666,400;7,858,070;7,871,622;7,906,121;7,906,118;8,163,291;7,901,680;7,981,398;8,003,111和8,034,352,其各自的实施例部分通过引用并入本文)。所述技术利用被称为锚定结构域(AD)和二聚化和对接(docking)结构域(DDD)的互补蛋白结合结构域,所述结构域彼此结合,并且允许组装在二聚体、三聚体、四聚体、五聚体和六聚体范围内的复杂结构。这些结构以高产量形成稳定复合物而不要求大量纯化。DNL技术允许组装单特异性、双特异性或多特异性抗体。本领域中已知的用于制备双特异性或多特异性抗体的任何技术都可用于实施当前所要求保护的方法。
在各种实施方案中,如本文公开的缀合物可为复合多特异性抗体的一部分。这种抗体可含有两个或更多个具有不同特异性的不同抗原结合位点。多特异性复合物可结合同一抗原的不同表位,或者可结合两种不同抗原。
在优选实施方案中,二价或多价抗体形成为 复合物(参见例如美国专利号7,521,056;7,527,787;7,534,866;7,550,143;7,666,400;7,858,070;7,871,622;7,906,121;7,906,118;8,163,291;7,901,680;7,981,398;8,003,111和8,034,352,其各自的实施例部分通过引用并入本文)。通常,该技术利用发生在cAMP依赖性蛋白激酶(PKA)的调控(R)亚基的二聚化和对接结构域(DDD)序列与源于多种AKAP蛋白中的任一者的锚定结构域(AD)序列之间的特异性和高亲和力结合相互作用(Baillie等,FEBSLetters.2005;579:3264.Wong和Scott,Nat.Rev.Mol.Cell Biol.2004;5:959)。DDD和AD肽可连接于任何蛋白、肽或其它分子。因为DDD序列自发二聚化并结合AD序列,该技术允许在可连接于DDD或AD序列的任何所选分子之间形成复合物。
尽管标准复合物包含三聚体(其具有与一个AD连接的分子连接的两个DDD连接的分子),但在复合物结构方面的变化允许形成二聚体、三聚体、四聚体、五聚体、六聚体和其它多聚体。在一些实施方案中,复合物可包含两个或更多个结合相同抗原决定簇或结合两种或更多种不同抗原的抗体、抗体片段或融合蛋白。复合物也可包含一种或多种其它效应物,诸如蛋白、肽、免疫调节物、细胞因子、白介素、干扰素、结合蛋白、肽配体、载体蛋白、毒素、核糖核酸酶诸如豹蛙酶(onconase)、抑制性寡核苷酸诸如siRNA、抗原或异种抗原、聚合物诸如PEG、酶、治疗剂、激素、细胞毒性剂、抗血管生成剂、促凋亡剂或任何其它分子或聚集物。
在由第二信使cAMP结合R亚基触发的最充分研究的信号转导途径之一中起主要作用的PKA首先在1968年从兔骨骼肌分离(Walsh等,J.Biol.Chem.1968;243:3763)。全酶的结构由两个以非活性形式由R亚基保持的催化亚基组成(Taylor,J.Biol.Chem.1989;264:8443)。发现PKA的同工酶具有两种类型的R亚基(RI和RII),并且各类型具有α和β同种型(Scott,Pharmacol.Ther.1991;50:123)。因此,PKA调控亚基的四个同种型是RIα、RIβ、RIIα和RIIβ。R亚基已仅以稳定二聚体被分离,并且已显示二聚化结构域由RIIα的前44个氨基末端残基组成(Newlon等,Nat.Struct.Biol.1999;6:222)。如下文所讨论,其它调控亚基的氨基酸序列的相似部分参与二聚化和对接,各自位于调控亚基的N末端附近。cAMP结合R亚基导致释放用于达成广谱丝氨酸/苏氨酸激酶活性的活性催化亚基,所述亚基通过PKA的区室化朝向所选的底物,所述PKA的区室化是经由其与AKAPs的对接(Scott等,J.Biol.Chem.1990;265;21561)。
自从在1984年表征首个AKAP,即微管相关蛋白-2(Lohmann等,Proc.Natl.Acad.Sci USA.1984;81:6723)以来,已在酵母至人的范围内的物种中鉴定了超过50种定位于多种亚细胞部位(包括质膜、肌动蛋白细胞骨架、细胞核、线粒体和内质网)、具有不同结构的AKAP(Wong和Scott,Nat.Rev.Mol.Cell Biol.2004;5:959)。AKAPs的针对PKA的AD是具有14-18个残基的两亲性螺旋(Carr等,J.Biol.Chem.1991;266:14188)。AD的氨基酸序列在个体AKAPs之间十分不同,其中对RII二聚体报道的结合亲和力在2至90nM的范围内(Alto等,Proc.Natl.Acad.Sci.USA.2003;100:4445)。AKAPs将仅结合二聚R亚基。对于人RIIα,AD结合由23个氨基末端残基形成的疏水性表面(Colledge和Scott,Trends CellBiol.1999;6:216)。因此,人RIIα的二聚化结构域与AKAP结合结构域两者均位于在本文中称为DDD的同一N末端44个氨基酸的序列内(Newlon等,Nat.Struct.Biol.1999;6:222;Newlon等,EMBOJ.2001;20:1651)。
我们已开发用以利用人PKA调控亚基的DDD和AKAP的AD作为一对极好的接头模块来将下文称为A和B的任何两个实体对接成非共价复合物的平台技术,所述非共价复合物可通过将半胱氨酸残基引入DDD与AD两者中的策略位置处以促进形成二硫键来进一步锁定成复合物。所述方法的一般性方法学如下。通过使DDD序列连接于A的前体,产生下文称为a的第一组分来构建实体A。因为DDD序列将实现自发形成二聚体,所以A将因此由a2组成。通过使AD序列连接于B的前体,产生下文称为b的第二组分来构建实体B。a2中含有的DDD的二聚基序将产生用于结合b中含有的AD序列的对接位点,因此促进a2和b即时缔合以形成由a2b组成的二元三聚复合物。以用于通过二硫键来共价固定两个实体的随后反应使得这个结合事件不可逆,因为初始结合相互作用将使放置在DDD与AD两者上的反应性硫醇基团邻近(Chmura等,Proc.Natl.Acad.Sci.USA.2001;98:8480)以进行位点特异性连接,所以基于有效局部浓度的原理,所述反应极其高效地发生。使用接头、衔接子模块和前体的多种组合,可生产并使用多种具有不同化学计量的构建体(参见例如U.S.No.7,550,143;7,521,056;7,534,866;7,527,787和7,666,400)。
通过远离两个前体的官能团来连接DDD和AD,也预期这种位点特异性连接会保持两个前体的原始活性。这个方法在性质上是模块化的,并且潜在地可应用于位点特异性和共价连接多种具有大范围活性的物质,包括肽、蛋白、抗体、抗体片段和其它效应物部分。利用下文实施例中描述的构建AD和DDD缀合效应物的融合蛋白方法,可将几乎任何蛋白或肽掺入构建体中。然而,该技术不是限制性的,并且可利用其它缀合方法。
已知多种用于制备融合蛋白的方法,包括核酸合成、杂交和/或扩增以生产编码感兴趣的融合蛋白的合成双链核酸。可通过标准分子生物学技术将这种双链核酸插入表达载体中以生产融合蛋白(参见例如Sambrook等,Molecular Cloning,A laboratory manual,第2版,1989)。在这种优选实施方案中,AD和/或DDD部分可连接于效应物蛋白或肽的N末端或C末端。然而,技术人员将认识到取决于效应物部分和效应物部分中涉及它的生理活性的部分的化学性质,AD或DDD部分连接于所述效应物部分的位点可变化。可使用本领域中已知的技术,诸如使用二价交联试剂和/或其它化学缀合技术来进行多种效应物部分的位点特异性连接。
在各种实施方案中,抗体或抗体片段可通过例如使DDD或AD部分连接于抗体重链的C末端来掺入复合物中,如下文所详述。在更优选实施方案中,可使DDD或AD部分,更优选AD部分,连接于抗体轻链的C末端(参见例如2013年5月24日提交的美国专利申请序列号13/901,737,其实施例部分通过引用并入本文)。
对于不同类型的构建体,可利用不同的AD或DDD序列。以下提供示例性DDD和AD序列。
DDD1
SHIQIPPGLTELLQGYTVEVLRQQPPDLVEFAVEYFTRLREARA(SEQ ID NO:1)
DDD2
CGHIQIPPGLTELLQGYTVEVLRQQPPDLVEFAVEYFTRLREARA
(SEQ ID NO:2)
ADl
QIEYLAKQIVDNAIQQA(SEQ ID NO:3)
AD2
CGQIEYLAKQIVDNAIQQAGC(SEQ ID NO:4)
技术人员将认识到DDD1和DDD2是基于蛋白激酶A的人RIIα同种型的DDD序列。然而,在替代性实施方案中,DDD和AD部分可基于蛋白激酶A的人RIα形式的DDD序列和相应AKAP序列,如以下以DDD3、DDD3C和AD3所例示。
DDD3
SLRECELYVQKHNIQALLKDSIVQLCTARPERPMAFLREYFERLEKEEAK(SEQ ID NO:5)
DDD3C
MSCGGSLRECELYVQKHNIQALLKD SIVQLCTARPERPMAFLREYFERLEKEEAK(SEQ ID NO:6)
AD3
CGFEELAWKIAKMIWSDVFQQGC(SEQ ID NO:7)
在其它替代性实施方案中,AD和/或DDD部分的其它序列变体可用于构建复合物。例如,仅存在人PKA DDD序列的四个变体,对应于PKA RIα、RIIα、RI β和RII β的DDD部分。RIIα DDD序列是以上公开的DDD1和DDD2的基础。以下显示四个人PKA DDD序列。DDD序列代表以下残基:RIIα的1-44、RIIβ的1-44、RIα的12-61和RI β的13-66。(注意DDD 1的序列从人PKA RIIα DDD部分略微修改)。
PKA RIα
SLRECELYVQKHNIQALLKDVSIVQLCTARPERPMAFLREYFEKLEKEEAK(SEQ ID NO:8)
PKA RIβ
SLKGCELYVQLHGIQQVLKDCIVHLCISKPERPMKFLREHFEKLEKEENRQILA(SEQ ID NO:9)
PKA RIIα
SHIQIPPGLTELLQGYTVEVGQQPPDLVDFAVEYFTRLREARRQ
(SEQ ID NO:10)
PKA RIIβ
SIEIPAGLTELLQGFTVEVLRHQPADLLEFALQHFTRLQQENER(SEQ ID NO:11)
AD和DDD结构域的结构-功能关系已成为探究主题。(参见例如Burns-Hamuro等,2005,Protein Sci 14:2982-92;Carr等,2001,J Biol Chem 276:17332-38;Alto等,2003,Proc Natl A cad Sci USA 100:4445-50;HundsruCker等,2006,Biochem J 396:297-306;Stokka等,2006,Biochem J 400:493-99;Gold等,2006,Mol Cell 24:383-95;Kinderman等,2006,Mol Cell 24:397-408,其各自的整个文本通过引用并入本文)。
抗体同种异型
治疗性抗体的免疫原性与输注反应风险增加以及治疗反应的持续时间减少相关联(Baert等,2003,N Engl J Med 348:602-08)。治疗性抗体在宿主中诱导免疫反应的程度可部分地由抗体的同种异型决定(Stickler等,2011,Genes and Immunity 12:213-21)。抗体同种异型与抗体的恒定区序列中特定位置处的氨基酸序列变化相关。IgG抗体的含有重链γ型恒定区的同种异型被指定为Gm同种异型(1976,J Immunol 117:1056-59)。
对于常见的IgG1人抗体,最普遍的同种异型是G1m1(Stickler等,2011,Genes andImmunity 12:213-21)。然而,G1m3同种异型也经常存在于白种人中(同上)。已报道G1m1抗体含有在向非G1m1(nG1m1)接受者诸如G1m3患者施用时倾向于诱导免疫反应的同种异型序列(同前)。非G1m1同种异型抗体在向G1m1患者施用时并非同样具有免疫原性(同上)。
人G1m1同种异型在重链IgG1的CH3序列中包含以下氨基酸:在Kabat位置356处的天冬氨酸和在Kabat位置358处的亮氨酸。nG1m1同种异型包含以下氨基酸:在Kabat位置356处的谷氨酸和在Kabat位置358处的甲硫氨酸。G1m1同种异型与nG1m1同种异型两者均在Kabat位置357处包含谷氨酸残基,并且同种异型有时被称为DEL和EEM同种异型。对于示例性抗体利妥昔单抗(SEQ ID NO:12)和维妥珠单抗(SEQ ID NO:13)显示G1m1和nG1m1同种异型抗体的重链恒定区序列的一个非限制性实例。
利妥昔单抗重链可变区序列(SEQ ID NO:12)
维妥珠单抗重链可变区(SEQ ID NO:13)
Jefferis和Lefranc(2009,mAbs1:1-7)综述了IgG同种异型所特有的序列变化以及它们对免疫原性的影响。他们报道G1m3同种异型的特征在于相较于G1m17同种异型中在Kabat 214处的赖氨酸残基,在Kabat位置214处的精氨酸残基。nG1m1,2同种异型的特征在于在Kabat位置356处的谷氨酸、在Kabat位置358处的甲硫氨酸和在Kabat位置431处的丙氨酸。G1m1,2同种异型的特征在于在Kabat位置356处的天冬氨酸、在Kabat位置358处的亮氨酸和在Kabat位置431处的甘氨酸。除重链恒定区序列变体之外,Jefferis和Lefranc(2009)报道了κ轻链恒定区中的同种异型变体,其中Km1同种异型的特征在于在Kabat位置153处的缬氨酸和在Kabat位置191处的亮氨酸,Km1,2同种异型的特征在于在Kabat位置153处的丙氨酸和在Kabat位置191处的亮氨酸,并且Km3同种异型的特征在于在Kabat位置153处的丙氨酸和在Kabat位置191处的缬氨酸。
关于治疗性抗体,维妥珠单抗和利妥昔单抗分别是针对CD20的人源化和嵌合IgG1抗体,其可用于多种血液系统恶性肿瘤的治疗。表3比较利妥昔单抗与维妥珠单抗的同种异型序列。如表3中所示,利妥昔单抗(G1m17,1)是一种DEL同种异型IgG1,与维妥珠单抗中的精氨酸相比,在利妥昔单抗中在Kabat位置214(重链CH1)处具有额外赖氨酸序列变化。已报道维妥珠单抗在受试者中的免疫原性低于利妥昔单抗(参见例如Morchhauser等,2009,JClin Oncol 27:3346-53;Goldenberg等,2009,Blood 113:1062-70;Robak和Robak,2011,BioDrugs 25:13-25),这是一种已归因于人源化抗体与嵌合抗体之间的差异的效应。然而,EEM同种异型与DEL同种异型之间的同种异型差异可能也解释维妥珠单抗的较低免疫原性。
表3.利妥昔单抗与维妥珠单抗的同种异型
为降低治疗性抗体在nG1m1基因型个体中的免疫原性,理想的是选择抗体的同种异型以对应于特征在于在Kabat 214处的精氨酸的G1m3同种异型和特征在于具有在Kabat位置356处的谷氨酸、在Kabat位置358处的甲硫氨酸和在Kabat位置431处的丙氨酸的nG1m1,2无效同种异型(null-allotype)。惊人的是发现在长时间段中重复皮下施用G1m3抗体不导致显著免疫反应。在替代性实施方案中,人IgG4重链与G1m3同种异型同样具有在Kabat 214处的精氨酸、在Kabat 356处的谷氨酸、在Kabat 359处的甲硫氨酸和在Kabat431处的丙氨酸。因为免疫原性似乎至少部分地与在那些位置处的残基相关,所以将人IgG4重链恒定区序列用于治疗性抗体也是一种优选实施方案。G1m3 IgG1抗体与IgG4抗体的组合也可用于治疗性施用。
氨基酸取代
在替代性实施方案中,公开的方法和组合物可涉及生产和使用具有一个或多个取代的氨基酸残基的蛋白或肽。技术人员将了解,一般来说,氨基酸取代通常涉及用具有相对相似性质的另一氨基酸替换某一氨基酸(即保守性氨基酸取代)。各种氨基酸的性质以及氨基酸取代对蛋白结构和功能的影响已成为广泛研究的主题和本领域中的知识。
例如,可考虑氨基酸的亲水性指数(hydropathic index)(Kyte和Doolittle,1982,J.Mol.Biol.,157:105-132)。氨基酸的相对亲水性特征促成所得蛋白的二级结构,其继而限定蛋白与其它分子的相互作用。每种氨基酸已基于它的疏水性和电荷特征被指定亲水性指数(Kyte和Doolittle,1982),这些是:异亮氨酸(+4.5);缬氨酸(+4.2);亮氨酸(+3.8);苯丙氨酸(+2.8);半胱氨酸/胱氨酸(+2.5);甲硫氨酸(+1.9);丙氨酸(+1.8);甘氨酸(-0.4);苏氨酸(-0.7);丝氨酸(-0.8);色氨酸(-0.9);酪氨酸(-1.3);脯氨酸(-1.6);组氨酸(-3.2);谷氨酸(-3.5);谷氨酰胺(-3.5);天冬氨酸(-3.5);天冬酰胺(-3.5);赖氨酸(-3.9);和精氨酸(-4.5)。在进行保守性取代时,使用亲水性指数在±2内的氨基酸是优选的,在±1内是更优选的,并且在±0.5内是甚至更优选的。
氨基酸取代也可考虑氨基酸残基的亲水性(例如美国专利号4,554,101)。已对氨基酸残基指定亲水性值:精氨酸(+3.0);赖氨酸(+3.0);天冬氨酸(+3.0);谷氨酸(+3.0);丝氨酸(+0.3);天冬酰胺(+0.2);谷氨酰胺(+0.2);甘氨酸(0);苏氨酸(-0.4);脯氨酸(-0.5.+-.1);丙氨酸(-0.5);组氨酸(-0.5);半胱氨酸(-1.0);甲硫氨酸(-1.3);缬氨酸(-1.5);亮氨酸(-1.8);异亮氨酸(-1.8);酪氨酸(-2.3);苯丙氨酸(-2.5);色氨酸(-3.4)。用具有相似亲水性的其它氨基酸替换氨基酸是优选的。
其它考虑事项包括氨基酸侧链的大小。例如,用具有大体积侧链的氨基酸(例如色氨酸或酪氨酸)替换具有紧凑侧链的氨基酸(诸如甘氨酸或丝氨酸)通常不是优选的。各种氨基酸残基对蛋白二级结构的影响也是一个考虑事项。通过经验研究,不同氨基酸残基对蛋白结构域采用α螺旋、β折叠或回折二级结构的倾向的影响已被确定,并且在本领域中是已知的(参见例如Chou和Fasman,1974,Biochemistry,13:222-245;1978,Ann.Rev.Biochem.,47:251-276;1979,Biophys.J.,26:367-384)。
基于所述考虑事项和广泛经验研究,保守性氨基酸取代表已被构建,并且在本领域中是已知的。例如:精氨酸和赖氨酸;谷氨酸和天冬氨酸;丝氨酸和苏氨酸;谷氨酰胺和天冬酰胺;以及缬氨酸、亮氨酸和异亮氨酸。或者:Ala(A)leu、ile、val;Arg(R)gln、asn、lys;Asn(N)his、asp、lys、arg、gln;Asp(D)asn、glu;Cys(C)ala、ser;Gln(Q)glu、asn;Glu(E)gln、asp;Gly(G)ala;His(H)asn、gln、lys、arg;Ile(I)val、met、ala、phe、leu;Leu(L)val、met、ala、phe、ile;Lys(K)gln、asn、arg;Met(M)phe、ile、leu;Phe(F)leu、val、ile、ala、tyr;Pro(P)ala;Ser(S)、thr;Thr(T)ser;Trp(W)phe、tyr;Tyr(Y)trp、phe、thr、ser;Val(V)ile、leu、met、phe、ala。
关于氨基酸取代的其它考虑事项包括残基是位于蛋白的内部中或是暴露于溶剂的。对于内部残基,保守性取代将包括:Asp和Asn;Ser和Thr;Ser和Ala;Thr和Ala;Ala和Gly;Ile和Val;Val和Leu;Leu和Ile;Leu和Met;Phe和Tyr;Tyr和Trp(参见例如在rockefeller.edu的PROWL网站)。对于暴露于溶剂的残基,保守性取代将包括:Asp和Asn;Asp和Glu;Glu和Gln;Glu和Ala;Gly和Asn;Ala和Pro;Ala和Gly;Ala和Ser;Ala和Lys;Ser和Thr;Lys和Arg;Val和Leu;Leu和Ile;Ile和Val;Phe和Tyr。(同上)。已构建各种矩阵来辅助选择氨基酸取代,诸如PAM250评分矩阵、Dayhoff矩阵、Grantham矩阵、McLachlan矩阵、Doolittle矩阵、Henikoff矩阵、Miyata矩阵、Fitch矩阵、Jones矩阵、Rao矩阵、Levin矩阵和Risler矩阵(同上)。
在确定氨基酸取代时,也可考虑分子间或分子内键的存在,诸如在带正电荷残基(例如His、Arg、Lys)与带负电荷残基(例如Asp、Glu)之间形成离子键(盐桥)或在邻近半胱氨酸残基之间形成二硫键。
用任何氨基酸取代编码的蛋白序列中的任何其它氨基酸的方法对于技术人员是公知的,并且是常规实验事项,例如通过位点定向诱变技术或通过合成和组装编码氨基酸取代的寡核苷酸以及剪接至表达载体构建体中。
抗体-药物缀合物
在某些实施方案中,可使细胞毒性药物或其它治疗剂或诊断剂共价连接于抗体或抗体片段以形成ADC。在一些实施方案中,药物或其它试剂可通过载体部分连接于抗体或其片段。载体部分可连接于例如还原的SH基团和/或连接于碳水化合物侧链。载体部分可通过形成二硫键而连接在还原的抗体组分的铰链区处。或者,可使用异双官能交联剂,诸如N-琥珀酰3-(2-吡啶基二硫代)丙酸酯(SPDP)来连接这种试剂。Yu等,Int.J.Cancer 56:244(1994)。用于这种缀合的一般技术是本领域中公知的。参见例如Wong,CHEMISTRY OFPROTEIN CONJUGATION AND CROSS-LINKING(CRC Press 1991);Upeslacis等,“Modification of Antibodies by Chemical Methods,”MONOCLONAL ANTIBODIES:PRINCIPLES AND APPLICATIONS,Birch等(编),第187-230页(Wiley-Liss,Inc.1995);Price,“Production and Characterization of Synthetic Peptide-DerivedAntibodies,”MONOCLONAL ANTIBODIES:PRODUCTION,ENGINEERING AND CLINICALAPPLICATION,Ritter等(编),第60-84页(Cambridge University Press 1995)。或者,载体部分可通过抗体的Fc区中的碳水化合物部分缀合。
用于通过抗体碳水化合物部分使官能团缀合于抗体的方法是本领域技术人员公知的。参见例如Shih等,Int.J.Cancer 41:832(1988);Shih等,Int.J.Cancer 46:1101(1990);以及Shih等,美国专利号5,057,313,其实施例部分通过引用并入本文。一般方法涉及使具有氧化的碳水化合物部分的抗体与具有至少一个游离胺官能的载体聚合物反应。这个反应产生初始席夫碱(Schiff base)(亚胺)连接,其可通过还原成仲胺以形成最终缀合物而加以稳定。
如果ADC的抗体组分是抗体片段,那么Fc区可不存在。然而,有可能将碳水化合物部分引入全长抗体或抗体片段的轻链可变区中。参见例如Leung等,J.Immunol.154:5919(1995);美国专利号5,443,953和6,254,868,其实施例部分通过引用并入本文。工程化的碳水化合物部分用于连接治疗剂或诊断剂。
一种用于使载体部分连接于靶向分子的替代性方法涉及使用点击化学反应。点击化学方法最初被设想为一种通过以模块化方式将小亚基接合在一起来快速产生复杂物质的方法(参见例如Kolb等,2004,Angew Chem Int Ed 40:3004-31;Evans,2007,Aust JChem 60:384-95)。多种形式的点击化学反应在本领域中是已知的,诸如Huisgenl,3-偶极环化加成铜催化反应(Tornoe等,2002,J Organic Chem 67:3057-64),其常被称为“点击反应”。其它替代方案包括环化加成反应(诸如Diels-Alder)、亲核取代反应(尤其针对小张力环,如环氧和氮丙啶化合物)、脲化合物的羰基化学形成以及涉及碳-碳双键的反应,诸如硫醇-炔反应中的炔。
叠氮化物炔Huisgen环化加成反应在还原剂存在下使用铜催化剂来催化连接于第一分子的末端炔基团的反应。在包含叠氮化物部分的第二分子存在下,叠氮化物与活化的炔反应以形成1,4-二取代的1,2,3-三唑。铜催化的反应在室温下发生,并且具有足够特异性,以致常常不需要对反应产物进行纯化。(Rostovstev等,2002,Angew Chem Int Ed 41:2596;Tornoe等,2002,J Org Chem 67:3057。)叠氮化物和炔官能团在水性介质中对于生物分子主要是惰性的,从而允许反应在复杂溶液中发生。形成的三唑在化学方面是稳定的,并且不经受酶促裂解,从而使得点击化学产物在生物系统中高度稳定。尽管铜催化剂对活细胞有毒,但基于铜的点击化学反应可在体外用于ADC形成。
已提出用于共价修饰生物分子的无铜点击反应。(参见例如Agard等,2004,J AmChem Soc 126:15046-47。)无铜反应使用环张力而非铜催化剂来促进[3+2]叠氮化物-炔环化加成反应(同上)。举例来说,环辛炔是包含内部炔键的8碳环结构。闭环结构诱导与叠氮化物基团具有高度反应性以形成三唑的乙炔的实质性键角变形。因此,环辛炔衍生物可用于无铜点击反应(同上)。
另一类型的无铜点击反应由Ning等(2010,Angew Chem Int Ed 49:3065-68)报道,涉及张力促进的炔-硝酮环化加成。为解决原始环辛炔反应的缓慢速度,邻近于三键连接吸电子基团(同上)。这种取代的环辛炔的实例包括二氟化环辛炔、4-二苯并环辛炔醇和氮杂环辛炔(同上)。一种替代性无铜反应涉及张力促进的炔-硝酮环化加成以产生N-烷基化异噁唑啉(同上)。反应据报道具有格外快速的反应动力学,并且在一锅三步方案中用于对肽和蛋白进行位点特异性修饰(同上)。通过缩合适当醛与N-甲基羟胺来制备硝酮,并且环化加成反应在乙腈和水的混合物中发生(同上)。这些和其它已知点击化学反应可用于在体外使载体部分连接于抗体。
Agard等(2004,J Am Chem Soc 126:15046-47)证明在过乙酰化N-叠氮基乙酰基甘露糖胺存在下在CHO细胞中表达重组糖蛋白导致相应N-叠氮基乙酰基唾液酸生物掺入糖蛋白的碳水化合物中。叠氮基衍生的糖蛋白与生物素化环辛炔特异性反应以形成生物素化糖蛋白,而无叠氮基部分的对照糖蛋白保持未被标记(同上)。Laughlin等(2008,Science320:664-667)使用相似技术在用过乙酰化N-叠氮基乙酰基半乳糖胺温育的斑马鱼胚胎中代谢标记细胞表面聚糖。叠氮基衍生的聚糖与二氟化环辛炔(DIFO)试剂反应以允许在体内显现聚糖。
Diels-Alder反应也已用于在体内对分子进行标记。Rossin等(2010,Angew ChemInt Ed 49:3375-78)报道携带反式环辛烯(TCO)反应性部分的定位于肿瘤的抗TAG72(CC49)抗体与111In标记的四嗪DOTA衍生物之间的52%体内产率。向携带结肠癌异种移植物的小鼠施用TCO标记的CC49抗体,接着在1天后注射111In标记的四嗪探针(同上)。放射性标记的探针与定位于肿瘤的抗体的反应导致显著放射性定位在肿瘤中,如通过在注射放射性标记的探针之后3小时对活小鼠的SPECT成像所证明,其中肿瘤与肌肉比率是13∶1(同上)。结果确认TCO和四嗪标记的分子的体内化学反应。
点击化学反应的改进形式适于在体外或在体内使用。可通过化学缀合或通过生物掺入来形成反应性靶向分子。可用叠氮基部分、取代的环辛炔或炔基团、或硝酮部分活化靶向分子,诸如抗体或抗体片段。当靶向分子包含叠氮基或硝酮基团时,相应可靶向构建体将包含取代的环辛炔或炔基团,并且反之亦然。如上文所讨论,可通过在活细胞中进行代谢掺入来制备该活化分子。
或者,使这种部分化学缀合于生物分子的方法是本领域公知的,并且可利用任何已知方法。ADC形成的一般方法例如公开于美国专利号4,699,784;4,824,659;5,525,338;5,677,427;5,697,902;5,716,595;6,071,490;6,187,284;6,306,393;6,548,275;6,653,104;6,962,702;7,033,572;7,147,856;和7,259,240中,这些专利各自的实施例部分通过引用并入本文。
优选缀合方案基于在中性或酸性pH下易于进行的硫醇-马来酰亚胺、硫醇-乙烯基砜、硫醇-溴乙酰胺或硫醇-碘乙酰胺反应。这避免对较高pH缀合条件的需要,所述条件例如在使用活性酯时是必需的。示例性缀合方案的其它细节在下文描述于实施例部分中。
治疗性治疗
另一方面,本发明涉及一种治疗受试者的方法,其包括给受试者施用治疗有效量的如本文描述的抗体-药物缀合物(ADC)和ABCG2抑制剂。可用ADCs和ABCG2抑制剂治疗的疾病包括但不限于B细胞恶性肿瘤(例如非霍奇金氏淋巴瘤、套细胞淋巴瘤、多发性骨髓瘤、霍奇金氏淋巴瘤、弥漫性大B细胞淋巴瘤、伯基特淋巴瘤、滤泡性淋巴瘤、急性淋巴细胞性白血病、慢性淋巴细胞性白血病、毛细胞白血病),所述治疗使用例如抗CD22抗体诸如hLL2 MAb(依帕珠单抗,参见美国专利号6,183,744)、针对另一CD22表位(hRFB4)的抗CD22抗体,或针对其它B细胞抗原诸如CD19、CD20、CD21、CD22、CD23、CD37、CD40、CD40L、CD52、CD74、CD80或HLA-DR的抗体。其它疾病包括但不限于源于内胚层的消化系统上皮的腺癌、癌诸如乳腺癌和非小细胞肺癌、以及其它癌、肉瘤、神经胶质瘤、髓细胞性白血病等。具体地,有利地使用针对由恶性实体瘤或造血肿瘤产生或与其相关的抗原例如癌胚抗原的抗体,所述恶性实体瘤或造血肿瘤例如胃肠肿瘤、胃肿瘤、结肠肿瘤、食道肿瘤、肝肿瘤、肺肿瘤、乳腺肿瘤、胰腺肿瘤、肝肿瘤、前列腺肿瘤、卵巢肿瘤、睾丸肿瘤、脑肿瘤、骨肿瘤或淋巴肿瘤、肉瘤或黑素瘤。取决于疾状况态和缀合物的耐受性,所述治疗剂可一次或重复给予,并且也可任选与其它治疗形式诸如手术、外部放射、放射免疫治疗、免疫治疗、化学治疗、反义治疗、干扰RNA治疗、基因治疗等组合使用。各组合将适合于肿瘤类型、阶段、患者状况和先前治疗以及由管理医师所考虑的其它因素。
如本文所用,术语“受试者”是指包括但不限于哺乳动物(包括人)的任何动物(即脊椎动物和无脊椎动物)。所述术语不意欲限于特定年龄或性别。因此,成年和新生受试者以及胎儿无论雄性或雌性都由所述术语涵盖。本文给出的剂量是针对人,但可根据重量或平方米尺寸,针对其它哺乳动物的大小以及儿童加以调整。
在一个优选实施方案中,包含抗Trop-2抗体诸如hRS7 MAb的ADC可用于治疗癌,诸如食道癌、胰腺癌、肺癌、胃癌、结肠癌和直肠癌、膀胱癌、乳腺癌、卵巢癌、子宫癌、肾癌和前列腺癌,如美国专利号7,238,785;7,517,964和8,084,583中所公开,所述美国专利的实施例部分通过引用并入本文。hRS7抗体是包含轻链互补决定区(CDR)序列CDR1(KASQDVSIAVA,SEQ ID NO:14);CDR2(SASYRYT,SEQ ID NO:15);和CDR3(QQHYITPLT,SEQ ID NO:16)以及重链CDR序列CDR1(NYGMN,SEQ ID NO:17);CDR2(WINTYTGEPTYTDDFKG,SEQ ID NO:18)和CDR3(GGFGSSYWYFDV,SEQ ID NO:19)的人源化抗体。
在另一优选实施方案中,包含抗CEACAM5抗体(例如hMN-14,拉贝珠单抗)和/或抗CEACAM6抗体的ADC可用于治疗表达CEACAM5和/或CEACAM6的多种癌中的任一者,如美国专利号7,541,440;7,951,369;5,874,540;6,676,924和8,267,865中所公开,所述美国专利各自的实施例部分通过引用并入本文。可使用抗CEACAM5、抗CEACAM6或两者的组合治疗的实体瘤包括但不限于乳腺癌、肺癌、胰腺癌、食道癌、甲状腺髓样癌、卵巢癌、结肠癌、直肠癌、膀胱癌、口腔癌和胃癌。包括胃肠癌、呼吸道癌、泌尿生殖器癌和乳腺癌的大多数癌表达CEACAM5,并且可用主题ADCs治疗。hMN-14抗体是包含轻链可变区CDR序列CDR1(KASQDVGTSVA;SEQ ID NO:20)、CDR2(WTSTRHT;SEQ ID NO:21)和CDR3(QQYSLYRS;SEQ IDNO:22)以及重链可变区CDR序列CDR1(TYWMS;SEQ ID NO:23)、CDR2(EIHPDSSTINYAPSLKD;SEQ ID NO:24)和CDR3(LYFGFPWFAY;SEQ ID NO:25)的人源化抗体。
在另一优选实施方案中,包含抗CD22抗体(例如hLL2,即依帕珠单抗,公开于美国专利号5,789,554;6,183,744;6,187,287;6,306,393;7,074,403和7,641,901中,所述美国专利各自的实施例部分通过引用并入本文,或嵌合或人源化RFB4抗体)的ADC可用于治疗表达CD22的多种癌中的任一者,所述多种癌包括但不限于惰性(indolent)形式的B细胞淋巴瘤、侵袭形式的B细胞淋巴瘤、慢性淋巴细胞性白血病、急性淋巴细胞性白血病、非霍奇金氏淋巴瘤、霍奇金氏淋巴瘤、伯基特淋巴瘤、滤泡性淋巴瘤或弥漫性B细胞淋巴瘤。hLL2抗体是包含轻链CDR序列CDR1(KSSQSVLYSANHKYLA,SEQ ID NO:26)、CDR2(WASTRES,SEQ ID NO:27)和CDR3 CDR3(HQYLSSWTF,SEQ ID NO:28)以及重链CDR序列CDR1(SYWLH,SEQ ID NO:29)、CDR2(YINPRNDYTEYNQNFKD,SEQ ID NO:30)和CDR3(RDITTFY,SEQ ID NO:31)的人源化抗体。
在另一优选实施方案中,包含抗HLA-DR MAb诸如hL243的ADC可用于治疗淋巴瘤、白血病、皮肤癌、食道癌、胃癌、结肠癌、直肠癌、胰腺癌、肺癌、乳腺癌、卵巢癌、膀胱癌、子宫内膜癌、宫颈癌、睾丸癌、肾癌、肝癌、黑素瘤或其它产生HLA-DR的肿瘤,如美国专利号7,612,180中所公开,所述美国专利的实施例部分通过引用并入本文。hL243抗体是包含重链CDR序列CDR1(NYGMN,SEQ ID NO:32)、CDR2(WINTYTREPTYADDFKG,SEQ ID NO:33)和CDR3(DITAVVPTGFDY,SEQ ID NO:34)以及轻链CDR序列CDR1(RASENIYSNLA,SEQ ID NO:35)、CDR2(AASNLAD,SEQ ID NO:36)和CDR3(QHFWTTPWA,SEQ ID NO:37)的人源化抗体。
在另一优选实施方案中,包含抗CD74抗体(例如hLL1,即米拉珠单抗,公开于美国专利号7,074,403;7,312,318;7,772,373;7,919,087和7,931,903中,所述美国专利各自的实施例部分通过引用并入本文)的ADC可用于治疗表达CD74的多种癌中的任一者,所述多种癌包括但不限于肾癌、肺癌、肠癌、胃癌、乳腺癌、前列腺癌或卵巢癌,以及若干血液系统癌,诸如多发性骨髓瘤、慢性淋巴细胞性白血病、急性成淋巴细胞白血病、非霍奇金淋巴瘤和霍奇金淋巴瘤。hLL1抗体是包含轻链CDR序列CDR1(RSSQSL VHRNGNTYLH;SEQ ID NO:38)、CDR2(TVSNRFS;SEQ ID NO:39)和CDR3(SQSSHVPPT;SEQ ID NO:40)以及重链可变区CDR序列CDR1(NYGVN;SEQ ID NO:41)、CDR2(WINPNTGEPTFDDDFKG;SEQ ID NO:42)和CDR3(SRGKNEAWFAY;SEQ ID NO:43)的人源化抗体。
在另一优选实施方案中,包含抗CD20MAb诸如维妥珠单抗(hA20)、1F5、奥滨尤妥珠单抗(GA101)或利妥昔单抗的治疗性缀合物可用于治疗淋巴瘤、白血病、免疫血小板减少性紫癜、系统性红斑狼疮、干燥综合征、埃文斯综合征(Evans syndrome)、关节炎、动脉炎、寻常天疱疮、肾移植物排斥、心脏移植物排斥、类风湿性关节炎、伯基特淋巴瘤、非霍奇金氏淋巴瘤、滤泡性淋巴瘤、小淋巴细胞性淋巴瘤、弥漫性B细胞淋巴瘤、边缘区淋巴瘤、慢性淋巴细胞性白血病、急性淋巴细胞性白血病、I型糖尿病、GVHD、多发性硬化症或多发性骨髓瘤,如美国专利号7,435,803或8,287,864中所公开,所述美国专利各自的实施例部分通过引用并入本文。hA20(维妥珠单抗)抗体是包含轻链CDR序列CDRL1(RASSSVSYIH,SEQ ID NO:44)、CDRL2(ATSNLAS,SEQ ID NO:45)和CDRL3(QQWTSNPPT,SEQ ID NO:46)以及重链CDR序列CDRH1(SYNMH,SEQ ID NO:47)、CDRH2(AIYPGNGDTSYNQKFKG,SEQ ID NO:48)和CDRH3(STYYGGDWYFDV,SEQ ID NO:49)的人源化抗体。
在另一优选实施方案中,包含抗MUC-5ac抗体,诸如hPAM4抗体的治疗性缀合物可用于治疗表达MUC-5ac的肿瘤,诸如胰腺癌和结肠直肠癌。hPAM4是包含轻链可变区互补决定区(CDR)序列CDR1(SASSSVSSSYLY,SEQ ID NO:50);CDR2(STSNLAS,SEQ ID NO:51);和CDR3(HQWNRYPYT,SEQ ID NO:52));以及重链CDR序列CDR1(SYVLH,SEQ ID NO:53);CDR2(YINPYNDGTQYNEKFKG,SEQ ID NO:54)和CDR3(GFGGSYGFAY,SEQ ID NO:55)的人源化抗体。
在一个优选实施方案中,尽管可使用鼠和嵌合形式的抗体,但用于治疗人疾病的抗体是人或人源化(CDR移植的)形式的抗体。相同物种IgG分子作为递送剂最优选使免疫反应最小化。这在考虑重复治疗时特别重要。对于人,人或人源化IgG抗体产生来自患者的抗IgG免疫反应的可能性较小。诸如hLL1和hLL2的抗体在结合靶细胞上的内化抗原之后快速内化,此意味着所携带的化学治疗药物也快速内化至细胞中。然而,具有较慢内化速度的抗体也可用于实现选择性治疗。
在一个优选实施方案中,可以通过使用多价、多特异性或多价、单特异性抗体实现更有效掺入细胞。这种二价和双特异性抗体的实例见于美国专利号7,387,772;7,300,655;7,238,785;及7,282,567中,上述各专利的实施例部分通过引用并入本文。这些多价或多特异性抗体在以下癌的靶向中特别优选:所述癌表达多种抗原靶和甚至同一抗原靶的多种表位,但通常逃避用于免疫治疗的抗体靶向和充分结合,因为细胞上单个抗原靶的表达或可获得性不足。通过靶向多种抗原或表位,所述抗体显示在靶上的更高的结合和停留时间,从而提供与本发明中被靶向的药物更高的饱和。
在另一优选实施方案中,ADCs可用于治疗自身免疫疾病或免疫系统功能异常(例如移植物抗宿主疾病、器官移植物排斥)。可用于治疗自身免疫/免疫功能异常疾病的抗体可结合包括但不限于以下的示例性抗原:BCL-1、BCL-2、BCL-6、CD1a、CD2、CD3、CD4、CD5、CD7、CD8、CD 10、CD11b、CD11c、CD 13、CD 14、CD15、CD16、CD19、CD20、CD21、CD22、CD23、CD25、CD33、CD34、CD38、CD40、CD40L、CD41a、CD43、CD45、CD55、CD56、CCD57、CD59、CD64、CD71、CD74、CD79a、CD79b、CDl17、CD138、FMC-7和HLA-DR。结合这些和上文讨论的其它靶抗原的抗体可用于治疗自身免疫或免疫功能异常疾病。可用ADCs治疗的自身免疫疾病可包括急性特发性血小板减少性紫癜、慢性特发性血小板减少性紫癜、皮肌炎、西登哈姆氏舞蹈病、重症肌无力、重症肌无力、系统性红斑狼疮、狼疮肾炎、风湿热、多腺综合征、大疱性类天疱疮、糖尿病、Henoch-Schonlein紫癜、链球菌感染后肾炎、结节性红斑、高安动脉炎(Takayasu′s arteritis)、ANCA相关的血管炎、阿狄森氏病(Addison′s disease)、类风湿性关节炎、多发性硬化症、结节病、溃疡性结肠炎、多形性红斑、IgA肾病、结节性多动脉炎、强直性脊柱炎、古德帕斯彻氏综合征(Goodpasture′s syndrome)、血栓闭塞性脉管炎、干燥综合征、原发性胆汁性硬化、桥本氏甲状腺炎、甲状腺毒症、硬皮病、慢性活动性肝炎、多肌炎/皮肌炎、多软骨炎、大疱性类天疱疮、寻常天疱疮、韦格纳氏肉芽肿(Wegener′sgranulomatosis)、膜性肾病、肌萎缩性侧索硬化、脊髓痨、巨细胞动脉炎/多肌痛、恶性贫血、快速进行性肾小球性肾炎、牛皮癣或纤维性肺泡炎
在多种实施方案中,抗Trop-2 ADC和ABCG2抑制剂可以与一种或多种化学治疗药物进一步组合使用,所述药物诸如长春花生物碱、蒽环类药物、表鬼臼毒素、紫杉烷、抗代谢药、酪氨酸激酶抑制剂、烷基化剂、抗生素、Cox-2抑制剂、抗有丝分裂剂、抗血管生成剂和促凋亡剂,特别是阿霉素、甲氨蝶呤(methotrexate)、紫杉醇、其它喜树碱以及来自这些和其它抗癌剂类别的其它药物等。其它癌化学治疗药物包括氮芥、烷基磺酸酯、亚硝基脲、三氮烯、叶酸类似物、嘧啶类似物、嘌呤类似物、铂配位络合物、激素等。合适的化学治疗剂描述于REMINGTON′S PHARMACEUTICAL SCIENCES,第19版(Mack Publishing Co.1995)和GOODMAN AND GILMAN′S THE PHARMACOLOGICAL BASIS OF THERAPEUTICS,第7版(MacMillan Publishing Co.1985)以及这些出版物的修订版中。其它合适的化学治疗剂,诸如实验药物是本领域技术人员已知的。
有用的示例性药物包括但不限于5-氟尿嘧啶、阿法替尼(afatinib)、aplidin、阿扎立平(azaribine)、阿那曲唑(anastrozole)、蒽环类药物(anthracyclines)、阿西替尼(axitinib)、AVL-101、AVL-291、苯达莫司汀(bendamustine)、博莱霉素(bleomycin)、硼替佐米(bortezomib)、博舒替尼(bosutinib)、苔藓抑素-1(bryostatin-1)、白消安(busulfan)、刺孢霉素(calicheamycin)、喜树碱、卡铂(carboplatin)、10-羟基喜树碱、卡莫司汀(carmustine)、西乐葆(celebrex)、苯丁酸氮芥(chlorambucil)、顺铂(cisplatin)(CDDP)、Cox-2抑制剂、伊立替康(CPT-11)、SN-38、卡铂(carboplatin)、克拉屈滨(cladribine)、坎托替康(camptothecan)、克唑替尼(crizotinib)、环磷酰胺(cyclophosphamide)、阿糖胞苷(cytarabine)、达卡巴嗪(dacarbazine)、达沙替尼(dasatinib)、迪那昔利布(dinaciclib)、多西他赛(docetaxel)、更生霉素(dactinomycin)、柔红霉素(daunorubicin)、阿霉素、2-吡咯啉并阿霉素(2P-DOX)、氰基-吗啉代阿霉素、葡糖苷酸阿霉素(doxorubicin glucuronide)、葡糖苷酸表柔比星(epirubicin glucuronide)、埃罗替尼(erlotinib)、雌氮芥(estramustine)、表鬼臼毒素(epidophyllotoxin)、埃罗替尼、恩替司他(entinostat)、雌激素受体结合剂、依托泊苷(etoposide)(VP16)、葡糖苷酸依托泊苷、磷酸依托泊苷(etoposide phosphate)、依西美坦(exemestane)、芬戈莫德(fingolimod)、氟尿苷(floxuridine)(FUdR)、3′,5′-O-二油酰-FudR(FUdR-dO)、氟达拉滨、氟他胺(flutamide)、法呢基(farnesyl)-蛋白转移酶抑制剂、黄酮吡醇(flavopiridol)、福他替尼(fostamatinib)、ganetespib、GDC-0834、GS-1101、吉非替尼(gefitinib)、吉西他滨(gemcitabine)、羟基脲(hydroxyurea)、依鲁替尼(ibrutinib)、伊达比星(idarubicin)、艾代拉里斯(idelalisib)、异环磷酰胺(ifosfamide)、伊马替尼(imatinib)、L-天冬酰胺酶、拉帕替尼(lapatinib)、来那度胺(lenolidamide)、甲酰四氢叶酸(leucovorin)、LFM-A 13、洛莫司汀(lomustine)、二氯甲基二乙胺(mechlorethamine)、美法仑(melphalan)、巯基嘌呤(mercaptopurine)、6-巯基嘌呤、甲氨蝶呤(methotrexate)、米托蒽醌(mitoxantrone)、光辉霉素(mithramycin)、丝裂霉素(mitomycin)、米托坦(mitotane)、诺维本(navelbine)、来那替尼(neratinib)、尼罗替尼(nilotinib)、亚硝基脲(nitrosurea)、奥拉帕尼(olaparib)、普卡霉素(plicomycin)、丙卡巴肼(procarbazine)、紫杉醇、PCI-32765、喷司他汀(pentostatin)、PSI-341、雷洛昔芬(raloxifene)、司莫司汀(semustine)、索拉非尼(sorafenib)、链脲霉素(streptozocin)、SU11248、舒尼替尼(sunitinib)、他莫昔芬(tamoxifen)、替莫唑胺(temazolomide,DTIC的含水形式)、反铂(transplatinum)、沙利度胺(thalidomide)、硫鸟嘌呤(thioguanine)、噻替派(thiotepa)、替尼泊苷(teniposide)、拓扑替康(topotecan)、尿嘧啶氮芥、瓦他拉尼(vatalanib)、长春瑞滨(vinorelbine)、长春花碱(vinblastine)、长春新碱(vincristine)、长春花生物碱和ZD1839。所述药剂可为本文所述的缀合物的一部分,或可在缀合物之前,与缀合物同时,或在缀合物之后与所述缀合物组合施用。
除了ADC和ABCG2抑制剂的组合之外的另一类别的治疗剂可包括一种或多种免疫调节剂。有用的免疫调节剂可选自细胞因子、干细胞生长因子、淋巴毒素、造血因子、集落刺激因子(CSF)、干扰素(IFN)、红细胞生成素、血小板生成素及其组合。特别有用的是淋巴毒素(诸如肿瘤坏死因子(TNF))、造血因子(诸如白介素(IL))、集落刺激因子(诸如粒细胞-集落刺激因子(G-CSF)或粒细胞巨噬细胞-集落刺激因子(GM-CSF))、干扰素(诸如干扰素-α、干扰素-β、干扰素-γ或干扰素-λ)和干细胞生长因子(诸如命个为“S1因子”的干细胞生长因子)。包括在细胞因子之中的是生长激素,诸如人生长激素、N-甲硫氨酰人生长激素和牛生长激素;甲状旁腺激素;甲状腺素;胰岛素;胰岛素原;松弛素;松弛素原(prorelaxin);糖蛋白激素,诸如卵泡刺激激素(FSH)、甲状腺刺激激素(TSH)和促黄体生成激素(luteinizing hormone,LH);肝生长因子;前列腺素、成纤维细胞生长因子;促乳素;胎盘催乳激素、OB蛋白;肿瘤坏死因子-α和肿瘤坏死因子-β;mullerian抑制物质;小鼠促性腺激素相关肽;抑制素;激活蛋白;血管内皮生长因子;整联蛋白;血小板生成素(TPO);神经生长因子,诸如NGF-β;血小板生长因子;转化生长因子(TGF),诸如TGF-α和TGF-β;胰岛素样生长因子-I和胰岛素样生长因子-II;红细胞生成素(EPO);骨诱导性因子;干扰素,诸如干扰素-α、干扰素-β和干扰素-γ;集落刺激因子(CSF),诸如巨噬细胞-CSF(M-CSF);白介素(IL)(诸如IL-1、IL-1α、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-12;IL-13、IL-14、IL-15、IL-16、IL-17、IL-18、IL-21、IL-25)、LIF、kit配体或FLT-3、制管张素(angiostatin)、血小板反应蛋白(thrombospondin)、内皮抑制素(endostatin)、肿瘤坏死因子和淋巴毒素(LT)。如本文所用,术语细胞因子包括来自天然来源或来自重组细胞培养的蛋白以及天然序列细胞因子的生物活性等同物。
有用的趋化因子包括RANTES、MCAF、MIP1-α、MIP1-β和IP-10。
一种有用的替代治疗剂是酪氨酸激酶抑制剂。多种酪氨酸激酶抑制剂是本领域已知的,并且可以使用任何这种已知的治疗剂。示例性酪氨酸激酶抑制剂包括但不限于卡奈替尼(canertinib)、达沙替尼、埃罗替尼、吉非替尼、伊马替尼、拉帕替尼、来氟米特(leflunomide)、尼罗替尼、帕唑帕尼(pazopanib)、semaxinib、索拉非尼、舒尼替尼、索坦(sutent)和瓦他拉尼。一类特殊的酪氨酸激酶抑制剂是Bruton酪氨酸激酶抑制剂。Bruton酪氨酸激酶(Btk)在B细胞发育中有明确定义的作用。Bruton激酶抑制剂包括但不限于PCI-32765(依鲁替尼)、PCI-45292、GDC-0834、LFM-A13和RN486。
普通技术人员将认识到主题ADC和ABCG2抑制剂可单独或与一种或多种其它治疗剂组合使用,所述治疗剂诸如第二抗体、第二抗体片段、第二免疫缀合物、放射性核素、毒素、药物、化学治疗剂、放射治疗、趋化因子、细胞因子、免疫调节剂、酶、激素、寡核苷酸、RNAi或siRNA。所述额外治疗剂可与主题ADC分开施用、与主题ADC组合施用,或连接于主题ADC。
制剂和施用
缀合物的合适的施用途径包括不限于口服、胃肠外、皮下、直肠、经粘膜、肠施用、肌内、髓内、鞘内、直接心室内、静脉内、玻璃体内、腹膜内、鼻内或眼内注射。优选施用途径是胃肠外。或者,可以局部而非全身性方式,例如通过直接向实体瘤中注射化合物来施用化合物。
ADCs和ABCG2抑制剂可根据已知方法配制,以制备药学上有用的组合物,由此ADC和/或ABCG2抑制剂与药学合适的赋形剂一起组合在混合物中。无菌磷酸缓冲盐水是药学合适的赋形剂的一个实例。其它合适的赋形剂为本领域技术人员公知。参见例如Ansel等,PHARMACEUTICAL DOSA GE FORMS AND DRUG DELIVERY SYSTEMS,第5版(Lea&Febiger1990),以及Gennaro(编),REMINGTON’S PHARMACEUTICAL SCIENCES,第18版(MackPublishing Company 1990)及其修订版。
在一种优选实施方案中,使用选自由以下组成的组的缓冲剂在Good′s生物缓冲液(pH 6-7)中配制ADC:N-(2-乙酰氨基)-2-氨基乙磺酸(ACES);N-(2-乙酰氨基)亚氨基二乙酸(ADA);N,N-双(2-羟乙基)-2-氨基乙磺酸(BES);4-(2-羟乙基)哌嗪-1-乙磺酸(HEPES);2-(N-吗啉代)乙磺酸(MES);3-(N-吗啉代)丙磺酸(MOPS);3-(N-吗啉基)-2-羟基丙磺酸(MOPSO);和哌嗪-N,N′-双(2-乙磺酸)[Pipes]。更优选的缓冲剂是MES或MOPS,优选在20至100mM的浓度范围内,更优选是约25mM。最优选是25mM MES,pH 6.5。制剂可进一步包含25mM海藻糖和0.01%v/v polysorbate 80作为赋形剂,其中由于添加的赋形剂而将最终缓冲剂浓度调节至22.25mM。优选保存方法是以缀合物的冻干制剂形式保存在-20℃至2℃的温度范围内,其中最优选在2℃至8℃下保存。
ADC可被配制用于通过例如快速浓注、缓慢输注或连续输注来静脉内施用。优选地,在小于约4小时的时间段,并且更优选在小于约3小时的时间段输注本发明的抗体。例如,最初25-50mg可在30分钟,优选甚至15分钟内输注,并且其余部分在接下来的2-3小时输注。注射用制剂可以单位剂型存在,例如在添加防腐剂的安瓿中或多剂量容器中。组合物可采用诸如于油性或水性赋形剂中的混悬液、溶液或乳液的形式,并且可含有配制剂,诸如助悬剂、稳定剂和/或分散剂。或者,活性成分可呈用于在使用之前用适合赋形剂例如无菌无热原水复水的粉末形式。
ABCG2抑制剂可以制备为适于口服施用的安瓿或片剂,或也可以静脉内、皮下或通过其它肠胃外施用进行施用。
额外的制药方法可用于控制ADC和/或ABCG2抑制剂的作用的持续时间。可通过使用聚合物以复合或吸附活性剂来制备控制释放制剂。例如,生物相容性聚合物包括聚(乙烯-共-乙烯基乙酸酯)的基质和硬脂酸二聚物和癸二酸的聚酐共聚物的基质。Sherwood等,Bio/Technology 10:1446(1992)。药剂从这种基质释放的速度取决于基质内的药剂的分子量、药剂的量以及分散颗粒的大小。Saltzman等,Biophys.J.55:163(1989);Sherwood等,同上。其它固体剂型描述于Ansel等,PHARMACEUTICAL DOSAGE FORMS AND DRUG DELIVERYSYSTEMS,第5版(Lea和Febiger 1990);以及Gennaro(编),REMINGTON’S PHARMACEUTICALSCIENCES,第18版(Mack Publishing Company 1990)及其修订版中。
通常,对于人施用的ADC和/或ABCG2抑制剂的剂量取决于诸如患者的年龄、体重、身高、性别、一般医学状况和先前医学史的因素而变化。可能理想的是以单次静脉内输注形式向接受者提供在约1mg/kg至24mg/kg的范围内的ADC剂量,但根据情况所指示,也可施用更低或更高剂量。对于70kg患者,1-20mg/kg的剂量例如是70-1,400mg,或对于1.7-m患者,是41-824mg/m2。可根据需要重复剂量,例如每周一次持续4-10周,每周一次持续8周,或每周一次持续4周。根据维持治疗中的需要,它也可以较低频率给予,诸如每隔一周,持续数月,或每月或每季度,持续多月。优选剂量可包括但不限于1mg/kg、2mg/kg、3mg/kg、4mg/kg、5mg/kg、6mg/kg、7mg/kg、8mg/kg、9mg/kg、10mg/kg、11mg/kg、12mg/kg、13mg/kg、14mg/kg、15mg/kg、16mg/kg、17mg/kg和18mg/kg、19mg/kg、20mg/kg、22mg/kg和24mg/kg。可以使用1至24mg/kg范围的任何量。剂量优选施用多次,一周一次或两次。可使用4周,更优选8周,更优选16周或更久的最小剂量方案。施用方案可包括以选自下组的周期一周施用一次或两次:(i)每周;(ii)每隔一周;(iii)治疗一周,继之以休息二、三或四周;(iv)治疗两周,继之以休息一、二、三或四周;(v)治疗三周,继之以休息一、二、三、四或五周;(vi)治疗四周,继之以休息一、二、三、四或五周;(vii)治疗五周,继之以休息一、二、三、四或五周;和(viii)每月。周期可重复4、6、8、10、12、16或20次或更多次。
或者,ADC和/或ABCG2抑制剂可每2或3周作为一个剂量施用,重复总计至少3个剂量。或者,每周两次,持续4-6周。如果剂量降低至约200-300mg/m2(对于1.7-m患者是每剂量340mg,或对于70kg患者是4.9mg/kg),那么它可每周施用一次或甚至两次,持续4至10周。或者,剂量方案可减少,即每2或3周,持续2-3个月。然而,已确定可通过缓慢静脉输注来每周一次或每2-3周一次施用甚至更高剂量诸如12mg/kg,持续重复的给药周期。给药方案可任选以其它间隔重复,并且剂量可通过各种胃肠外途径来给予,伴有对剂量和方案的适当调整。
在优选实施方案中,ADCs和ABCG2抑制剂可用于癌的治疗。癌的实例包括但不限于癌、淋巴瘤、胶质母细胞瘤、黑素瘤、肉瘤以及白血病、骨髓瘤或淋巴恶性肿瘤。所述癌的更特定实例在下文指出,并且包括:鳞状细胞癌(例如上皮鳞状细胞癌)、尤因肉瘤(Ewingsarcoma)、威尔姆斯肿瘤(Wilms tumor)、星形细胞瘤、肺癌(包括小细胞肺癌、非小细胞肺癌、肺腺癌和肺鳞癌)、腹膜癌、胃癌(gastric or stomach cancer)(包括胃肠癌)、胰腺癌、多形性胶质母细胞瘤、宫颈癌、卵巢癌、肝癌、膀胱癌、肝细胞瘤、肝细胞癌、神经内分泌肿瘤、甲状腺髓样癌、分化的甲状腺癌、乳腺癌、卵巢癌、结肠癌、直肠癌、子宫内膜癌或子宫癌、唾液腺癌、肾癌(kidney or renal cancer)、前列腺癌、外阴癌、肛门癌、阴茎癌以及头颈癌。术语“癌”包括原发性恶性细胞或肿瘤(例如其细胞尚未向受试者的身体中除原始恶性肿瘤或肿瘤的部位以外的部位迁移的那些)和继发性恶性细胞或肿瘤(例如由转移,即恶性细胞或肿瘤细胞向不同于原始肿瘤的部位的第二部位迁移产生的那些)。
癌或恶性肿瘤的其它实例包括但不限于:急性儿童成淋巴细胞性白血病、急性成淋巴细胞性白血病、急性淋巴细胞性白血病、急性髓细胞性白血病、肾上腺皮质癌、成人(原发性)肝细胞癌、成人(原发性)肝癌、成人急性淋巴细胞性白血病、成人急性髓细胞性白血病、成人霍奇金氏淋巴瘤、成人淋巴细胞性白血病、成人非霍奇金氏淋巴瘤、成人原发性肝癌、成人软组织肉瘤、AIDS相关的淋巴瘤、AIDS相关的恶性肿瘤、肛门癌、星形细胞瘤、胆管癌、膀胱癌、骨癌、脑干神经胶质瘤、脑肿瘤、乳腺癌、肾盂和输尿管癌、中枢神经系统(原发性)淋巴瘤、中枢神经系统淋巴瘤、小脑星形细胞瘤、大脑星形细胞瘤、宫颈癌、儿童(原发性)肝细胞癌、儿童(原发性)肝癌、儿童急性成淋巴细胞性白血病、儿童急性髓细胞性白血病、儿童脑干神经胶质瘤、儿童小脑星形细胞瘤、儿童大脑星形细胞瘤、儿童颅外生殖细胞肿瘤、儿童霍奇金氏病、儿童霍奇金氏淋巴瘤、儿童下丘脑和视通路神经胶质瘤、儿童成淋巴细胞性白血病、儿童成神经管细胞瘤、儿童非霍奇金氏淋巴瘤、儿童松果体和幕上原始神经外胚层肿瘤、儿童原发性肝癌、儿童横纹肌肉瘤、儿童软组织肉瘤、儿童视通路和下丘脑神经胶质瘤、慢性淋巴细胞性白血病、慢性髓细胞性白血病、结肠癌、皮肤T细胞淋巴瘤、内分泌胰岛细胞癌、子宫内膜癌、室管膜瘤、上皮癌、食道癌、尤因氏肉瘤和相关肿瘤、外分泌胰腺癌、颅外生殖细胞肿瘤、性腺外生殖细胞肿瘤、肝外胆管癌、眼癌、女性乳腺癌、高雪氏病(Gaucher′s Disease)、胆囊癌、胃癌、胃肠类癌肿瘤、胃肠肿瘤、生殖细胞肿瘤、妊娠滋养层肿瘤、毛细胞白血病、头颈癌、肝细胞癌、霍奇金氏淋巴瘤、高γ球蛋白血症、下咽癌、肠癌、眼内黑素瘤、胰岛细胞癌、胰岛细胞胰腺癌、卡波西氏肉瘤(Kaposi′s Sarcoma)、肾癌、喉癌、唇和口腔癌、肝癌、肺癌、淋巴组织增生性病症、巨球蛋白血症、男性乳腺癌、恶性间皮瘤、恶性胸腺瘤、成神经管细胞瘤、黑素瘤、间皮瘤、转移性隐匿性原发性颈部鳞癌、转移性原发性颈部鳞癌、转移性颈部鳞癌、多发性骨髓瘤、多发性骨髓瘤/浆细胞瘤、骨髓发育不良综合征、髓细胞性白血病(Myelogenous Leukemia)、髓细胞性白血病(Myeloid Leukemia)、骨髓增生性病症、鼻腔和鼻窦癌、鼻咽癌、神经母细胞瘤、非霍奇金氏淋巴瘤、非黑素瘤皮肤癌、非小细胞肺癌、隐匿性原发性转移性颈部鳞癌、口咽癌、骨/恶性纤维肉瘤、骨肉瘤/恶性纤维组织细胞瘤、骨肉瘤/骨恶性纤维组织细胞瘤、卵巢上皮癌、卵巢生殖细胞肿瘤、卵巢低恶性潜力肿瘤、胰腺癌、副蛋白血症、真性红细胞增多症、甲状旁腺癌、阴茎癌、嗜铬细胞瘤、垂体肿瘤、原发性中枢神经系统淋巴瘤、原发性肝癌、前列腺癌、直肠癌、肾细胞癌、肾盂和输尿管癌、视网膜母细胞瘤、横纹肌肉瘤、唾液腺癌、结节病肉瘤、西泽里综合征(SezarySyndrome)、皮肤癌、小细胞肺癌、小肠癌、软组织肉瘤、颈部鳞癌、胃癌、幕上原始神经外胚层和松果体肿瘤、T细胞淋巴瘤、睾丸癌、胸腺瘤、甲状腺癌、肾盂和输尿管移行细胞癌、肾盂和输尿管移行癌、滋养层肿瘤、输尿管和肾盂细胞癌、尿道癌、子宫癌、子宫肉瘤、阴道癌、视通路和下丘脑神经胶质瘤、外阴癌、瓦尔登斯特伦氏巨球蛋白血症(macroglobulinemia)、韦尔姆斯氏肿瘤,以及除瘤形成之外,任何其它位于以上所列的器官系统中的过度增生性疾病。
本文描述和要求保护的方法和组合物可用于治疗恶性或癌前状况,以及预防进展成瘤形成或恶性状态,包括但不限于上述那些病症。在得知或怀疑处于向瘤形成或癌的在先进展,特别地,其中已发生由增生、化生或最特别地,发育不良组成的非瘤形成细胞生长的状况下指出所述用途(对于所述异常生长状况的综述,参见Robbins和Angell,BasicPathology,第2版,W.B.Saunders Co.,Philadelphia,第68-79页(1976))。
发育不良经常是癌的预兆,并且主要见于上皮中。它是非瘤形成性细胞生长的最杂乱形式,涉及个体细胞一致性和细胞的结构方向的丧失。发育不良特征性地发生在存在慢性刺激或炎症时。可治疗的发育不良病症包括但不限于无汗性外胚层发育不良、前颜面发育不良、窒息性胸廓发育不良、心房-手指发育不良、支气管肺发育不良、大脑发育不良、子宫颈发育不良、软骨外胚层发育不良、锁骨头颅发育不良、先天性外胚层发育不良、颅骨骨干发育不良、颅腕跖骨发育不良、颅骨干骺端发育不良、牙本质发育不良、骨干发育不良、外胚层发育不良、牙釉质发育不良、脑-眼发育不良、偏侧骨骺发育不良、多发性骨骺发育不良、点状骨骺发育不良、上皮发育不良、面-指-生殖器发育不良、家族性颌骨纤维性发育不良、家族性白色皱褶性发育不良(familial white folded dysplasia)、纤维肌性发育不良、骨纤维性发育不良、旺盛骨性发育不良(florid osseous dysplasia)、遗传性肾脏-视网膜发育不良、出汗性外胚层发育不良、少汗性外胚层发育不良、淋巴细胞减少性胸腺发育不良、乳腺发育不良、下颌面骨发育不良、干骺端发育不良、蒙迪尼发育不良(Mondinidysplasia)、单骨性纤维性发育不良、粘膜上皮发育不良、多发性骨骺发育不良、眼耳脊椎发育不良、眼齿指发育不良、眼脊椎发育不良、牙源性发育不良、眼下颚发育不良(opthalmomandibulomelic dysplasia)、根尖周牙骨质发育不良、多骨纤维性发育不良、假性软骨发育不良性椎骺发育不良、视网膜发育不良、中隔-视神经发育不良(septo-opticdysplasia)、椎骺发育不良和心室径向发育不良(ventriculoradial dysplasia)。
可治疗的额外瘤形成前病症包括但不限于良性异常增生性病症(例如良性肿瘤、纤维囊性状况、组织肥厚、肠息肉或腺瘤和食道发育不良)、粘膜白斑病、角化病、博文氏病(Bowen′s disease)、农民皮肤病(Farmer′s Skin)、日光性唇炎和日光性角化病。
在优选实施方案中,本发明方法用于抑制癌的生长、进展和/或转移,所述癌特别是以上所列的那些。
额外过度增生性疾病、病症和/或状况包括但不限于恶性肿瘤的进展和/或转移和相关病症,诸如白血病(包括急性白血病;例如急性淋巴细胞性白血病、急性髓细胞性白血病[包括成髓细胞性、早幼粒细胞性、髓单核细胞性、单核细胞性和红白血病]和慢性白血病(例如慢性髓细胞性[粒细胞性]白血病和慢性淋巴细胞性白血病))、真性红细胞增多症、淋巴瘤(例如霍奇金氏病和非霍奇金氏病)、多发性骨髓瘤、瓦尔登斯特伦氏巨球蛋白血症、重链病以及实体瘤,包括但不限于肉瘤和癌,诸如纤维肉瘤、粘液肉瘤、脂肪肉瘤、软骨肉瘤、骨肉瘤、脊索瘤、血管肉瘤、内皮肉瘤、淋巴管肉瘤、淋巴管内皮肉瘤、滑膜瘤、间皮瘤、尤因氏肿瘤、平滑肌肉瘤、横纹肌肉瘤、结肠癌、胰腺癌、乳腺癌、卵巢癌、前列腺癌、鳞状细胞癌、基底细胞癌、腺癌、汗腺癌、皮脂腺癌、乳头状癌、乳头状腺癌、囊腺癌、髓样癌、支气管源性癌、肾细胞癌、肝细胞瘤、胆管癌、绒毛膜癌、精原细胞瘤、胚胎癌、威尔姆氏肿瘤(Wilm′stumor)、宫颈癌、睾丸肿瘤、肺癌、小细胞肺癌、膀胱癌、上皮癌、神经胶质瘤、星形细胞瘤、成神经管细胞瘤、颅咽管瘤、室管膜瘤、松果体瘤、血管母细胞瘤、听神经瘤、少突神经胶质细胞瘤、脑膜瘤、黑素瘤、神经母细胞瘤和视网膜母细胞瘤。
可用ADCs治疗的自身免疫疾病可包括急性和慢性免疫血小板减少症、皮肌炎、西登哈姆氏舞蹈病、重症肌无力、系统性红斑狼疮、狼疮肾炎、风湿热、多腺综合征、大疱性类天疱疮、糖尿病、Henoch-Schonlein紫癜、链球菌感染后肾炎、结节性红斑、高安氏动脉炎、ANCA相关的血管炎、阿狄森氏病、类风湿性关节炎、多发性硬化症、结节病、溃疡性结肠炎、多形性红斑、IgA肾病、结节性多动脉炎、强直性脊柱炎、古德帕斯彻氏综合征、血栓闭塞性脉管炎、干燥综合征、原发性胆汁性硬化、桥本氏甲状腺炎、甲状腺毒症、硬皮病、慢性活动性肝炎、多发性肌炎/皮肌炎、多软骨炎、大疱性类天疱疮、寻常天疱疮、韦格纳氏肉芽肿病、膜性肾病、肌萎缩性侧索硬化、脊髓痨、巨细胞动脉炎/多肌痛、恶性贫血、快速进行性肾小球性肾炎、牛皮癣或纤维性肺泡炎。
试剂盒
各种实施方案可涉及含有适于治疗患者的患病组织的成分的试剂盒。示例性试剂盒可含有至少一种如本文所述的ADC和/或ABCG2抑制剂。如果用于施用的含有各成分的组合物并非配制来通过消化道进行递送诸如口服递送,那么可包括能够通过某种其它途径来递送试剂盒成分的装置。用于应用(诸如胃肠外递送)的一种类型的装置是注射器,其用于将组合物注射至受试者的身体中。也可使用吸入装置。
试剂盒成分可包装在一起或分入两个或更多个容器中。在一些实施方案中,容器可为含有组合物的适于复水的无菌冻干制剂的小瓶。试剂盒也可含有一种或多种适于复水和/或稀释其它试剂的缓冲剂。可使用的其它容器包括但不限于小袋、盘、盒、管等。试剂盒成分可被无菌包装和保持在容器内。可包括的另一成分是给为其用途而使用试剂盒的人提供的说明书。
实施例
本发明的各种实施方案通过以下实施例来说明而不限制其范围。
实施例1.抗Trop-2-SN-38抗体-药物缀合物的生产和使用
按照美国专利号7,238,785中的描述生产人源化RS7(hRS7)抗Trop-2抗体,所述专利的附图和实施例部分通用引用并入本文。根据美国专利7,999,083(其实施例10和12通过引用并入本文)生产与CL2A接头连接的SN-38并且与hRS7(抗Trop-2)、hPAM4(抗MUC5ac)、hA20(抗CD20)或hMN-14(抗CEACAM5)缀合。该缀合方案导致每个抗体分子连接约6个SN-38分子的比率。
携带皮下人胰腺或结肠肿瘤异种移植物的免疫受损的无胸腺裸鼠(雌性)用特异性CL2A-SN-38缀合物或对照缀合物治疗,或留下未治疗。观察特异性缀合物的疗效。图1显示Capan 1胰腺肿瘤模型,其中hRS7(抗Trop-2)、hPAM4(抗MUC-5ac)和hMN-14(抗CEACAM5)抗体的特异性CL2A-SN-38缀合物显示比对照hA20-CL2A-SN-38缀合物(抗CD20)和未治疗对照更好的效力。类似地,在人胰腺癌的BXPC3模型中,特异性hRS7-CL2A-SN-38显示比对照治疗更好的疗效(图2)。
实施例2.抗Trop-2 ADCs的ADCC活性
与hRS7 IgG相比,确定了多种hRS7-ADC缀合物的ADCC活性(图3)。从购自新泽西血液中心(Blood Center of New Jersey)的血液纯化PBMCs。Trop-2阳性人胰腺腺癌细胞系(BxPC-3)用作靶细胞系,效应物与靶的比率是100∶1。将hRS7 IgG介导的ADCC与hRS7-Pro-2-PDox、hRS7-CL2A-SN-38以及还原和封端的hRS7-NEM进行比较。所有都以33.3nM使用。
结果显示于图3。总体活性低,但显著。hRS7 IgG有8.5%特异性细胞溶解,这与hRS7-Pro-2-PDox没有显著差异。两者均显著好于hLL2对照以及hRS7-NEM和hRS7-SN-38(P<0.02,双尾t检验)。在hRS7-NEM与hRS7-SN-38之间不存在差异。
实施例3.抗Trop-2-SN-38 ADC针对多种上皮癌的体内效力
摘要
该研究的目的是评价SN-38-抗Trop-2(hRS7)ADC针对几种人实体瘤类型的效力,以及评估它在小鼠和猴中的耐受性,后者具有与人相似的对hRS7的组织交叉反应性。使两种SN-38衍生物CL2-SN-38和CL2A-SN-38缀合于抗Trop-2人源化抗体hRS7。在体外表征ADCs的稳定性、结合和细胞毒性。在表达Trop-2抗原的5个不同人实体瘤异种移植物模型中测试效力。评估在小鼠中以及在猕猴中的毒性。
两种SN-38衍生物的hRS7缀合物在药物取代(drug substitution)(约6)、细胞结合(Kd约1.2nmol/L)、细胞毒性(IC50约2.2nmol/L)和体外血清稳定性(t/1/2约20小时)方面等同。细胞暴露于ADC显示了导致PARP裂解的信号传导途径,但注意到在p53和p21增量调节方面与游离SN-38相比的差异。当与非靶向对照ADCs相比时,由非毒性剂量下的hRS7-SN-38在携带Calu-3(P≤0.05)、Capan-1(P<0.018)、BxPC-3(P<0.005)和COLO 205肿瘤(P<0.033)的小鼠中产生了显著抗肿瘤作用。小鼠耐受2×12mg/kg(SN-38当量)的剂量,伴有ALT和AST肝酶水平仅短期升高。以2×0.96mg/kg输注的猕猴展现血细胞计数仅短暂降低,但重要的是,数值不下降至正常范围以下。
概言之,抗Trop-2 hRS7-CL2A-SN-38 ADC提供了针对一系列人实体瘤类型的显著和特异性抗肿瘤作用。它在猴中耐受良好,在临床相关剂量下组织Trop-2表达与人相似。
引言
对患有实体瘤的患者的成功伊立替康治疗已受限制,这主要是由于CPT-11前药向活性SN-38代谢物的低转化率。其他人已检查非靶向形式的SN-38作为一种用以规避对该转化的需要以及将SN-38被动递送至肿瘤的手段。我们使SN-38共价缀合于人源化抗Trop-2抗体hRS7。该抗体-药物缀合物在一系列皮下人癌异种移植物模型(包括非小细胞肺癌、胰腺癌、结肠直肠癌和鳞状细胞肺癌)中具有特异性抗肿瘤作用,全都处于非毒性剂量下(例如≤3.2mg/kg累积SN-38当量的剂量)。Trop-2在许多上皮癌中,但也在一些正常组织中广泛表达,因此,在猕猴中进行剂量逐步增加研究以评估该缀合物的临床安全性。猴耐受24mgSN-38当量/kg,仅伴有轻微可逆毒性。鉴于它的肿瘤靶向和安全性谱(profile),hRS7-SN-38在控制对伊立替康有反应的实体瘤方面提供显著改进。
材料和方法
细胞系、抗体和化学治疗剂-这个研究中使用的所有人癌细胞系都购自美国典型培养物保藏中心。这些包括Calu-3(非小细胞肺癌)、SK-MES-1(鳞状细胞肺癌)、COLO 205(结肠腺癌),Capan-1和BxPC-3(胰腺腺癌)和PC-3(前列腺腺癌)。人源化RS7 IgG和对照人源化抗CD20(hA20 IgG,维妥珠单抗)和抗CD22(hLL2 IgG,依帕珠单抗)抗体在Immunomedics,Inc.制备。伊立替康(20mg/mL)从Hospira,Inc.获得。
SN-38 ADCs和体外方面-CL2-SN-38的合成先前已经有描述(Moon等,2008,J MedChem 51:6916-26)。按照描述进行其与hRS7 IgG的缀合和血清稳定性(Moon等,2008,J MedChem 51:6916-26;Govindan等,2009,Clin Chem Res 15:6052-61)。按照前面实施例的描述进行CL2A-SN-38(M.W.1480)及其hRS7缀合物的制备以及稳定性、结合和细胞毒性研究。
体内治疗研究-对于所有动物研究,SN-38 ADCs和伊立替康的剂量以SN-38当量(equivalents)显示。基于平均SN-38/IgG取代比6,给予20g小鼠的500μg ADC的剂量(25mg/kg)含有0.4mg/kg的SN-38。伊立替康剂量同样显示为SN-38当量(即40mg伊立替康/kg相当于24mg/kg的SN-38)。
4至8周龄的NCr雌性无胸腺裸(nu/nu)鼠和10周龄的雄性Swiss-Webster小鼠购自Taconic Farms。耐受性研究由SNBL USA,Ltd.在猕猴(Macaca fascicularis;2.5-4kg雄性和雌性)中进行。
动物用不同人癌细胞系进行皮下植入。肿瘤体积(TV)通过使用卡尺以2个维度进行测量来测定,体积定义为:L×w2/2,其中L是肿瘤的最长维度,并且w是最短维度。当治疗开始时,肿瘤大小在0.10与0.47em3之间的范围内。每个实验中的治疗方案、剂量和动物的数目描述于结果中。将冻干的hRS7-CL2A-SN-38和对照ADC复水,并且根据需要在无菌盐水中稀释。所有试剂都是腹膜内施用(0.1mL),例外之处是伊立替康是静脉内施用。给药方案受我们的先前研究的影响,其中每4天或每周两次给予ADC,持续不同时长(Moon等,2008,JMed Chem 51:6916-26;Govindan等,2009,Clin Chem Res 15:6052-61)。这个给药频率反映对缀合物的体外血清半衰期的考虑,以允许更连续暴露于ADC。
统计学-生长曲线显示为初始TV随时间的变化百分比。对肿瘤生长的统计学分析基于曲线下面积(AUC)。通过线性曲线建模来获得个体肿瘤生长分布图(profiles)。在生长曲线的统计学分析前,采用f检验确定组之间的方差齐性。使用双尾t检验评估各个治疗组和对照之间的统计学显著性,盐水对照除外,其中使用了单尾t检验(显著性为P≤0.05)。AUC的统计学比较仅进行到组内首个动物由于进展而被安乐死的时间。
药代动力学和生物分布-将111In放射性标记的hRS7-CL2A-SN-38和hRS7 IgG注射至携带皮下SK-MES-1肿瘤(约0.3cm3)的裸鼠中。一组用20μ Ci(250μg蛋白)的111In-hRS7-CL2A-SN-38静脉注射,而另一组接受20μ Ci(250μg蛋白)的111In-hRS7 IgG。在多个时间点,将小鼠(每个时间点5只)麻醉,通过心内穿刺来取血,接着使其安乐死。取出肿瘤和多种组织,称重,并且通过γ闪烁计数以确定每克组织的注射剂量百分比(%ID/g)。第三组在施用111In-hRS7-CL2A-SN-38之前3天用250μg未标记hRS7-CL2A-SN-38注射,并且同样地尸检。在使用f检验确定方差齐性之后,用双尾t检验比较hRS7-CL2A-SN-38和hRS7 IgG摄取。使用WinNonLin软件(Parsight Corp.)对血液清除进行药代动力学分析。
Swiss-Webster小鼠和猕猴中的耐受性-简要来说,将小鼠分选成4组,各自在第0和3天接受2mL腹膜内注射乙酸钠缓冲液对照或3个不同剂量的hRS7-CL2A-SN-38(4、8或12mg/kg的SN-38),随后采集血液和血清,如结果所述。给猕猴(3只雄性和3只雌性;2.5-4.0kg)施用2个不同剂量的hRS7-CL2A-SN-38。剂量、时间和被取血以评价可能的血液学毒性和血清化学的猴的数目描述于结果中。
结果
hRS7-CL2A-SN-38的稳定性和效能-用两种不同的连接,使SN-38缀合于hRS7IgG(图4A)。第一种称为CL2-SN-38,并且先前已描述(Moon等,2008,J Med Chem 51:6916-26;Govindan等,2009,Clin Chem Res 15:6052-61)。CL2合成的改变(以除去接头内的苯丙氨酸部分)被用于生产CL2A接头。这个改变使合成简化,但不影响缀合结果(例如CL2-SN-38与CL2A-SN-38两者均在每个IgG分子中掺入约6个SN-38)。并排比较发现在血清稳定性、抗原结合或体外细胞毒性方面无显著差异。该结果是令人惊讶的,因为CL2中的苯丙氨酸残基是组织蛋白酶B(一种溶酶体蛋白酶)的指定裂解位点的部分。
为确认SN-38接头从CL2改变为CL2A不影响体内效能,在携带COLO 205(图4B)或Capan-1肿瘤(图4C)的小鼠中比较hRS7-CL2A和hRS7-CL2-SN-38,其中分别每周两次×4周使用0.4mg/kg或0.2mg/kg SN-38,并且在两个研究中起始肿瘤均具有0.25cm3的大小。相比于未治疗(在COLO 205模型中,与盐水相比,AUC14天P<0.002;在Capan-1模型中,与盐水相比,AUC21天P<0.001)和非靶向抗CD20对照ADC,即hA20-CL2A-SN-38(在COLO205模型中,AUC14天P<0.003;在Capan-1模型中,AUC35天:P<0.002),hRS7-CL2A和CL2-SN-38缀合物两者均显著抑制肿瘤生长。在研究结束时(第140天),在Capan-1模型中,50%的用hRS7-CL2A-SN-38治疗的小鼠和40%的hRS7-CL2-SN-38小鼠无肿瘤,而仅20%的hA20-ADC治疗的动物不具有可见疾病体征。如图4中所证明的,CL2A接头导致与CL2相比稍微更高的效力。
作用机理-体外细胞毒性研究证明hRS7-CL2A-SN-38针对几种不同实体瘤细胞系具有在nmol/L范围内的IC50值(表4)。在所有细胞系中,游离SN-38的IC50都低于缀合物。尽管在Trop-2表达和对hRS7-CL2A-SN-38的敏感性之间不存在明显关联,但ADC与游离SN-38的IC50比在较高表达Trop-2的细胞中较低,最可能反映当存在更多抗原时,使药物内化的能力得以增强。
已知SN-38使细胞中的几种信号传导途径活化,从而导致凋亡(例如Cusack等,2001,Cancer Res 61:3535-40;Liu等2009,Cancer Lett 274:47-53;Lagadec等,2008,BrJ Cancer 98:335-44)。我们的初始研究在体外检查早期信号传导事件中涉及的2种蛋白(p21Wafl/Cip1和p53)的表达以及1个晚期凋亡事件[聚ADP-核糖聚合酶(PARP)的裂解](未显示)。在BxPC-3中,SN-38导致p21Wafl/Cip1表达增加到20倍(未显示),而hRS7-CL2A-SN-38仅导致增加到10倍(未显示),这是与游离SN-38在这个细胞系中具有较高活性(表4)一致的发现。然而,hRS7-CL2A-SN-38使Calu-3中的p21Waf1/Cip1表达增加相对于游离SN-38超过2倍(未显示)。
观察到hRS7-CL2A-SN-38介导的信号传导事件与游离SN-38介导的信号传导事件之间在p53表达方面的更大不一致性(未显示)。在BxPC-3与Calu-3两者中,游离SN-38对p53的增量调节直至48小时才明显,而hRS7-CL2A-SN-38在24小时内使p53增量调节(未显示)。此外,与SN-38相比,在两种细胞系中,暴露于ADC的细胞中的p53表达更高(未显示)。有趣的是,尽管hRS7IgG对p21Waf1/Cip1表达不具有可察觉的影响,但它的确诱导BxPC-3与Calu-3两者中的p53增量调节,但是仅在暴露48小时之后(未显示)。在随后的凋亡事件方面,当用SN-38或缀合物温育时,在两种细胞系中,PARP的裂解均是明显的(未显示)。在BxPC-3中,在24小时,存在的裂解PARP较高(未显示),这与p21的高表达以及它的较低IC50相关。游离SN-38相对于ADC更高的裂解程度与细胞毒性发现一致。
hRS7-SN-38的效力-因为Trop-2在几种人癌中广泛表达,所以在几种不同的人癌模型中进行研究,其使用hRS7-CL2-SN-38连接开始,但随后,使用具有CL2A连接的缀合物。每4天×4给予0.04mg SN-38/kg的hRS7-CL2-SN-38的携带Calu-3的裸鼠与施用等同量的非靶向hLL2-CL2-SN-38的动物相比具有显著改进的反应(分别是TV=0.14±0.22cm3与0.80±0.91cm3;AUC42天P<0.026;图5A)。当使剂量增加至0.4mg/kg SN-38时观察到剂量反应(图5A)。在这个较高剂量水平下,给予特异性hRS7缀合物的所有小鼠都在28天内被“治愈”,并且保持无肿瘤直至在第147天研究结束,而在用无关ADC治疗的动物中肿瘤再生长(特异性与无关AUC98天相比:P=0.05)。在接受hRS7IgG和SN-38的混合物的小鼠中,到第56天,肿瘤进展>4.5倍(TV=1.10±0.88cm3;与hRS7-CL2-SN-38相比,AUC56天P<0.006)(图5A)。
也检查在人结肠(COLO 205)和胰腺(Capan-1)肿瘤异种移植物中的效力。在携带COLO 205肿瘤的动物中,(图13Bhttp://clincancerres.aacriournals.org/content/17/ 10/3157.long-F3),hRS7-CL2-SN-38(0.4mg/kg,q4dx8)在28天的治疗期中阻止肿瘤生长,与对照抗CD20 ADC(hA20-CL2-SN-38)或hRS7 IgG相比,肿瘤显著更小(分别是TV=0.16±0.09cm3、1.19±0.59cm3和1.77±0.93cm3;AUC28天P<0.016)。
表4.多种实体瘤细胞系中的Trop-2表达以及SN-38和hRS7-SN-38的体外细胞毒性
MTD的伊立替康(24mg SN-38/kg,q2dx5)与hRS7-CL2-SN-38在COLO 205细胞中同样有效,因为相比于人血清,小鼠血清可更有效地使伊立替康转化成SN-38(Morton等,2000,Cancer Res 60:4206-10),但伊立替康中的SN-38剂量(累积2,400μg)是在缀合物的情况下(总计64μg)的37.5倍。
携带Capan-1的动物(图5C)显示对在以相当于hRS7-CL2-SN-38缀合物的SN-38剂量给予时的单独伊立替康无显著反应(例如在第35天,平均肿瘤大小是给予0.4mg SN-38/kg hRS7-SN-38的动物中的0.04±0.05cm3与给予0.4mg/kgSN-38的伊立替康治疗动物中的1.78±0.62cm3;AUC第35天P<0.001;图5C)。当使伊立替康剂量增加到10倍达到4mg/kg SN-38时,反应改进,但仍然不如在0.4mg/kg SN-38剂量水平下的缀合物那样显著(TV=0.17±0.18cm3与1.69±0.47cm3,AUC第49天P<0.001)(图5C)。与伊立替康治疗的动物相比,相等剂量的非靶向hA20-CL2-SN-38也具有显著抗肿瘤作用,但特异性hRS7缀合物显著好于无关ADC(TV=0.17±0.18cm3与0.80±0.68cm3,AUC第49天P<0.018)(图5C)。
然后将使用hRS7-CL2A-SN-38ADC进行的研究扩展至2个其它的人上皮癌模型。在携带BxPC-3人胰腺肿瘤的小鼠中(图13D),相比于用盐水或等同量的非靶向hA20-CL2A-SN-38(分别是TV=0.24±0.11cm3与1.17±0.45cm3和1.05±0.73cm3;AUC第21天P<0.001)或在10倍SN-38当量的剂量下给予的伊立替康(分别是TV=0.27±0.18cm3与0.90±0.62cm3;AUC第25天P<0.004)治疗的对照小鼠,hRS7-CL2A-SN-38再次显著抑制肿瘤生长(图5D)。有趣的是,在用0.4mg/kg的ADC治疗的携带SK-MES-1人鳞状细胞肺肿瘤的小鼠中(图5E),肿瘤生长抑制优于盐水或未缀合的hRS7IgG(分别是TV=0.36±0.25cm3与1.02±0.70cm3和1.30±1.08cm3;AUC28天,P<0.043),但非靶向hA20-CL2A-SN-38或MTD的伊立替康与特异性hRS7-SN-38缀合物提供相同抗肿瘤作用(图5E)。
在所有鼠研究中,在体重减轻方面,hRS7-SN-38 ADC是良好耐受的(未显示)。
hRS7-CL2A-SN-38的生物分布-使用各自的111In标记的底物,比较hRS7-CL2A-SN-38或未缀合的hRS7 IgG在携带SK-MES-1人鳞状细胞肺癌异种移植物的小鼠中的生物分布(未显示)。进行药代动力学分析以确定相对于未缀合的hRS的7hRS7-CL2A-SN-38清除(未显示)。ADC比等同量的未缀合hRS7更快清除,其中ADC展现缩短约40%的半衰期和平均滞留时间。然而,这对肿瘤摄取具有最小影响(未显示)。尽管在24小时和48小时时间点存在显著差异,但到72小时(峰值摄取),肿瘤中两种药剂的量是类似的。在正常组织之中,肝差异和脾差异最显著(未显示)。在注射后24小时,肝中hRS7-CL2A-SN-38是hRS7 IgG的>2倍(未显示)。相反,在脾中,在峰值摄取时(48小时时间点)存在的亲本hRS7 IgG是hRS7-CL2A-SN-38的3倍(未显示)。在其余组织中的摄取和清除通常反映血液浓度差异(未显示)。
因为给予每周两次剂量来进行治疗,所以检查在注射111In标记的抗体之前3天首先接受0.2mg/kg(250μg蛋白)的hRS7 ADC的预剂量(predose)的一组动物中的肿瘤摄取。相较于未接受预剂量的动物,在每个时间点,接受预剂量的小鼠中肿瘤对111In-hRS7-CL2A-SN-38的摄取都实质上降低(例如在72小时,与未给予预剂量的动物中的25.4%±8.1%ID/g相比,预剂量肿瘤摄取是12.5%±3.8%ID/g;P=0.0123;未显示http:// clincancerres.aacrjournals.org/content/17/10/3157.long-F4)。预剂量对血液清除或组织摄取不具有可察觉的影响(未显示)。这些研究表明在一些肿瘤模型中,特异性抗体的肿瘤堆积可通过在先剂量来降低,这可能解释为何治疗反应的特异性可随着增加ADC剂量而减弱,以及为何不需要进一步升高剂量。
hRS7-CL2A-SN-38在Swiss-Webster小鼠和猕猴中的耐受性-Swiss-Webster小鼠耐受在3天内的2剂(各自是4、8和12mg SN-38/kg的hRS7-CL2A-SN-38),伴有最小短暂体重减轻(未显示)。未出现造血毒性,并且血清化学仅显示天冬氨酸转氨酶(AST,图6A)和丙氨酸转氨酶(ALT,图6B)升高。在治疗之后7天,所有3个治疗组中的AST都升高超过正常水平(>298 U/L)(图6A),其中最大比例的小鼠是在2×8mg/kg组中。然而,到治疗后15天,大多数动物在正常范围内。在治疗7天内,ALT水平也高于正常范围(>77 U/L)(图6B),并且到第15天具有正常化的迹象。来自所有这些小鼠的肝都不显示组织损害的组织学迹象(未显示)。就肾功能而言,在治疗组中,仅葡萄糖和氯化物水平稍微升高。在2×8mg/kg下,7只小鼠中的5只具有略微升高的葡萄糖水平(273-320mg/dL的范围,正常值的上端是263mg/dL),其到注射后15天恢复正常。类似地,在2个最高剂量组中,氯化物水平略微升高,在116至127mmol/L的范围内(正常范围的上端是115mmol/L)(2×8mg/kg组中的57%,以及2×12mg/kg组中的100%小鼠),并且到注射后15天保持升高。这也可表明胃肠毒性,因为大多数氯化物通过由消化道吸收来获得;然而,在结束时,在检查的任何器官系统中都不存在组织损害的组织学迹象(未显示)。
因为小鼠不表达由hRS7鉴定的Trop-2,所以确定hRS7缀合物供临床使用的潜力需要更合适的模型。免疫组织学研究显示人和猕猴两者中的多个组织中的结合(乳腺、眼、胃肠道、肾、肺、卵巢、输卵管、胰腺、甲状旁腺、前列腺、唾液腺、皮肤、胸腺、甲状腺、扁桃腺、输尿管、膀胱和子宫;未显示)。基于该交叉反应性,在猴中进行耐受性研究。
接受2×0.96mg SN-38/kg的hRS7-CL2A-SN-38的组在输注之后以及直至研究结束不具有重大临床事件。体重减轻不超过7.3%,并且到第15天恢复至驯化体重。注意到大多数血液计数数据的短暂降低(中性粒细胞和血小板数据显示于图6C和图6D),但数值未下降至正常范围以下。未发现血清化学的异常值。在第11天(在末次注射之后8天)尸检的动物的组织病理学显示造血器官(胸腺、下颌淋巴结和肠系膜淋巴结、脾和骨髓)、胃肠器官(胃、十二指肠、空肠、回肠、盲肠、结肠和直肠)、雌性生殖器官(卵巢、子宫和阴道)以及在注射部位处的显微镜下改变。这些改变在所有组织中是在最小至中度的范围内,并且在恢复期结束时(第32天)都完全逆转,例外之处是在胸腺和胃肠道中,其趋势是在这个随后的时间点完全恢复(未显示)。
在2×1.92mg SN-38/kg剂量水平的缀合物下,存在1例由胃肠并发症和骨髓抑制引起的死亡,并且相比于2×0.96mg/kg组,这个组内的其它动物显示类似但更重度的不良事件(未显示)。这些数据表明剂量限制性毒性与伊立替康的该毒性相同;即肠和血液学毒性。因此,hRS7-CL2A-SN-38的MTD处于2×0.96与1.92mg SN-38/kg之间,其代表2×0.3至0.6mg/kg SN-38的人等效剂量。
讨论
Trop-2是一种在包括肺癌、乳腺癌、结肠直肠癌、胰腺癌、前列腺癌和卵巢癌的许多上皮肿瘤上表达的蛋白,从而使得它成为对于递送细胞毒性剂潜在重要的靶(Ohmachiet al.,2006,Clin Cancer Res 12:3057-63;Fong et al.,2008,Br J Cancer 99:1290-95;Cubas et al.,2009,Biochim Biophys Acta 1796:309-14)。RS7抗体在结合于Trop-2时内化(Shih等,1995,Cancer Res 55:5857s-63s),这使得能够直接细胞内递送细胞毒毒性剂。
SN-38是一种强效的拓扑异构酶I抑制剂,在几种细胞系中的IC50值在纳摩尔范围内。它是用于治疗结肠直肠癌,并且在肺癌、乳腺癌和脑癌中也具有活性的前药伊立替康的活性形式。我们推断通过克服CPT-11向活性SN-38的较低以及患者可变的生物转化(Mathijssen et al.,2001,Clin Cancer Res 7:2182-94),以ADC形式存在的直接靶向的SN-38将是相对于CPT-11显著改进治疗剂。
插入原始CL2衍生物中的Phe-Lys肽允许通过组织蛋白酶B的可能的裂解。为简化合成过程,在CL2A中,苯丙氨酸被去除,因此组织蛋白酶B裂解位点被移除。有趣的是,相较于用CL2获得的宽泛分布图,该产物具有轮廓更加分明的色谱分布图(未显示),但更重要的是,在并排测试中,该改变对缀合物的结合或稳定性不具有影响,并且令人惊讶地产生了效能的小的增加。
hRS7ADC针对一系列实体瘤细胞系的体外细胞毒性一致地具有在nmol/L范围内的IC50值。然而,与ADC相比,暴露于游离SN-38的细胞显示更低IC5n值。游离与缀合的SN-38之间的这个不一致性也对于ENZ-2208(Sapra等,2008,Clin Cancer Res 14:1888-96,Zhaoet al.,2008,Bioconjug Chem 19:849-59)和NK012(Koizumi等,2006,Cancer Res 66:10048-56)进行了报道。ENZ-2208利用分支PEG来达成每个PEG连接约3.5至4个SN-38分子,而NK012是含有20重量%SN-38的胶束纳米粒子。使用我们的ADC,这个不一致性(即游离SN-38与缀合的SN-38的效能比率)随着肿瘤细胞中的Trop-2表达水平增加而降低,表明药物的靶向递送的优势。就体外血清稳定性而言,CL2-与CL2A-SN-38两种形式的hRS7-SN-38均产生约20小时的t/1/2,此与对于ENZ-2208报道的12.3分钟的短t/1/2形成对比(Zhao等,2008,Bioconjug Chem 19:849-59),但类似于在生理条件下在24小时之后SN-38从NK012的57%释放(Koizumi等,2006,Cancer Res 66:10048-56)。
在5个不同肿瘤模型中,用hRS7-SN-38(采用CL2-SN-38或CL2A-SN-38)治疗携带肿瘤的小鼠显著抑制肿瘤生长。在它们中的4个中,观察到肿瘤消退,并且在Calu-3的情况下,接受最高剂量的hRS7-SN-38的所有小鼠在研究结束时都无肿瘤。不同于在人中,伊立替康在小鼠中由血浆酯酶极其高效转化成SN-38,具有大于50%的转化率,并且在小鼠中比在人中产生更高效力(Morton et al.,2000,Cancer Res 60:4206-10;Furman et al.,1999,JClin Oncol 17:1815-24)。当在10倍或等同SN-38水平下施用伊立替康时,hRS7-SN-38在控制肿瘤生长方面显著更好。仅当伊立替康在它的MTD,即24mg/kg q2dx5(37.5倍的SN-38)下施用时,它才与hRS7-SN-38具有相等有效性。在患者中,我们将预期这个优势甚至更加有利于hRS7-CL2A-SN-38,因为伊立替康的生物转化将实质上更低。
我们也显示在一些表达抗原的细胞系诸如SK-MES-1中,使用抗原结合ADC不保证比非结合无关缀合物更好的治疗反应。这不是不常见或出乎意料的发现。实际上,当与伊立替康相比时,早先提及的非结合SN-38缀合物使治疗活性增强,因此预期无关IgG-SN-38缀合物具有一定活性。这与肿瘤具有相比于正常组织,允许大分子更好通过的不成熟渗漏血管的事实相关(Jain,1994,Sci Am 271:58-61)。使用我们的缀合物,当使pH降低至模拟溶酶体水平的水平时(例如在37℃下pH 5.3;数据未显示),50%的SN-38将在约13小时内释放,而在血清的中性pH下,释放速度减少到约1/2。如果无关缀合物进入酸性肿瘤微环境,那么预期它会局部释放一些SN-38。诸如肿瘤生理学和对药物的先天性敏感性的其它因素也将在确定这个“基线”活性方面起作用。然而,具有较长滞留时间的特异性缀合物应具有相对于这个基线反应增强的效能,只要存在充足抗原来捕获特异性抗体即可。在SK-MES-1模型中进行的生物分布研究也显示如果肿瘤抗原由于连续给药而变得饱和,那么肿瘤对特异性缀合物的摄取降低,这产生与用无关缀合物发现的治疗结果类似的治疗结果。
尽管在我们的ADC与其它SN-38递送剂的公开报道之间进行直接比较具有挑战,但可进行一些一般性观察。在我们的治疗研究中,最高个体剂量是0.4mg/kg的SN-38。在Calu-3模型中,在20g小鼠中给予仅4次注射以达到总累积剂量1.6mg/kg SN-38或32μg SN-38。使用ENZ-2208的MTD即10mg/kg×5,用ENZ-2208进行了多个研究(Sapra et al.,2008,ClinCancer Res 14:1888-96;Pastorini et al.,2010,Clin Cancer Res 16:4809-21),并且用NK012进行的临床前研究涉及它的MTD即30mg/kg×3(Koizumi et al.,2006,Cancer Res66:10048-56)。因此,使用ENZ-2208和NK012的报道剂量1/30和1/55的SN-38当量的hRS7-SN-38获得了显著抗肿瘤作用。即使使用1/10的hRS7ADC(0.04mg/kg),也观察到显著抗肿瘤作用,而较低剂量的ENZ-2208未显示,并且当使NK012剂量到1/4即达到7.5mg/kg时,效力丧失(Koizumi等,2006,Cancer Res 66:10048-56)。正常小鼠在24mg/kg SN-38历经1周达成的累积剂量(1,500mg/kg的缀合物)下不显示急性毒性,表明MTD较高。因此,用1/15-1/7.5量的SN-38当量有效治疗了携带肿瘤的动物。
生物分布研究揭示hRS7-CL2A-SN-38与亲本hRS7 IgG具有相似肿瘤摄取,但以2倍的肝摄取被实质上更快清除,此可归因于SN-38的疏水性。由于ADC通过肝来清除,所以预期肝毒性和胃肠毒性是剂量限制性的。尽管小鼠具有肝转氨酶增加的迹象,但胃肠毒性充其量是轻度的,伴有仅短暂体重减轻,并且在组织病理学检查时未注意到异常。有趣的是,未注意到血液学毒性。然而,猴显示与对于伊立替康所预期相同的毒性谱,其中胃肠毒性和血液学毒性是剂量限制性的。
因为由hRS7识别的Trop-2不在小鼠中表达,所以重要的是在与人具有Trop-2的相似组织表达的猴中进行毒性研究。猴耐受0.96mg/kg/剂(约12mg/m2),伴有轻度和可逆毒性,此外推至约0.3mg/kg/剂(约11mg/m2)的人剂量。在NK012的I期临床试验中,患有实体瘤的患者耐受每3周28mg/m2的SN-38,以4级中性粒细胞减少症作为剂量限制性毒性(DLT;Hamaguchi等,2010,Clin Cancer Res 16:5058-66)。类似地,用ENZ-2208进行的I期临床试验揭示剂量限制性发热性中性粒细胞减少症,推荐每3周施用10mg/m2,或如果患者施用G-CSF,那么施用16mg/m2(Kurzrock et al.,AACR-NCI-EORTC International Conferenceon Molecular Targets and Cancer Therapeutics;2009 Nov 15-19;Boston,MA;PosterNo C216;Patnaik et al.,AACR-NCI-EORTC International Conference on MolecularTargets and Cancer Therapeutics;2009Nov 1519;Boston,MA;Poster No C221)。因为猴耐受22mg/m2的累积人等效剂量,所以看起来即使hRS7结合许多正常组织,单次hRS7ADC治疗的MTD可与其它非靶向SN-38药剂的MTD相似。实际上,抗Trop-2抗体的特异性似乎不在确定DLT方面起作用,因为毒性谱类似于伊立替康的毒性谱。更重要的是,如果可如同对仅仅0.03mg SN-38当量/kg/剂的人等效剂量有反应的小鼠中那样在人中实现抗肿瘤活性,那么可以在临床上实现显著抗肿瘤反应。
综上所述,猴中的毒理学研究与小鼠中的体内人癌异种移植物模型的组合已表明靶向Trop-2的这种ADC是在不同上皮来源的几种肿瘤中的有效治疗剂。
实施例4.抗Trop-2抗体的细胞结合测定
获得两种不同的针对人Trop-2的鼠单克隆抗体用于ADC缀合。第一种,即162-46.2,是从在滚瓶中生长的杂交瘤(ATCC,HB-187)纯化的。第二种抗体,即MAB650,是从R&DSystems(Minneapolis,MN)购买的。为了比较结合,将Trop-2阳性人胃癌NCI-N87用作靶。在结合测定前一天,将细胞(1.5x105/孔)铺板在96孔板中。次日早晨,用162-46.2、MAB650和鼠RS7(0.03至66nM)生成剂量/反应曲线。这些第一抗体与细胞一起在4℃下温育1.5小时。洗涤孔,在所有孔中加入抗小鼠-HRP第二抗体,4℃下持续1小时。再次洗涤孔,然后加入发光底物。使用Envision读板仪读取板,并且将数值报道为相对发光单位。
所有三种抗体具有相似的KD值,RS7是0.57nM,162-46.2是0.52nM,MAB650是0.49nM。但是,当比较162-46.2和MAB650与RS7的最大结合(Bmax)时,它们分别减少了25%和50%(RS7的BMax是11,250,162-46.2的BMax是8,471,MAB650的BMax是6,018),表明与RS7相比不同的结合特性。
实施例5.抗Trop-2 ADC(MAB650-SN-38)的细胞毒性
用SN-38和MAB650制备一种新的抗Trop-2ADC,从而产生6.89的平均药物对抗体取代比率。使用两种不同人胰腺腺癌细胞系(BxPC-3和Capan-1)和人三阴性乳腺癌细胞系(MDA-MB-468)作为靶,进行细胞毒性测定以比较MAB650-SN-38和hRS7-SN-38 ADCs。
在添加ADCs之前一天,从组织培养物收获细胞,并且铺板至96孔板中。次日,使细胞暴露于在3.84x10-12至2.5x10-7M的药物范围下的hRS7-SN-38、MAB650-SN-38和游离SN-38。未缀合MAB650在与MAB650-SN-38等同的蛋白剂量下用作对照。使板在37℃下温育96小时。在此温育期之后,将MTS底物添加至所有板中,并且以半小时间隔读取显色直至未治疗细胞的OD492nm达到约1.0。使用Microsoft Excel和Prism软件(非线性回归以产生S形剂量反应曲线,所述曲线产生IC50值),将生长抑制测量为相对于未治疗细胞的生长百分比。
如图7所示,在这些细胞系中,hRS7-SN-38和MAB650-SN-38具有相似的生长抑制作用,IC50值在对于SN-38-ADCs是典型的低nM范围内。在人Capan-1胰腺腺癌细胞系中(图7A),与MAB650-SN-38 ADC的4.1nM和游离SN-38的1.0nM相比,hRS7-SN-38 ADC显示3.5nM的IC50。在人BxPC-3胰腺腺癌细胞系中(图7B),与MAB650-SN-38 ADC的3.0nM和游离SN-38的1.0nM相比,hRS7-SN-38 ADC显示2.6nM的IC50。在人NCI-N87胃腺癌细胞系的情况下(图7C),与MAB650-SN-38 ADC的4.1nM和游离SN-38的4.3nM相比,hRS7-SN-38 ADC显示3.6nM的IC50
概言之,在这些体外测定中,两种抗Trop-2抗体hRS7和MAB650的SN-38缀合物显示针对几种肿瘤细胞系的相等效力,其与游离SN-38的效力相似。由于相比于在体外,抗Trop-2抗体的靶向功能在体内将是重要得多的因素,数据支持抗Trop-2-SN-38 ADCs作为将在体内高度有效的类别,如上文实施例中对于hRS7-SN-38所证明的。
实施例6.抗Trop-2 ADC(162-46.2-SN-38)的细胞毒性
用SN-38和162-46.2制备一种新的抗Trop-2 ADC,从而产生6.14的药物对抗体取代比率。使用两种不同的Trop-2阳性细胞系作为靶,即BxPC-3人胰腺腺癌和MDA-MB-468人三阴性乳腺癌,进行细胞毒性测定以比较162-46.2-SN-38和hRS7-SN-38 ADCs。
在添加ADC之前一天,从组织培养物收获细胞,并且以每孔2000个细胞铺板至96孔板中。次日,使细胞暴露于在3.84x 10-12至2.5x10-7M的药物范围下的hRS7-SN-38、162-46.2-SN-38或游离SN-38。未缀合162-46.2和hRS7在分别与162-46.2-SN-38和hRS7-SN-38相同的蛋白等同剂量下用作对照。使板在37℃下温育96小时。在该温育期之后,将MTS底物添加至所有板中,并且以半小时间隔读取显色直至未治疗对照孔具有约1.0的OD492nm读数。使用Microsoft Excel和Prism软件(非线性回归以产生S形剂量反应曲线,所述曲线产生IC50值),将生长抑制测量为相对于未治疗细胞的生长百分比。
如图8A和图8B所示,当与hRS7-SN-38相比时,162-46.2-SN-38ADC具有相似的IC50值。当针对BxPC-3人胰腺腺癌细胞系测试时(图8A),与162-46.2-SN-38的10.6nM和游离SN-38的1.6nM相比,hRS7-SN-38具有5.8nM的IC50。当针对MDA-MB-468人乳腺腺癌细胞系测试时(图8B),与162-46.2-SN-38的6.1nM和游离SN-38的0.8nM相比,hRS7-SN-38具有3.9nM的IC50。单独游离抗体显示对任一Trop-2阳性癌细胞系的少许细胞毒性。
概言之,将缀合于相同细胞毒性药物的三种不同抗Trop-2抗体的体外效力进行比较,所有三种ADCs都展现针对多种Trop-2阳性癌细胞系的等同细胞毒性作用。这些数据支持掺入药物缀合的ADCs中的这类抗Trop-2抗体是用于表达Trop-2的实体瘤的有效抗癌治疗剂。
实施例7.用包含缀合于SN-38的hRS7抗体的MMU-132抗Trop-2ADC进行的临床试验
概述
本实施例报道来自用IMMU-132进行的I期临床试验和正在进行的II期延展的结果,所述IMMU-132是通过pH敏感性接头缀合于SN-38的内化人源化hRS7抗Trop-2抗体的ADC(平均药物-抗体比率=7.6)。Trop-2是一种由许多人类癌以高密度(约1x 105)、频率和特异性表达的I型跨膜钙转导蛋白,具有有限的正常组织表达。在携带Capan-1人胰腺肿瘤异种移植物的裸鼠中进行的临床前研究已显示相比于源自最大程度耐受的伊立替康治疗的SN-38,IMMU-132能够将多达120倍的SN-38递送至肿瘤。
本实施例报道多种先前治疗(一些治疗包括拓扑异构酶I/II抑制药物)已失败的25个患者的初始I期试验,以及目前报道69个患者的正在进行的II期延展,包括结肠直肠癌(CRC)、小细胞肺癌和非小细胞肺癌(分别是SCLC、NSCLC)、三阴性乳腺癌(TNBC)、胰腺癌(PDC)、食道癌和其它癌。
如以下详细讨论的,Trop-2未在血清中检测到,但在大多数存档肿瘤中强表达(≥2+免疫组织化学染色)。在3+3试验设计中,在剂量限制性中性粒细胞减少症之前,在重复的21天周期的第1和8天给予IMMU-132,以8mg/kg/剂开始,接着是12和18mg/kg。为在最小延迟下使累积治疗最优化,II期集中于8和10mg/kg(分别是n=30和14)。在此时报告相关AE的49个患者中,≥3级的中性粒细胞减少症出现在28%中(4%4级)。这些患者中的初始最常见非血液学毒性是疲劳(55%;≥G3=9%)、恶心(53%;≥G3=0%)、腹泻(47%;≥G3=9%)、脱发(40%)和呕吐(32%;≥G3=2%);脱发也频繁出现。纯合性UGT1A1*28/*28见于6个患者中,其中2个具有更严重血液学毒性和胃肠毒性。
在I期和扩展期中,目前有48个患者(排除PDC)可通过RECIST/CT评估最佳反应。7个(15%)患者具有部分反应(PR),包括患有CRC(N=1)、TNBC(N=2)、SCLC(N=2)、NSCLC(N=1)和食道癌(N=1)的患者,并且另外27个患者(56%)具有稳定疾病(SD),总计38个患者(79%)具有疾病反应;13个CT可评估PDC患者中的8个(62%)具有SD,与他们的末次先前治疗的8.0周相比,具有12.7周的中位进展时间(TTP)。剩余48个患者的TTP是12.6+周(范围是6.0至51.4周)。血浆CEA和CA19-9与反应相关联,他们血液中这些抗原的滴度升高。尽管历经数月进行给药,但未检测到抗hRS7抗体或抗SN-38抗体。
缀合物在3天内从血清清除,这与体内动物研究一致,其中每日释放50%的SN-38,血清中>95%的SN-38以非葡糖醛酸化形式结合于IgG,并且浓度是给予伊立替康的患者中报道的SN-38浓度的100倍。这些结果显示含有hRS7-SN-38的ADC在转移性实体癌中具有治疗活性,伴有可控制的腹泻和嗜中性白细胞减少症。
药代动力学
两种ELISA方法用于测量IgG(用抗hRS7独特型抗体捕获)和完整缀合物(用抗SN-38 IgG捕获/用抗hRS7独特型抗体探测)的清除。通过HPLC来测量SN-38。总体IMMU-132组分(完整缀合物)比IgG更快速清除(未显示),从而反映SN-38从缀合物的已知逐渐释放。SN-38(未结合的和总的)的HPLC测定显示血清中>95%的SN-38结合于IgG。低浓度的SN-38G表明结合于IgG的SN-38被保护免受葡糖醛酸化。缀合物ELISA和SN-38 HPLC的比较显示两者重叠,从而表明ELISA是用于监测SN-38清除的替代方法。
给药方案和患者库的概述提供于表5中。
表5.临床试验参数
临床试验状况
报道了总计69个患有多种转移性癌、具有中位数为3次的先前治疗的患者(包括I期中的25个患者)。8个患者具有临床进展,并且在CT评估之前退出。分开报道了13个CT可评估胰腺癌患者。与先前末次治疗的8周中位TTP相比,PDC患者中的中位TTP(进展时间)是11.9周(范围是2至21.4周)。
总计48个患有不同癌的患者进行至少1次CT评估,由此确定最佳反应(图9)和进展时间(TTP;图20)。为概括最佳反应数据,在8个可评估的患有TNBC(三阴性乳腺癌)的患者中,有2个PR(部分反应),4个SD(稳定疾病)和2个PD(进展性疾病),总反应[PR+SD]是6/8(75%)。对于SCLC(小细胞肺癌),在4个可评估患者中,有2个PR,0个SD和2个PD,总反应是2/4(50%)。对于CRC(结肠直肠癌),在18个可评估患者中,有1个PR,11个SD和6个PD,总反应是12/18(67%)。对于食道癌,在4个可评估患者中,有1个PR,2个SD和1个PD,总反应是3/4(75%)。对于NSCLC(非小细胞肺癌),在5个可评估患者中,有1个PR,3个SD和1个PD,总反应是4/5(80%)。对于所有治疗的患者,在48个可评估患者中,有7个PR,27个SD和14个PD,总反应是34/48(71%)。这些结果证明抗Trop-2 ADC(hRS7-SN-38)在人患者中显示针对大范围的实体瘤的显著临床效力。
报道的治疗副作用(不良事件)概括于表6中。如由表6的数据显而易见,在显示可接受低水平的不良副作用的ADC剂量下实现了hRS7-SN-38的疗效。
表6
继续进行了表6中报道的研究,迄今为止已有261个患者入选。结果(未显示)普遍与表6所示一致,仅仅中性粒细胞减少症显示3级或更高级不良事件的发生率超过了测试患者的10%。对于所有其它不良事件,3级或更高级反应的发生率低于10%。这区分了本申请的ADCs与大多数ADCs,并且在某些实施方案中,所要求保护的方法和组合物涉及在多种实体瘤中显示效力的抗Trop-2ADCs,对于除中性粒细胞减少症之外的所有不良事件,其3级或更高级不良事件的发生率低于患者的10%。在一项随访研究中,在来自可获得基线和至少一个随访样品的121个患者的总共421个样品中,尽管采用了重复的治疗周期,但没有检测到抗hR37或抗SN-38抗体反应。
对抗Trop-2ADC的示例性部分反应由CT数据确认(未显示)。作为CRC中的一个示例性PR,1个首次被诊断有CRC的62岁女性经受初次半结肠切除术。4个月后,她进行针对肝转移的肝切除,并且接受7个月的FOLFOX治疗和1个月的5FU。她主要在肝中呈现有多个病变(通过免疫组织学测定3+Trop-2),在初始诊断之后约1年以8mg/kg的起始剂量进入hRS7-SN-38试验。在她的首次CT评估时,实现PR,靶病变缩小37%(未显示)。所述患者继续治疗,在治疗10个月之后实现减少65%的最大缩小(未显示),伴有CEA从781ng/mL降低至26.5ng/mL,随后在3个月后进展。
作为NSCLC中的一个示例性PR,1个65岁男性被诊断有IIIB期NSCLC(鳞状细胞)。卡铂/依托泊苷(3个月)与7000cGy XRT协同进行的初始治疗导致持续10个月的反应。他接着开始特罗凯(Tarceva)维持治疗,他继续所述维持治疗直至他被考虑进行IMMU-132试验,此外还进行腰部椎板切除术。他在5个月的特罗凯之后接受第一剂IMMU-132,在当时在右肺中呈现有5.6cm病变,伴有大量胸腔积液。在2个月后,他已刚好完成他的第6剂,此时首次CT显示原发性靶病变缩小至3.2cm(未显示)。
作为SCLC中的一个示例性PR,1个65岁女性被诊断有不良分化的SCLC。在接受在2个月之后以无反应结束的卡铂/依托泊苷(拓扑异构酶-II抑制剂),继之以在2个月之后也以无反应结束的拓扑替康(拓扑异构酶-I抑制剂)之后,她接受在1个月后结束的局部XRT(3000cGy)。然而,到次月,进展已继续。所述患者在次月开始采用IMMU-132(12mg/kg;降低至6.8mg/kg;Trop-2表达3+),并且在2个月的IMMU-132之后,靶病变缩小38%,包括出现主要肺病变的实质性缩小(未显示)。该患者在接受12剂之后在3个月后进展。
这些结果是有意义的,因为它们证明抗Trop-2ADC甚至在多种先前治疗之后已失败或进展的患者中也是有效的。综上所述,在所用剂量下,主要毒性是可控制的中性粒细胞减少症,伴有少许3级毒性。IMMU-132在患有三阴性乳腺癌、小细胞肺癌、非小细胞肺癌、结肠直肠癌和食道癌的复发/难治的患者中显示活性迹象(PR和持久SD),所述患者包括对拓扑异构酶I抑制剂治疗具有先前复发史的患者。这些结果显示抗Trop-2ADC在大范围的对现存治疗具有抗性的癌中的效力。
实施例8.不同抗Trop-2 ADCs的比较效力
在携带人胃癌异种移植物(NCI-N87)的小鼠中将与SN-38缀合的鼠抗Trop-2单克隆抗体(162-46.2)的疗效与hRS7-SN-38抗体-药物缀合物(ADC)进行比较。在组织培养物中扩增NCI-N87细胞,并且用胰蛋白酶/EDTA收获。用与matrigel 1∶1混合的200μLNCI-N87细胞悬浮液皮下注射雌性无胸腺裸鼠,使得给每只小鼠施用1x107个细胞。一旦肿瘤接近大约0.25cm3大小(6天后),将动物分成7个不同的治疗组,每组9只小鼠。对于SN-38 ADCs,小鼠每周接受一次500μg静脉注射,持续2周。对照小鼠以相同的剂量/方案接受非肿瘤靶向hA20-SN-38ADC。最后一组小鼠仅接受盐水并且作为未治疗的对照。每周两次测量肿瘤并给小鼠称重。如果小鼠的肿瘤体积超过1.0cm3大小,则由于疾病进展而使它们安乐死。
SN-38-ADC治疗的小鼠的平均肿瘤体积示于图11。如曲线下面积(AUC)确定的,当与盐水和hA20-SN-38对照小鼠比较时,hRS7-SN-38和162-46.2-SN-38两者都显著抑制肿瘤生长(P<0.001)。用hRS7-SN-38治疗在9只小鼠的7只中实现了稳定疾病,平均肿瘤进展时间(TTP)是18.4±3.3天。用162-46.2-SN-38治疗的小鼠在9只小鼠的6只中实现了阳性反应(positive response),其余3只实现了稳定疾病。平均TTP是24.2±6.0天,这比hRS7-SN-38治疗的动物显著更长(P=0.0382)。
这些结果证实了不同抗Trop-2 ADCs用于治疗人胃癌的体内效力。
实施例9.用抗Trop-2 ADC治疗患有晚期转移性胰腺癌的患者
概述
IMMU-132(hRS7-SN-38)是通过pH敏感性接头以7.6的平均药物-抗体比率缀合于SN-38(伊立替康的活性代谢物)的包含癌细胞内化人源化抗Trop-2 hRS7抗体的抗Trop-2ADC。Trop-2是一种在许多上皮癌,包括胰导管腺癌中以高密度、频率和特异性表达的I型跨膜钙转导蛋白,具有有限的正常组织表达。通过免疫组织化学测试的所有29个胰腺肿瘤微阵列标本都是Trop-2阳性的,并且发现人胰腺癌细胞系在细胞膜上表达115k-891kTrop-2拷贝。
我们在上文报道了来自入选了有13种不同肿瘤类型的患者、使用3+3设计的IMMU-132 I期研究的结果。I期剂量限制性毒性是中性粒细胞减少症。该研究中24个可评估患者中超过80%具有长期稳定的疾病,其中在患有结肠直肠癌(CRC)、三阴性乳腺癌(TNBC)、小细胞和非小细胞肺癌(SCLC,NSCLC)和食道癌(EAC)的患者中观察到了部分反应(RECIST)。本实施例报道了来自患有转移性PDC的患者的IMMU-132I/II期研究队列的结果。在重复的21天周期中,在第1和8天给予先前治疗(中位数为2次,范围1-5次)失败的PDC患者IMMU-132。
在PDC患者的亚组(N=15)中,14个接受过先前含吉西他滨的治疗方案。来自9个患者的初始毒性数据发现中性粒细胞减少症[9个中的3个≥G3,33%;以及1例G4发热性中性粒细胞减少症),其导致剂量延迟或剂量降低。2个患者具有3级腹泻,没有患者具有3-4级恶心或呕吐。脱发(1-2级)出现于9个患者中的5个。最佳反应在14个患者的13个中是可评估的,其中8个稳定疾病持续8-21.4周(中位数12.7周;所有14个患者11.9周)。1个继续治疗的患者还没有进行他们的第一次CT评估。5个根据RECIST判断具有进展疾病;1个由于临床进展在仅仅1剂后退出并且是不可评估的。具有稳定疾病的患者的3个中的血清CA19-9滴度降低了23-72%。尽管多次施用,患者都没有发生对IMMU-132或SN-38的抗体反应。峰和谷血清样品显示IMMU-132比IgG更快清除,基于已知的SN-38在肿瘤细胞内的局部释放,这是预料到的。来自一个给予12mg/kg IMMU-132的患者的峰样品中的与IgG结合的SN-38的浓度显示约4000ng/mL的水平,这是给予伊立替康治疗的患者中报道的SN-38滴度的40倍。
我们的结论是IMMU-132在多次先前治疗失败的PDC患者的62%(8/13)中是有活性的(长期稳定疾病),伴有可控制的中性粒细胞减少症和少许GI毒性。可以在21天周期的第1和8天给予晚期PCD患者8-10mg/kg IMMU-132的重复治疗周期(>6),在后续治疗周期中有一些针对中性粒细胞减少症的剂量调整或生长因子支持。这些结果与施用IMMU-132已经显示部分反应和长期稳定疾病的患有晚期CRC、TNBC、SCLC、NSCLC、EAC的患者中的发现一致。概言之,单一治疗IMMU-132是一种用于PDC患者(包括患有先前对其它PDC治疗方案有抗性的肿瘤的那些)的新的有效治疗方案。
方法和结果
Trop-2表达-使用PE珠,通过流式细胞术测定Trop-2在多种癌细胞系表面上的表达。在不同细胞系中检测到的Trop-2分子数目的结果是:BxPC-3胰腺癌(891,000);NCI-N87胃癌(383,000);MDA-MB-468乳腺癌(341,000);SK-MES-1鳞状细胞肺癌(27,000);Capan-1胰腺癌(115,000);AGS胃癌(78,000)COLO 205结肠癌(52,000)。也在29个胰腺腺癌的组织微阵列的29个(100%)中观察到了Trop-2表达(未显示)。
SN-38积累-在携带Capan-1人胰腺癌异种移植物(约0.06-0.27g)的裸鼠中测定SN-38积累。给小鼠静脉注射伊立替康40mg/kg(773μg;总SN-38当量=448μg)。该剂量是小鼠中的MTD。人等效剂量=3.25mg/kg或约126mg/m2。或者给小鼠静脉注射IMMU-1321.0mg(SN-38:抗体比率=7.6;SN-38当量=20μg)。该剂量充分低于小鼠中的MTD。人等效剂量约4mg/kg IMMU-132(约80μg/kg SN-38当量)。在注射伊立替康的小鼠中以5分钟、1、2、6和24小时的间隔,或在注射IMMU-132的小鼠中,以1、6、24、48和72小时的间隔在3只动物上进行尸检。提取组织,并且通过反相HPLC分析来分析SN-38、SN-38G和伊立替康。来自IMMU-132治疗的动物的提取物也进行了酸水解以从缀合物释放SN-38(即SN-38(总的])。示于图12的结果证明了尽管用IMMU-132ADC施用了1/22的SN-38当量,但该ADC与伊立替康相比具有给肿瘤递送120倍SN-38的潜能。
IMMU-132临床方案-在I/II期研究中使用的方案在下表7中指出。
根据上文概括的方案给患者施用IMMU-132。在IMMU-132治疗前对末次先前治疗的反应评估概括于图13。对IMMU-132施用的反应评估示于图14。施用IMMU-132后的进展时间(TTP)的概括示于图15。
一个示例性病例研究如下。一个最初诊断患有转移性胰腺癌(肝)的34岁白人男性在多次化学治疗方案,包括吉西他滨/埃罗替尼/FG-3019、FOLFIRINOX和GTX后进展,然后引入IMMU-132(21天的周期中第1和8天给予8mg/kg剂量)。患者接受该药物4个月,有良好症状的耐受、疼痛改善、CA19-9的72%最大下降(从15885 U/mL到4418 U/mL),以及通过CTRECIST标准判断为稳定疾病,并且伴有肿瘤坏死的迹象。由于肝脓肿不得不暂停了治疗;该患者在约6周后,即治疗开始后6个月死亡。
结论
临床前研究表明与给予伊立替康时相比,IMMU-132给人胰腺肿瘤异种移植物递送120倍量的SN-38。作为入选了患有多种转移性实体癌的患者的更大研究的一部分,基于可控制的中性粒细胞减少症和腹泻作为主要副作用,确定了IMMU-132的2期剂量为8至10mg/kg。即使采用重复的治疗周期,迄今为止还没有检测到抗-抗体或抗SN-38抗体。
14个在中位数为2次的先前治疗后复发的晚期PDC患者的研究显示了CT确认的抗肿瘤活性,其由具有稳定疾病的8/13(62%)组成。与从末次先前治疗估计的8.0周相比,13个CT可评估患者的中位TTP持续时间是12.7周。该ADC代表了采用ADCs的胰腺癌治疗中的新的有效策略,该ADC具有已知药物(其具有纳摩尔毒性),该药物通过提供肿瘤位点上的裂解的接头与靶向许多上皮癌上普遍存在的Trop-2的抗体缀合。与目前对胰腺癌患者的医护标准相比,胰腺癌患者中,特别是那些对多次先前治疗有抗性的患者中进展时间的延长是令人惊讶的,并且不能预测。
实施例10.组合抗体靶向的放射(放射免疫治疗)和抗Trop-2-SN-38 ADC改进胰腺癌治疗
我们之前报道了用90Y-人源化PAM4 IgG(hPAM4;90Y-clivatuzumab tetraxetan)在携带人胰腺肿瘤的裸鼠中的有效抗肿瘤活性,当与吉西他滨(GEM)组合时该活性增强(Gold等,Int J.Cancer 109:618-26,2004;Clin Cancer Res 9:3929S-37S,2003)。这些研究引起了与GEM组合的分级分离的90Y-hPAM4 IgG的临床测试,所述测试显示令人鼓舞的客观反应。尽管已知GEM的放射致敏能力,单独的它不是非常有效的胰腺癌治疗剂,并且它的剂量受到血液学毒性的限制,该毒性对于90Y-hPAM4 IgG也是限制性的。
如上文实施例中讨论的,由与SN-38连接的hRS7 IgG组成的抗Trop-2 ADC在多种实体瘤中显示抗肿瘤活性。该ADC在小鼠中是非常良好耐受的(例如≥60mg),而仅仅4.0mg(0.5mg,每周两次x4)就是显著治疗性的。Trop-2也在大多数胰腺癌中表达。
本研究在携带人胰腺癌细胞系Capan-1的0.35cm3皮下异种移植物的裸鼠中检查了90Y-hPAM4 IgG与RS7-SN-38的组合。用单剂量的单独的90Y-hPAM4 IgG(130μCi,即最大耐受剂量(MTD)或75μCi)、单独的RS7-SN-38(如上文)或所述两种90Y-hPAM4剂量水平下的这两种药剂的组合(第一次ADC注射与90Y-hPAM4在同一天给予)治疗小鼠(n=10)。所有治疗都是耐受的,体重减轻≤15%。大多数中动物中出现了客观反应,但与单独给予每种药剂相比,在两个组合组中,它们更强。0.13-mCi90Y-hPAM4 IgG+hRS7-SN-38组中的所有动物在4周内实现了无肿瘤状态,而其它的动物继续具有持续疾病的迹象。这些研究提供了组合的放射免疫治疗和ADC在安全剂量下增强了效力的第一个证据。
在正在进行的PAM4临床试验中,进行了4周的临床治疗周期。在第1周,给受试者施用一剂111In-hPAM4,至少两天后接着施用一剂吉西他滨。在第2、3和4周,给受试者施用一剂90Y-hPAM4,至少两天后接着施用吉西他滨(200mg/m2)。从3x6.5mCi/m2开始逐步增加。一线(front-line)胰腺癌患者中的最大耐受剂量是3x15mCi/m2(血液学毒性是剂量限制性的)。在22个CT可评估的患者中,疾病控制率(CR+PR+SD)是68%,其中通过RECIST标准判断5个(23%)部分反应并且10个(45%)具有稳定化作为最佳反应。
抗体-药物缀合(ADC)的制备
按照上文的描述并且根据以前描述的方案(Moon等J Med Chem 2008,51:6916-6926;Govindan等,Clin Cancer Res 2009.15:6052-6061)制备SN-38缀合的hRS7抗体。制备了SN-38的反应性双官能衍生物(CL2A-SN-38)。CL2A-SN-38的结构式是(马来酰亚胺基-[x]-Lys-PABOCO-20-O-SN-38,其中PAB是对-氨基苄基且‘x’包含短PEG)。在抗体中的二硫键用TCEP还原后,CL2A-SN-38与还原的抗体反应以产生SN-38缀合的RS7。
按照以前的描述(Gold等,Clin Cancer Res 2003,9:3929S-37S;Gold等,Int JCancer 2004,109:618-26)制备90Y-hPAM4。
组合RAIT+ADC
Trop-2抗原在大多数上皮癌(肺癌、乳腺癌、前列腺癌、卵巢癌、结肠直肠癌、胰腺癌)中表达,并且正在多种人癌-小鼠异种移植物模型中检查hRS7-SN-38缀合物。采用90Y-hPAM4 IgG加放射致敏量的GEM的初始临床试验是令人鼓舞的,具有肿瘤缩小或稳定疾病的迹象。但是,胰腺癌的治疗是非常具有挑战性的。因此,检查了组合治疗,以确定它是否诱导更好的反应。具体地,有效然而非毒性剂量的hRS7-SN-38施用与具有90Y-hPAM4 IgG的RAIT进行组合。
结果证明hRS7-SN-38与90Y-hPAM4的组合比任一单独治疗或单个治疗的总和更有效(未显示)。在75μCi90Y-hPAM4的剂量,10只小鼠中仅有1只在治疗20周后是无肿瘤的(未显示),与用单独的hRS7-SN-38观察到的相同(未显示)。但是,hRS7-SN-38与90Y-hPAM4的组合导致10只小鼠中的4只在20周后是无肿瘤的(未显示),并且其余的受试者显示与任一单独治疗相比肿瘤体积的实质性缩小(未显示)。在130μCi90Y-hPAM4,差异甚至更显著,与单独RAIT组中10只中的5只相比,组合治疗组中10只动物中的9只无肿瘤(未显示)。这些数据证明了hRS7-SN-38与90Y-hPAM4的组合的协同效应。RAIT+ADC显著改善了进展时间,并且增加了无肿瘤治疗的频率。添加到具有90Y-hPAM4的RAIT的MTD的具有hRS7-SN-38的ADC的组合具有最小的额外毒性,这是由反应于治疗的动物体重减轻百分比表示的(未显示)。
不同的序贯治疗对肿瘤生存的影响表明当首先施用RAIT,然后施用ADC时,获得了最优效果(未显示)。相反,当首先施用ADC然后施用RAIT时,无肿瘤动物的发生率降低了(未显示)。未缀合的hPAM4和hRS7抗体两者在单独给予时都不具有抗肿瘤活性(未显示)。
实施例11.使用hRS7-SN-38(IMMU-132)治疗难治的转移性乳腺癌
患者是一名患有IV期三阴性乳腺癌(ER/PR阴性,HER-neu阴性)的57岁女性,最初在2005年诊断。她在2005年进行了对她的左侧乳房的乳房肿瘤切除术,随后在2005年9月在辅助环境下进行了剂量密集的ACT。她接着接受放射治疗,所述放射治疗在11月完成。当患者在2012年早期在对侧(右侧)乳房中摸触到团块时,局部疾病复发被鉴定,并且接着用CMF(环磷酰胺、甲氨蝶呤、5-氟尿嘧啶)化学治疗进行治疗。她的疾病在同年复发,在胸壁的皮肤中具有转移性病变。她接着接受卡铂+化学治疗方案,在此期间导致血小板减少症。她的疾病进展,并且她开始每周使用阿霉素,这持续了6剂。皮肤疾病也在进展。2012年9月26日的FDG-PET扫描显示胸壁上的疾病进展和增大的实体腋窝淋巴结。给予患者羟考酮(oxycodone)以控制疼痛。
从2012年10月直至2013年2月给予她(每2周,持续4个月),此时胸壁病变打开并流血。接着使她采用其由于在她的手和足中的神经病以及便秘而未良好耐受。皮肤病变是进行性的,接着她在给出知情同意书之后被入选于IMMU-132试验中。患者也具有甲状腺机能亢进和视力障碍的病史,具有高CNS疾病风险(然而,脑MRI呈CNS疾病阴性)。在入选至这个试验时,她的右侧乳房中的皮肤病变(靶)测量为最大直径是4.4cm和2.0cm。她具有在右侧乳房中的另一非靶病变以及在右侧腋窝和左侧腋窝中各一个增大的淋巴结。
在2013年3月12日开始首次IMMU-132输注(12mg/kg),其耐受良好。由于1周后在计划输注日的3级绝对中性粒细胞计数(ANC)降低(0.9),所以她的第二输注延迟。在延迟1周之后以及在接受之后,施用她的第二次IMMU-132,剂量降低25%,为9mg/kg。此后,她已根据方案按计划每周一次持续2周接受IMMU-132,接着休息1周。在3个治疗周期之后,在2013年5月17日她的首次反应评估显示靶病变的长直径的总和减少43%,从而根据RECIST标准构成部分反应。她正在9mg/kg剂量水平下继续治疗。自从她开始用IMMU-132治疗,她的总体健康和临床症状显著改进。
实施例12.使用hRS7-SN-38(IMMU-132)治疗难治的转移性小细胞肺癌
这是一名诊断患有小细胞肺癌的65岁女性,所述小细胞肺癌累及她的左肺、纵隔淋巴结,并且MRI证实向左侧脑顶叶的转移。先前化学治疗包括卡铂、依托泊苷和拓扑替康,但未注意到反应。放射治疗也未能控制她的疾病。接着给予她剂量为18mg/kg的IMMU-132,每三周一次,总共输注5次。第二剂之后,她经历了低血压和2级中性粒细胞减少症,其在下次输注前改善了。第5次输注后,CT研究显示她的左肺靶团块缩小了13%。脑的MRI也显示了该转移缩小了10%。她继续她的每3周IMMU-132给药,持续另外3个月,并继续显示她的状况的客观和主观改善,左肺团块缩小了25%,脑转移缩小了21%。
实施例13.用hRS7-SN-38(IMMU-132)对患有IV期转移性疾病的胃癌患者的治疗
这个患者是一名60岁男性,在40年时期中具有吸烟史和数段时期的过度酒精摄取。他经历体重减轻、未由抗酸剂缓解的进食不适和疼痛、频繁腹痛、下背痛,以及最近以来在两个腋窝中的可触淋巴结。他寻求医学建议,并且在检查之后,基于通过胃镜进行的活检,显示其在胃-食道连接处患有腺癌,包括一些鳞状特征。放射学研究(CT和FDG-PET)也显示在右侧腋窝和左侧腋窝、纵隔区域、腰椎和肝(2个肿瘤在右叶中以及1个肿瘤在左叶中,全都测量为直径在2与4cm之间)中的转移性疾病。切除他的胃肿瘤,并且接着使他接受使用表柔比星、顺铂和5-氟尿嘧啶的化学治疗过程。在4个月和6周休息期之后,使他转向多西他赛化学治疗,基于通过CT测量转移性肿瘤所确认的进展和一些总体恶化,所述化学治疗也未能控制他的疾病。
接着给予该患者剂量为10mg/kg的IMMU-132(hRS7-SN-38),每隔一周输注,持续总共6剂,此后进行CT研究以评估他的疾病的状况。这些输注耐受良好,伴有一些轻度恶心和腹泻,其用对症药物加以控制。CT研究显示他的指标转移性病变的总和已减少28%,因此他继续该治疗另外5个疗程。随访CT研究显示根据RECIST标准,疾病保持从他在IMMU-132治疗之前的基线测量值减轻约35%,并且他的总体状况也似乎已改进,患者重新获得对他的疾病受到控制的乐观态度。
实施例14.IMMU-132在多种Trop-2阳性癌中的临床试验
摘要
Sacituzumab govitecan(IMMU-132,也称作hRS7-CL2A-SN-38)是一种用于递送伊立替康的活性代谢物SN-38、靶向许多上皮肿瘤上表达的表面糖蛋白的抗体-药物缀合物(ADC)。与使用超毒性药物和稳定接头的大多数ADCs不同,IMMU-132使用中等毒性的药物,在SN-38和接头之间具有中等稳定的碳酸酯键。流式细胞术和免疫组织化学公开了Trop-2在大范围的肿瘤类型,包括胃肿瘤、胰腺肿瘤、三阴性乳腺(TNBC)肿瘤、结肠肿瘤、前列腺肿瘤和肺肿瘤中表达。尽管细胞结合实验显示在IMMU-132和亲本hRS7抗体之间没有显著差异,使用Trop-2 CM5芯片的表面等离子共振分析显示IMMU-132相对于hRS7的显著结合优势。该缀合物保持与新生受体的结合,但与hRS7相比失去了大于60%的抗体依赖性细胞介导的细胞毒性活性。
肿瘤细胞暴露于游离SN-38或IMMU-132证明了相同的信号传导途径,其中pJNK1/2和p21WAF1/Cip1增量调节,随后是胱天蛋白酶9、7和3的裂解,最终导致聚-ADP-核糖聚合酶裂解和双链DNA断裂。小鼠中完整ADC的药代动力学显示15.4小时的平均滞留时间(MRT),而载体hRS7抗体以与未缀合的抗体相似的速度清除(MRT=约300h)。携带人胃癌异种移植物的小鼠的IMMU-132治疗(17.5mg/kg;每周两次x4周)与用非特异性对照治疗的小鼠相比导致显著的抗肿瘤作用。IMMU-132的临床相关给药方案在携带人胰腺癌或胃癌的小鼠中每隔一周、每周或每周两次施用。
本I期试验评价该ADC作为患有多种转移性实体癌的预先治疗过的患者的潜在治疗剂。在具体实施方案中,用该治疗来治疗以前已经发现对标准抗癌治疗有抗性或已经在标准抗癌治疗后复发的患者,所述标准抗癌治疗包括但不限于用SN-38的母体化合物伊立替康治疗。这些结果是令人惊讶和出乎意料的,并且不能预测到。
在21天周期的第1和8天施用sacituzumab govitecan,周期重复直到剂量限制性毒性或进展。在采用4个计划的剂量水平的标准3+3方案之后逐步升高剂量,并且允许剂量延迟或降低。以8(N=7)、10(N=6)、12(N=9)和18(N=3)mg/kg的剂量水平治疗25个患者(52-60岁,中位数为3次的先前化学治疗方案)。中性粒细胞减少症是剂量限制性的,第1个周期的最大耐受剂量是12mg/kg,但对于重复周期毒性过大。对于延长的治疗,更低的剂量是可接受的,其中没有治疗相关的4级毒性并且3级毒性限于疲劳(N=3)、中性粒细胞减少症(N=2)、腹泻(N=1)和白细胞减少症(N=1)。使用基于CT的RECIST 1.1标准,3个患者实现了部分反应(三阴性乳腺癌、小细胞肺癌、结肠癌),并且另外15个具有稳定疾病作为最佳反应;当然,采用继续治疗16-36周,12个保持了疾病控制。没有进行基于肿瘤Trop-2表达的患者预选。
结论是sacituzumab govitecan是在患有难治癌的患者中具有可接受的毒性和令人鼓舞的治疗活性的有前景的ADC缀合物。选择8和10mg/kg剂量用于II期研究。
引言
已经批准了两种掺入了不同超毒性(皮摩尔效能)药物的新的抗体-药物缀合物(ADCs),导致进一步开发了基于相似原理的其它ADCs,所述原理包括使用超毒性药物(Younes等,2011,Nat Rev Drug Discov 11:19-20;Sievers&Senter,2013,Ann Rev Med64:15-29;Krop&Winer,2014,Clin Cancer Res 20:15-20)。或者,Moon等(2008,J MedChem 51:6916-26)和Govindan等(2009,Clin Cancer Res 15:6052-61)选择了SN-38,即一种作为伊立替康的活性代谢物的拓扑异构酶I抑制剂,伊立替康是一种具有公知但复杂的药理学的批准药物(Mathijssen等,2001,Clin Cancer Res 7:2182-94)。评价了用于缀合SN-38的几种接头以不同速度从IgG的释放,从几小时到几天(Moon等,2008,J Med Chem51:6916-26;Govindan等,2009,Clin Cancer Res 15:6052-61;Cardillo等,2011,ClinCancer Res 17:3157-69)。选择的最优接头命名为CL2A,其在血清中展现中等的缀合物稳定性,将其连接于SN-38的内酯环上的羟基,从而保护该环在与接头结合时避免打开成为毒性较低的羧酸酯形式,并且该接头包含短的聚乙二醇部分以提高溶解度(Cardillo等,2011,Clin Cancer Res 17:3157-69)。当接头与SN-38之间的碳酸酯键被裂解时,SN-38的活性形式释放,所述裂解发生在低pH下,如溶酶体中以及肿瘤环境中存在的低pH,或所述裂解可能通过酶促降解。
使用以前显示内化的人源化RS7单克隆抗体(Stein等,1993,Int J Cancer 55:938-46),选择用于靶向肿瘤相关抗原Trop-2(滋养层细胞表面抗原)的该ADC的抗体(Cardillo等,2011,Clin Cancer Res 17:3157-69)。Trop-2是ADC的一种重要肿瘤靶,因为它在许多上皮肿瘤,特别是更具侵袭性的类型上超量表达(Ambrogi等,2014,PLoS One 9:e96993;Cubas等,2009,Biochim Biophys Act 1796:309-14;Trerotola等,2013,Oncogene32:222-33)。Trop-2也存在于一些正常组织上,但表达该抗原的猴中的临床前研究使用该新的ADC仅仅观察到剂量限制性中性粒细胞减少症和腹泻,没有对表达Trop-2的正常组织的可察觉的毒性的迹象(Cardillo等,2011,Clin Cancer Res 17:3157-69)。因此,随着证明在几种人肿瘤异种移植物模型中的活性和显示高治疗窗的临床前数据(Cardillo等,2011,Clin Cancer Res 17:3157-69),开始了I期临床试验以确定该新的ADC在具有多种复发/难治的转移性上皮肿瘤的进行过大量预先治疗的患者中的最大耐受和最优剂量。该试验在ClinicalTrials.gov注册(NCT01631552)。
材料和方法
入选标准-主要目的是确定sacituzumab govitecan(IMMU-132)作为单一药剂的安全性和耐受性。该试验设计为标准3+3I期设计,从每次注射8mg/kg的剂量开始,在3周的治疗周期中每周给予剂量,持续2周。
如果≥18岁的男性和非妊娠非哺乳女性诊断有13种不同类型上皮肿瘤之一,则他们是合格的。尽管不需要基于Trop-2表达的预选,但基于对存档标本的免疫组织学研究,这些肿瘤预期在>75%的病例中具有Trop-2表达。要求患者具有可测量的转移性疾病(没有单个病变≥5cm)并且在用于该适应症的至少一种批准的标准化学治疗方案后复发或是该方案难治的。其它关键标准包括足够的(≤1级)血液学、肝和肾功能,并且没有已知的对伊立替康的过敏反应史,或对先前伊立替康或其它拓扑异构酶I治疗≥3级的胃肠毒性。由于允许患有这样多种疾病的患者,因此先前的伊立替康治疗不是先决条件。患有吉尔伯特氏病的患者或不耐受以前施用的伊立替康或患有已知CNS转移性疾病的患者被排除。
研究设计-在治疗开始4周内进行基线评价,并定期监测血液计数、血清化学、生命体征和任何不良事件。通过ELISA测量抗-抗体和抗SN-38抗体反应,在基线取样,并且接着在每个偶数治疗周期开始前取样。治疗开始后6-8周获得第一次CT检查,然后以8到12周间隔继续,直到进展。仅仅需要额外的随访来监测任何正在进行的治疗相关的毒性。使用NCICTCAE 4.0版对毒性分级,并且通过RECIST 1.1评估效力。
开发了用于检测血清中的Trop-2的ELISA,其具有2ng/mL的灵敏度,但在测试12个患者并且没有发现循环Trop-2的迹象后,没有进行进一步筛选。尽管没有合格性标准,但要求使用抗人Trop-2的山羊多克隆抗体(R&D Systems,Minneapolis,MN)通过免疫组织学对之前存档的肿瘤标本进行Trop-2测定,因为ADC的抗体hRS7识别的表位不保留在福尔马林固定的、石蜡包埋的切片中(Stein等,1993,Int J Cancer 55:938-46)。按照下文的描述进行染色。
治疗方案-冻干的sacituzumab govitecan在盐水中复水,并且在2-3小时中输注(100mg抗体含约1.6mgSN-38,平均药物:抗体比率[DAR]为7.6∶1)。在开始每次输注前,大多数患者接受对乙酰氨基酚、抗组胺药(H1和H2阻滞剂)和地塞米松。禁止预防性使用止吐药或抗腹泻药物。治疗由在3周的治疗周期第1和8天给予的两次连续剂量组成,意图允许患者继续治疗直到8个周期(即16次治疗),除非有不可接受的毒性或进展。在8个周期后显示疾病稳定或反应的患者可以继续治疗。
剂量限制性毒性(DLT)被认为是至少可能由于研究药物导致的任何持续时间的≥3级的发热性中性粒细胞减少症、伴有显著出血的3级血小板减少症或4级血小板减少症≥5天、尽管进行了最优医学控制但任何3级恶心、呕吐或腹泻持续>48h,或任何持续时间的4级(威胁生命的)恶心、呕吐或腹泻,或任何其它≥3级非血液学毒性,以及出现任何3级输注相关反应。
根据患者对第一个治疗周期的耐受性判断最大耐受剂量(MTD)。在计划的治疗日,任何具有≥2级治疗相关毒性的患者(脱发例外)使他们的治疗以每周增加的方式延迟,持续直到2周。一旦毒性解决到≤1级,重新开始治疗。方案最初也要求所有的后续治疗剂量降低(如果1周内恢复则降低25%,如果2周内恢复则降低50%),但当修改方案以在第一个周期后允许支持性护理时,该标准随后在试验中放松了。但是,如果毒性在3周内没有恢复或恶化了,则终止治疗。重要的是,剂量延迟伴有降低不构成DLT,并且因此,这允许治疗继续,但是,是以更低的剂量。因此,能够继续治疗的需要剂量延迟/降低的患者不认为可评估DLT,并且随后被替换。
由于DLT事件导致所有进一步治疗的终止,第二目的是评估能够以最小的剂量延迟或降低在多个治疗周期中耐受的剂量水平。该剂量水平称作最大可接受剂量,并且要求患者在第一个周期中耐受给定剂量水平而在该周期中并且直到第二个周期开始不具有延迟或降低。
药代动力学和免疫原性-在输注结束后约30分钟(例如峰)和随后在每次后续输注前(例如谷)取血样。分离样品并且将血清冷冻用于通过ELISA测定总IgG和sacituzumabgovitecan浓度。也测定了来自7个患者的血清样品的SN-38含量,即总含量(代表与IgG结合的和游离的SN-38)和游离SN-38(即未结合的SN-38)含量二者。
结果
患者特征-入选了25个患者(表8)。中位年龄从52-60岁,76%具有ECOG 1表现状态,其余为ECOG 0。大多数患者具有转移性胰腺癌(PDC)(N=7),随后是三阴性乳腺癌(TNBC)(N=4)、结肠直肠癌(CRC)(N=3)、小细胞肺癌(SCLC)(N=2)和胃癌(GC)(N=2),单个病例的食道腺癌(EAC)、激素难治的前列腺癌(HRPC)、非小细胞肺癌(NSCLC)、上皮性卵巢癌(EOC)、肾癌、扁桃体癌和膀胱癌(UBC)。
在来自17个患者的存档组织上进行免疫组织学,标本中的13个(76.4%)在>10%的肿瘤细胞上具有2+至3+细胞膜和细胞质染色;3个标本(17.6%)是阴性的。下文公开了几个代表性病例。
所有入选试验的患者在对于它们的原发癌是典型的部位中具有转移性疾病。CT确定所有患者最大肿瘤直径和的中位数是9.7em(范围是2.9-29.8cm),其中在他们的基线研究中鉴定出14个患者具有3个或更多个靶病变(所有患者中位数=4,范围1-10个病变)和中位数为2的非靶病变(范围=0-7个病变)。先前全身治疗的中位次数是3,其中7个患者(2个PDC和GC;CRC、TNBC、扁桃体癌各1个)具有一次先前治疗,7个具有5次或更多次先前治疗;11个患者具有先前放射治疗。9个患者给予过先前的拓扑异构酶I治疗,其中2/3 CRC、4/7 PDC和1个EAC患者接受伊立替康,并且2/2 SCLC患者接受拓扑替康,这些中的3个(2个具有SCLC和1个具有CRC)未能反应于抗拓扑异构酶1治疗。此外,23个患者中的7个(2个未确定的)对他们的末次先前治疗有反应,中位持续时间是3个月(范围1-11个月)。
几乎所有患者都接受多次sacituzumab govitecan治疗(中位数,10剂),直到使用RECIST 1.1通过CT确定疾病进展的明确迹象;1个患者由于全身恶化退出,并且1个患者当观察到新的病变时在第一次随访中没有测量他们的靶病变。
剂量评估-在8.0mg/kg的起始剂量水平,入选的3个患者(1 CRC,2PDC)中没有剂量延迟或降低,也没有DLT事件。在12mg/kg的下一个剂量水平,9个患者入选,因为遇到了方案要求的施用第2剂的延迟。5个患者经历了第一周期中的延迟(4个延迟1周,2个给予了骨髓生长因子支持,并且1个患者在给予第二剂之前具有2周延迟)。除1个患者之外的所有这些患者在他们的第二剂接受12mg/kg。在12mg/kg剂量水平下的9个患者中的4个使开始第二周期的他们的第3剂降低到了9mg/kg,并且第二周期在3个患者中额外延迟了1周。尽管有这些方案要求的延迟/降低,9个患者在第一周期中都没有剂量限制性事件(例如1个患者在第一剂后有疾病相关的3级血红蛋白,2个患者在第一剂后有3级中性粒细胞减少症的患者给予了骨髓生长因子,1个在第一剂后有3级中性粒细胞减少症,其在没有支持的情况下恢复,2个在第二剂后有3级中性粒细胞减少症,2个患者在第一或第二剂后具有2级中性粒细胞减少症,并且1个患者没有不良事件),因此允许自然增加到18mg/kg剂量水平。在此水平,所有3个患者在他们的第一次治疗后都有剂量延迟,仅仅1个患者接受了18mg/kg的第二次治疗。2个患者具有剂量限制性4级中性粒细胞减少症,1个在第1剂后出现,另一个在第二次18mg/kg剂量后出现,后一患者在此剂后也经历了2级腹泻。因此,由于在12mg/kg的第一周期中0/9患者具有DLT,该水平称作MTD。
继续进行了额外的剂量发现研究以精细调节能够允许给予多个周期而在治疗/周期之间具有最小延迟的剂量水平。因此,在8mg/kg的剂量水平又入选了4个患者,并且开放了一个10mg/kg的新的中间水平。在最初入选在8mg/kg的3个患者中,2个CRC患者继续以8mg/kg治疗持续总共31和11次治疗,而PDC患者接受三次8mg/kg剂量,然后在第4剂时由于2级中性粒细胞减少症剂量降低到了6mg/kg,然后在此水平又完成了3次治疗,之后由于疾病进展退出。另外4个患者接受3至9剂8mg/kg,然后由于疾病进展退出。这些患者中的2个仅接受1剂后就因为方案要求降低至6mg/kg,这是由于2级皮疹和2级中性粒细胞减少症。
在10mg/kg入选的6个患者中的5个在由于疾病进展退出前接受了6-30剂而没有降低。1个GC患者(9号)在接受1剂后发生了3级发热性中性粒细胞减少症以及4级血红蛋白。尽管发热性中性粒细胞减少症被认为可能与治疗相关(因为它是在第一剂不久后出现的),但发现胃粘膜穿孔可能导致了该4级血红蛋白,并认为是无关的。最终,患者迅速恶化,并且在第一剂后4周死亡。
因此,尽管总体结果支持12mg/kg作为MTD,但由于8-10mg/kg在第一个周期中耐受更好,并且允许具有最小毒性的重复周期,正在进行II期临床研究以评价这2个剂量水平。
不良事件-在2-3小时中给予了297次sacituzumab govitecan输注,大多数研究者选择在每次输注前进行预先用药。没有输注相关的不良事件。尽管多于一半的患者经历了认为至少可能与sacituzumab govitecan治疗相关的疲劳、恶心、脱发、腹泻和中性粒细胞减少症,这些大多数是1和2级(图16)。报道最多的3或4级毒性是中性粒细胞减少症(N=8),但这些患者中的6个最初是以12和18mg/kg治疗的。发热性中性粒细胞减少症出现在2个患者中,一个是GC患者9号,已经提到了其仅仅接受了一剂10mg/kg,第二个是PDC患者(19号),其接受了4剂的12mg/kg。大多数患者中的腹泻是轻度的,其中仅仅3个(12%)经历3级。2个出现在12mg/kg剂量水平,1个是在接受4剂后,并且另一个是在第一剂之后,但该患者又接受了6剂12mg/kg而仅仅报道了2级腹泻。随后,给两个患者都开了非处方抗腹泻药,并且继续治疗。没有与sacituzumab govitecan相关的其它显著毒性,但两个患者报道了2级皮疹,并且3个患者具有1级瘙痒。
效力-图17A提供了通过来自患者的靶病变和进展时间数据的改变测量的最佳反应的图示,所述患者至少对他们的靶病变进行了一次治疗后CT测量。在图中没有显示4个具有疾病进展的患者,因为他们没有进行随访CT评估(N=1)或他们具有新的病变因此进展了(无论他们的靶病变状况如何)(N=3)。总体上,3个患者的靶病变有超过30%缩小(部分反应,PR)。这些患者中的两个(3号和15号)进行了确认的随访CTs,而第三个患者(22号)在12周后进行下一次CT时进展了。15个患者具有稳定疾病(SD),并且7个进展(PD),作为通过RECIST 1.1判断的最佳反应。从24个患者(排除1个仅接受1次治疗并退出的患者)治疗开始的中位进展时间是3.6个月[范围,1-12.8个月],对于所有具有SD或PR的患者(N=18)是4.1个月(范围2.6-12.8个月)。在9个接受含拓扑异构酶-I抑制剂的先前治疗的患者中,两个的靶病变显著缩小(28%和38%),5个具有稳定疾病,包括2个在持续的时间段(分别为4.1和6.9个月)中具有稳定疾病,而2个在他们的第一次评估时进展。
图17B比较了这些患者的TTP与生存,表明16个患者从治疗开始生存了15-20个月,包括两个具有PR(15(TNBC)和3(CRC)号患者),并且另外4个具有SD(2 CRC,1 HRPC,1TNBC)。靶病变缩小>30%(PR)的2个患者中的放射反应的实例示于图18。
除了3个以PR作为最佳反应的患者,有几个值得注意的延长的稳定疾病的病例。一个患有TNBC的50岁患者(18号患者;免疫组织学Trop-2表达=3+)在仅仅3剂后经历了13%的缩小,在16剂后达到了顶点,即4个靶病变缩小19%(SLD从7.5缩小到6.1cm),然后在开始治疗后45周和接受26剂后进展。一个患有CRC的63岁女性(10号患者;免疫组织学2+)进行过7次先前治疗,包括含伊立替康方案的3个分开的疗程,她在接受5剂10mg/kg sacituzumabgovitecan后5个靶病变总体缩小23%,在18剂后达到了最大28%缩小的顶点。她的血浆CEA从38.5ng/mL的基线水平降低到了1.6ng/mL。在接受25剂(27周)后,她具有PD,其中从SLD最低点增加了20%。有趣的是,在治疗结束时的血浆CEA是仅仅4.5ng/mL。1个患有HRPC的68岁患者(20号患者;无免疫组织学)表现出5个靶病变(13.3em)和5个非靶病变(3个骨转移)。他在12.7个月的时间段中接受了34次治疗,直到进展,其PSA水平在该时间中逐渐升高。另一值得注意的病例是一名患有食道癌的52岁男性(25号患者;免疫组织学3+),他接受过6次先前治疗,包括6个月的FOLFIRI作为他的第3个疗程。治疗以18mg/kg的sacituzumabgovitecan开始,其由于中性粒细胞减少症降低到13.5mg/kg。他在30周的时间段中具有SD,接受15剂后进展。以10mg/kg治疗一名患有伴有肝转移的PDC的60岁女性(11号)。在8剂后她的基线CA19-9血清滴度从5880降低到2840单位/mL,并且在15周的时间段中(11剂)中有疾病稳定(12%缩小作为最佳反应),然后发现了新的病变。然而,由于CA19-9保持降低(2814单位/mL),该患者接受了另外8次以10mg/kg的治疗(3个月),然后由于她的靶病变进展而退出研究。
此时,在来自患有多种癌的16个患者的这种小规模取样的存档的样品中测试Trop-2表达的潜在用途还不足以允许明确评估,主要是因为大多数显示升高的表达。
PK和免疫原性-sacituzumab govitecan和IgG在30分钟血清样品中的浓度提供在表9中,该表显示了该值随剂量增加而增加的一般趋势。在一个代表性病例中,患有TNBC的患者(15号)接受多个剂量,从12mg/kg开始,随后在她的治疗过程中降低。通过ELISA测定的在多个剂量下IgG和sacituzumab govitecan在30分钟血清中的浓度随时间是相似的(未显示),当剂量降低时,调节为更低。尽管在即将给予下一剂之前取出的血清(谷样品)中可以发现残留的IgG,但不能检测到sacituzumab govitecan(未显示)。
第1周期第一剂(C1D1)后15号患者的30分钟血清样品中的SN-38总浓度是3,930ng/mL,但对于第1周期的第二剂(C1D2),当sacituzumab govitecan治疗降低到9.0mg/kg时,该水平降低到2,947ng/mL(未显示)。在第6周期中,当剂量进一步降低到6.0mg/kg时,观察到进一步降低到2,381ng/mL。这些样品中游离SN-38的量是88至102ng/mL(总SN-38的2.4%至3.6%),说明这些峰样品中的血清中>96%的SN-38结合于IgG。通过HPLC分析了来自7个患者的28个30分钟血清样品,这些样品中游离SN-38平均占总SN-38的2.91±0.91%。在4个患者中测量的游离SN-38G浓度从未超过SN-38水平,并且通常是其几分之一。例如,25号患者在8个周期的治疗中的12次注射的30分钟样品中评估了测定值。在18mg/kg的起始剂量,他在酸水解的样品中具有5,089ng/mL的SN-38(总SN-38),并且在未水解样品中仅有155.2ng/mL(游离SN-38;3.0%)。该样品中的游离SN-38G(葡糖醛酸化形式)是26.2ng/mL,或样品中总的未结合SN-38+SN-38G的仅14.4%。患者以13.5mg/kg继续治疗,在11个其余的酸水解峰样品中SN-38平均是3309.8±601.8ng/mL,而游离SN-38平均是105.4±47.7ng/mL(即96.8%结合于IgG),并且游离SN-38G平均是13.9±4.1ng/mL(总的SN-38+SN-38G的11.6%)。重要的是,在几乎所有患者中,酸水解和未酸水解样品中SN-38G的浓度是相似的,表明与缀合物结合的SN-38都不是葡糖醛酸化的。
表9.通过ELISA测定的完整sacituzumab govitecan(ADC)和hRS7 IgG的血清浓度(μg/mL)。在第一剂后0.5小时取出的样品中进行测定。
这些患者在他们的疗程中都不具有阳性基线水平(即>50ng/mL)或对IgG或SN-38的阳性抗体应答。
讨论
Trop-2在很多上皮肿瘤中大量表达,使它成为用于靶向治疗的感兴趣抗原(Cubas等,2009,Biochim Biophys Acta 1796:309-14),特别是因为它被认为是几种癌类型中的预后指标和癌基因(Cardillo等,2011,Clin Cancer Res 17:3157-69;Ambrogi等,2014,PLoS One 9:e96993;Cubas等,2009,Biochim Biophys Acta 1796:309-14;Trerotola等,2013,Oncogene 32:222-33)。尽管它在正常组织中的表达和与另一种充分研究的肿瘤相关抗原EpCam的关系引起了关于开发针对Trop-2的免疫治疗剂的安全性的一些最初的警告语句(Trerotola等,2009,Biochim Biophys Acta 1805:119-20),我们在猕猴(其在与人相似的组织中表达Trop-2)中的研究表明sacituzumab govitecan在约40mg/kg的人等效剂量下是耐受非常好的(Cardillo等,2011,Clin Cancer Res 17:3157-69)。在更高剂量下,动物经历中性粒细胞减少症和腹泻,这是与衍生自伊立替康治疗的SN-38相关的已知副作用,然而缺乏关于表达Trop-2的正常组织中的显著组织病理学改变的证据(Cardillo等,2011,Clin Cancer Res 17:3157-69)。因此,随着其它临床前研究发现sacituzumab govitecan在低纳摩尔水平下是强效的和在非毒性剂量下在多种人上皮肿瘤异种移植物中有效,在患者中进行了I期试验,所述患者在用于他们的多种转移性上皮肿瘤的一种或多种标准治疗后失败。
该研究的主要发现是尽管使用不认为是超毒性的(在皮摩尔范围有活性的药物,而SN-38在低纳摩尔范围有效)更常规药物,sacituzumab govitecan抗Trop-2-SN-38缀合物在大范围实体癌中在具有中等和可控制的毒性的剂量下在临床上证明是有治疗活性的,由此展现高治疗指数。给予25个患者总共297剂sacituzumab govitecan没有事故;4个患者接受了>25次注射。重要的是,没有检测到对hRS7 IgG或SN-38的抗体应答,即使在使用多个周期的治疗持续直至12个月的患者中也是如此。尽管Trop-2在多种正常组织中低量表达(Cardillo等,2011,Clin Cancer Res 17:3157-69),中性粒细胞减少症是唯一的剂量限制性毒性,在给予≥12mg/kgsacituzumab govitecan的2个患者中使用的骨髓生长因子支持加速了恢复并且允许在已经用尽了他们的其它治疗选择的患者中继续治疗。尽管MTD宣称是12mg/kg,但也选择了8.0和10.0mg/kg剂量水平用于进一步扩展,因为患者更可能在这些水平下以最少的支持性护理耐受额外的周期,并且在这些水平下观察到了反应。在这些剂量水平下,13个患者中仅有2个(15.4%)经历了3级中性粒细胞减少症。在一线或二线环境中每周或每三周一次给予伊立替康单一治疗的3和4级中性粒细胞减少症发生率是14至26%(Camptosar-盐酸伊立替康注射液,溶液(开药信息,包装插页)Pfizer,2012)。采用sacituzumab govitecan,仅有1个在10mg/kg剂量水平的患者具有3级腹泻。该发生率低于给予每周一次x4剂伊立替康的患者(其经历3和4级迟发腹泻)的31%(Camptosar-盐酸伊立替康注射液,溶液(开药信息,包装插页)Pfizer,2012)。其它由sacituzumab govitecan引起的常见毒性包括疲劳、恶心和呕吐,大多数是1和2级,以及脱发。在10和12mg/kg剂量水平下也出现了两个发热性中性粒细胞减少症事件和一个3级深静脉血栓。直到完成剂量研究后才开始UGT1A1监测,并且因此其对毒性的贡献的评估在此时不能报道。
入选该试验的患者没有针对Trop-2表达进行预选,主要是因为多种癌(如前列腺癌、乳腺癌、胰腺癌、结肠直肠癌和肺癌)的组织微阵列的免疫组织学评估表明该抗原存在于>90%的标本中(未显示)。此外,在具有多种转移癌的12个患者的血清中没有发现Trop-2,进一步表明血清测定对于患者选择将不是有用的。尽管我们尝试采集来自入选该试验的患者的肿瘤的存档标本,此时没有足够的证据表明基于免疫组织学染色的患者选择将与抗肿瘤活性相关,所以没有进行基于Trop-2表达的患者集中。
作为单一治疗,sacituzumab govitecan在具有多种转移、复发/难治的上皮肿瘤的患者中具有良好的抗肿瘤活性,使用RECIST1.1标准通过CT显示了可察觉的靶病变缩小,包括持续的疾病稳定。25个患者中的3个(12%)(SCLC[用拓扑替康进展后]、TNBC和结肠癌各1个)的靶病变具有>30%的缩小,之后分别在治疗开始后2.9、4.3和7.1个月进展。15个患者(60%)具有SD,他们中的9个在治疗开始>4个月后进展。在已经用含拓扑异构酶I抑制剂的药物或方案进行过先前治疗的9个患者中的7个中出现了反应或疾病稳定。他们中的3个未能反应于他们的先前拓扑异构酶I抑制剂治疗(伊立替康或拓扑替),然而sacituzumabgovitecan能够诱导他们之中2个人的肿瘤缩小:患结肠癌的患者中的13%和患SCLC的另一个患者中的38%。因此,sacituzumab govitecan在那些先前含拓扑异构酶I的方案失败或用此方案后复发的患者中可以是有治疗活性的,应该在II期扩展研究中对其进行进一步检查。
尽管入选该试验的最大多数患者具有晚期胰腺导管癌(N=7;中位进展时间2.9个月];范围1.0至4.0个月),即使在这种难治疾病中,已经有令人鼓舞的靶病变缩小和CAl9-9血清浓度的降低来表明活性(Picozzi等,在AACR Special Conference“PancreaticCancer:Innovations in Research and Treatment上展示,New Orleans,LA USA,p.B99)。但是,患有TNBC和SCLC的患者中的反应是特别感兴趣的,这是因为考虑到这些适应症中对靶向治疗的需要。实际上,在正在进行的该试验的扩展阶段中观察到的患有TNBC(Goldenberg等,2014,在AACR San Antonio Breast cancer Symposium上展示,SanAntonio,TX)和SCLC(Goldenberg等,2014,Sci Transl Med)的患者中另外的部分反应表明了对这些癌的进一步强调,但也正在跟踪NSCLC、EAC、UBC和CRC中的令人鼓舞的反应。实际上,在最近对sacituzumab govitecan的正在进行的试验的更新中,在迄今为止研究的17个TNBC患者中,观察到了29%的总体反应率(PR),以及46%临床获益率(PR+SD≥6个月)。对几乎25%(6/25)的研究的患者观察到了长期生存(15-20个月),并且包括具有PRs的2个和具有SD的4个,其中包括患有TNBC(N=2)、CRC(N=3)和HRPC(N=1)的患者。
输注结束后30分钟的血清样品的分析显示>96%的SN-38结合于IgG。当完成试验的II期部分时可以获得更详细的药代动力学。HPLC分析也在血清中仅仅检查到了微量游离SN-38G,而使用伊立替康治疗,活性较低的SN-38G的AUC是SN-38的>4.5倍(Xie等,2002,JClin Oncol 20:3293-301)。给予sacituzumab govitecan和伊立替康的携带肿瘤的动物中SN-38递送的比较表明结合于IgG的SN-38不是葡糖醛酸化的,而在给予伊立替康的动物中,血清中总SN-38的>50%是葡糖醛酸化的(Goldenberg等,2014,J Clin Oncol 32:Abstract 3107)。更重要的是,与伊立替康相比,在给予sacituzumab govitecan的Capan-1人胰腺癌异种移植物中SN-38浓度的分析是约135倍(Goldenberg等,2014,Sci TranslMed)。因此,sacituzumab govitecan相对于非靶向形式的拓扑异构酶-I抑制剂具有几个明显的优势:(i)将缀合物选择性保留在肿瘤中的机理(抗Trop-2结合),和(ii)靶向的SN-38也看起来受到了完全保护(即,不是葡糖醛酸化的,并且是内酯形式),使得由肿瘤细胞附着的任何SN-38通过缀合物的直接内化或通过其从与肿瘤结合的缀合物释放到肿瘤微环境中而将处于其最强效的形式。这些结果表明中等毒性但充分了解的细胞毒性剂SN-38作为肿瘤靶向ADC(如sacituzumab govitecan)的一部分可以是有效的。但是,通过施用具有以高药物:抗体比率(7.6∶1)缀合的中等毒性药物的ADC,可以给被靶向的癌递送更高浓度的SN-38,这是如以下所表明的:与从伊立替康的释放相比,用sacituzumab govitecan实现了SN-38的改进浓度。
总之,该I期经验显示了sacituzumab govitecan以中等和可控制的毒性(都是与SN-38的活性相关的)耐受,没有已知包含Trop-2的正常组织损伤的迹象。重要的是,即使是在使用拓扑异构酶-I抑制剂的先前治疗失败后,在具有多种转移性实体瘤的患者中sacituzumab govitecan也是有活性的。因此,从该初步经验可以看出sacituzumabgovitecan具有高治疗指数,即使是在患有已知对拓扑异构酶I抑制剂无反应的肿瘤如SCLC和TNBC的患者中也是如此。继续进行该临床试验,集中于在患有TNBC、SCLC和其它Trop-2+癌的患者中的8和10mg/kg的起始剂量。
实施例15.IMMU-132在三阴性乳腺癌(TNBC)中的用途
克隆了Trop-2/TACSTD2基因(Fornaro等,1995,Int J Cancer 62:610-18),并且发现其编码与细胞迁移和不依赖于贴壁的生长在功能上相关的跨膜Ca++-信号转导物(Basu等,1995,Int J Cancer 62:472-72;Ripani等,1998,Int J Cancer 76:671-76),与正常组织相比,在多种人上皮癌,包括乳腺癌、肺癌、胃癌、结肠直肠癌、胰腺癌、前列腺癌、宫颈癌、头颈癌和卵巢癌中具有更高表达(Cardillo等,2011,Clin Cancer Res 17:3157-69;Stein等,1994;Int J Cancer Suppl 8:98-102;Cubas等,2009,Biochim Biophys Acta 196:309-14;Trerotola等,2013,Oncogene 32:222-33)。已经报道增加的Trop-2表达是刺激癌生长所必须和足够的(Trerotola等,2013,Oncogene 32:222-33),而双顺反子细胞周期蛋白D1-Trop-2 mRNA嵌合体是一种癌基因(Guerra等,2008,Cancer Res 68:8113-21)。重要的是,升高的表达与几种癌类型中的更具有侵袭性的疾病和不良预后相关(Cubas等,2009,Biochim Biophys Acta 196:309-14;Guerra等,2008,Cancer Res 68:8113-21;Bignotti等,2010,Eur J Cancer 46:944-53;Fang等,2009,Int J Colorectal Dis 24:875-84;Muhlmann等,2009,J Clin Pathol 62:152-58),所述癌类型包括乳腺癌(Ambrogi等,2014,PLoS One 9:e96993;Lin等,2013,Exp Mol Pathol 94:73-8)。增加的Trop-2 mRNA是患有侵袭性乳腺导管癌的患者中的不良生存和淋巴结转移的强预测物,并且Kaplan-Meier生存曲线显示具有高Trop-2表达的乳腺癌患者具有显著更短的生存(Lin等,2013,Exp MolPathol 94:73-8)。
方法
通过HIC测定DAR-使用丁基-NPR HPLC柱(Tosoh Bioscience,King of Prussia,PA),通过疏水相互作用色谱(HIC)分析IMMU-132的临床批次。用25mM磷酸钠,pH 7.4中的2.25-1.5M NaCl的15分钟线性梯度分辨IMMU-132注射液(100μg),在1mL/min和室温下运行。
通过LC-MS测定DAR-由于还原了链间二硫键,并且将得到的巯基用于药物缀合(或封闭),在LC-MS分析期间分辨重链和轻链而不添加还原剂,并且独立进行分析。将不同批次的IMMU-132注射到使用Aeris Widepore C4反相HPLC柱(3.6μM,50x 2.1mm)的Agilent1200系列HPLC上,并且通过使用0.1%甲酸中的30-80%乙腈的14分钟线性梯度的反相HPLC分辨。使用Vcap、Fragmentor和Skimmer分别设置为5000V、300V和80V的嵌入式(in-line)Agilent 6210 ESI-TOF质谱仪完成电喷雾电离飞行时间(ESI-TOF)质谱分析。用代表所有κ或重链种类的整个RP-HPLC峰生成去卷积质谱。
细胞系-用于此研究中的所有人癌细胞系均购自美国典型培养物保藏中心(Manassas,VA),除了指出的,所有都由ATCC通过短串联重复(STR)测定得到了验证。
多种人乳腺癌细胞系上的Trop-2表面表达-细胞表面上的Trop-2表达是基于流式细胞术。简言之,用Accutase Cell Detachment溶液(Becton Dickinson(BD);FranklinLakes,NJ;目录号561527)收获细胞,并且按照制造商的说明书,使用QuantiBRITE PE珠(BD目录号340495)和PE缀合的抗Trop-2抗体(eBiosciences,目录号12-6024)测定Trop-2表达。在使用CellQuest Pro软件的FACSCalibur流式细胞仪(BD)上获取数据,使用Flowjo软件(Tree Star;Ashland OR)进行分析。
体外细胞毒性测试-使用3-(4,5-二甲基噻唑-2-基)-5-(3-羧基甲氧基苯基)-2-(4-磺苯基)-2H-四唑染料还原测定(MTS染料还原测定;Promega,Madison,WI)来测定对SN-38的敏感性。简言之,将细胞铺板在上文描述的96孔透明、平底板中。用培养基将溶解于DMSO中的SN-38稀释到0.004至250nM的终浓度。将板在潮湿的室中37℃/5%CO2条件下温育96小时,然后加入MTS染料,并且放回培养箱中直到未治疗的对照细胞具有大于1.0的吸光度。生长抑制测量为相对于未治疗细胞的生长百分比。从三份测定的平均值生成剂量-反应曲线,并且用Prism GraphPad软件计算IC50值。
使用rH2AX染色的细胞通过流式细胞术测试体外特异性-对于药物活性测试,以5×105个细胞/孔将HCC 1806和HCC1395TNBC细胞系细胞接种到6孔板中,并且在37℃下保持过夜。在冰上将细胞冷却10分钟后,将细胞用约20μg/ml的IMMU-132或hA20抗CD20-SN38(对于两种药剂相等的SN38/孔)在冰上温育30分钟,用新鲜培养基洗涤三次,然后回到37℃过夜。短暂胰蛋白酶处理细胞,通过离心成为粒状沉淀,在4%福尔马林中固定15分钟,然后洗涤并且在PBS中的0.15%Triton-X100中透化另外的15分钟。用1%牛血清白蛋白-PBS洗涤两次后,用小鼠抗rH2AX-AF488(EMD Millipore Corporation,Temecula,CA)将细胞在4℃下温育45分钟。使用BD FACSCalibur(BD Biosciences,San Jose,CA)通过流式细胞术测量rH2AX的信号强度。
肿瘤微阵列和患者标本中Trop-2的IHC-这涉及组织和微阵列切片上的标准IHC方法。评分是基于标本内>10%的肿瘤细胞中染色的强度,包括阴性、1+(弱)、2+(中等)和3+(强)。
异种移植物模型中的体内治疗研究-给予20克小鼠的250μg ADC的剂量(12.5mg/kg)中的SN-38当量等于0.2mg SN-38/kg。对于伊立替康(伊立替康-HCl注射;AREVAPharmaceuticals,Inc.,Elizabethtown,KY),基于质量,10mg伊立替康/kg转换为5.8mgSN-38/kg。
免疫印迹-将细胞(2×106)铺板在6孔板中过夜。次日,用0.4μg/mL(1μM)的SN-38浓度当量的SN-38或IMMU-132治疗它们。亲本hRS7用作ADC的对照。
具有人肿瘤异种移植物的小鼠中SN-38的定量-给各具有15只携带人胰腺癌细胞系的皮下移植物的15只动物的两组施用伊立替康或IMMU-132。以5个不同的间隔,使每组3只动物安乐死。取出Capan-1肿瘤(0.131±0.054g;N=30),并且在去离子水(DI)(1份组织+10份DI水)中匀化;用等份DI水稀释血清。提取血清和组织匀浆,通过反相HPLC(RP-HPLC)分析。尽管提取的样品足够用于检测来自伊立替康治疗动物的产物,将来自给予IMMU-132的动物的样品分成2部分,其中一部分进行酸水解步骤以释放所有与IgG结合的SN-38,其否则会在未提取的样品中不被检测到。
统计学-使用用于Windows的GraphPad Prism 5.00版,GraphPad Software,LaJolla California USA进行统计学分析。进行的具体检验随每个研究确定。
结果
SN-18结构和性质-IMMU-132利用拓扑异构酶I抑制剂SN-38,SN-38是抗癌喜树碱伊立替康(7-乙基-10-[4-(1-哌啶基)-1-哌啶基]羰基氧基喜树碱)的水溶性代谢物,伊立替康在结肠直肠癌、肺癌、宫颈癌和卵巢癌中是有治疗活性的(Garcia-Carbonero等,2002,Clin Cancer Res 8:641061)。选择SN-38的一个重要优势是该药物的体内药理学是公知的。伊立替康必须被酯酶裂解以形成SN-38,其效能比伊立替康高2-3个数量级,活性在低纳摩尔范围(Kawato等,1991,Cancer Res 51:4187-91)。在生理pH,喜树碱存在于包含更有活性的内酯形式和活性较低(10%效能)的开环羧酸形式的平衡中(Burke&Mi,1994,J MedChem 37:40-46)。
用于IMMU-132中的SN-38衍生物CL2A-SN-38的设计解决了以ADC形式使用该药物的多个挑战,并且涉及以下特征:(i)在交联剂中放置了短聚乙二醇(PEG)部分以给该高度不溶的药物赋予水溶性;(ii)掺入了马来酰亚胺基团用于与轻度还原的抗体的快速硫醇-马来酰亚胺缀合,并且专门设计的合成程序使得能够将马来酰亚胺高产量地掺入到装配碳酸酯键的环境中;(iii)碳酸苄酯位点提供了pH介导的裂解位点以便将药物从接头释放;和(iv)重要的是,交联剂与SN-38的20-羟基位置连接,其使得在生理条件下药物的内酯环不会打开成为活性较低的羧酸形式(Giovanella等,2000,Ann NY Acad Sci 922:27-35)。上文已经描述了SN-38衍生物的合成和CL2A-SN-38与轻度还原的hRS7IgG的缀合。该有限的还原程序仅仅使得重-重和重-轻链之间的链间二硫键断裂,但是不会使结构域内二硫键断裂,从而每个抗体分子产生8个位点特异性硫醇。然后将其缀合于CL2A-SN-38,通过渗滤纯化,并且冻干用于保存。在制造过程中,调整条件,以使得从IMMU-132的SN-38任何损失最小化,最终冻干产物在复水时始终具有<1%游离SN-38。但是,当置于血清中并且保持在37℃下时,SN-38以约1天的半衰期从缀合物释放(未显示)。
SN-38的释放似乎是IMMU-132的重要特征,该类型接头的选择是基于效力研究,该研究测试了与多种具有不同SN-38释放速度的接头缀合的SN-38,所述释放速度从约10小时释放半衰期到高度稳定(Moon等,2008(30,31)。用在血清中具有约2天的中等释放速度的缀合物发现了最优治疗活性。我们后续通过除去苯丙氨酸残基改进了用于命名为CL2A的该类型接头的制造过程(Cardillo et al.,2011,Clin Cancer Res 17:3157-64),然后再次将效力与设计用于仅仅在溶酶体条件下(即在组织蛋白酶B存在下和pH 5.0)释放SN-38的另一种稳定连接的抗Trop-2缀合物(CL2)的效力进行比较。在动物模型中,与稳定连接SN-38时相比,用CL2A接头制备的抗Trop-2缀合物产生了更好的治疗反应,表明当允许SN-38以约1天的半衰期释放到血清中时,甚至迅速内化的抗体也获益(Govidan等2013,Mol CancerTher 12:968-78)。由于使用放射性标记的抗体的临床研究发现抗体在几小时内定位于肿瘤,在1天内达到峰浓度(Sharkey等,1995,Cancer Res 55:5935s-45s),通过完整缀合物的内化、游离药物的细胞外释放或这两种机理协调一致,将选择性升高了浓度的SN-38局部递送到肿瘤中。
药物-抗体比率(DAR)测定。通过疏水相互作用HPLC(HIC-HPLC)评价5个临床批次的IMMU-132,其分辨出代表具有6、7和8的DARs的种类的三个峰,最大的级份包含DAR=8(未显示)。通过该制造过程一致地产生IMMU-132,在5个临床批次中的总体DAR(DARAVE)为7.60±0.03(未显示)。通过液相色谱-质谱法(LC-MS)确认HIC-HPLC结果(未显示)。分析显示在有或没有SN-38的情况下,8个可获得的巯基中的>99%与CL2A接头偶联。没有检测到未取代的(或N-乙基马来酰亚胺封端的)重或轻链。因此,种类之间的DAR差异是由制造过程中从接头释放SN-38导致的,而不是由更低的初始取代比的导致的。一旦制备和冻干,IMMU-132保持稳定几年。
DAR对小鼠中的药代动力学和抗肿瘤效力的影响。间隔7天给予携带Trop-2+人胃癌异种移植物(NCI-N87)的小鼠两次治疗,每次使用相同蛋白(0.5mg)剂量的具有6.89,3.28或1.64的DARs的IMMU-132(图19A)。与给予具有3.38或1.64DARs的ADCs的小鼠相比,用具有6.89的ADRs治疗的动物具有显著改进的中位生存时间(MST)(MST分别=39天与25和21天,P<0.0014)。在用3.28或1.64 DAR缀合物治疗的组和盐水对照组之间没有差异。
为了进一步阐明更高DAR的重要性,给携带NCI-N87胃肿瘤的小鼠施用0.5mg具有6.89的DAR的IMMU-132,每周两次,持续两周(图19B)。另一组接受两倍蛋白(1mg)剂量的具有3.28的DAR的IMMU-132缀合物。尽管两组使用每种给药方案接受相同的SN-38总量(36μg),但用6.89DAR缀合物治疗的那些比用3.28DAR缀合物治疗的携带肿瘤的动物更显著抑制了肿瘤生长(P=0.0227;AUC)。此外,用较低DAR治疗与未治疗的对照没有显著差异。这些研究共同表明较低DAR降低效力。
在给予0.2mg每种缀合物、未缀合的hRS7 IgG或还原并且随后用N-乙基马来酰亚胺封端的hRS7 IgG的未携带肿瘤的小鼠中进行在这些不同比率下制备的缀合物的药代动力学行为检查。从0.5至168h以5次间隔取出血清,并且通过ELISA测定hRS7 IgG。与未缀合的IgG相比,这些缀合物的清除没有显著差异(未显示)。因此,取代水平不影响缀合物的药代动力学,并且同等重要的是,链间二硫键的还原似乎没有使抗体不稳定。
TNBC中的Trop-2表达和SN-38敏感性。通过免疫组织化学(IHC)在人肿瘤标本的几个组织微阵列中测定Trop-2表达。在一个包含31个TNBC标本以及15个激素受体阳性或HER-2阳性乳腺癌的微阵列中,阳性染色出现在超过95%的肿瘤中,其中在65%的病例中表明3+染色。
表10列出了6个人乳腺癌细胞系,包括4个TNBC,显示它们的Trop-2表面表达和对SN-38的敏感性。在这6个细胞系的5个中的Trop-2表面表达超过了每个细胞90,000个拷贝。在这6个细胞系的5个中的SN-38效能从2至6nM,其中MCF-7具有33nM的最低的敏感性。没有提供IMMU-132的体外效能,因为几乎所有与IMMU-132相关的SN-38在4天的温育阶段中都释放到了培养基中,因此其效能与SN-38的效能将是相似的。因此,需要不同的策略来说明抗体靶向作为递送SN-38的机理的重要性。
用IMMU-132或非结合性抗CD20 SN-38缀合物在4℃将抗原阳性(HCC1806)或阴性(HCC1395)TNBC细胞系温育30分钟。然后洗涤细胞以除去未结合的缀合物,然后37℃下温育过夜。固定并透化细胞,然后用荧光抗磷酸-组蛋白H2A.X抗体染色,以通过流式细胞术检测dsDNA断裂(Bonner等,2008,Nat Rev Cancer 8:957-67)(表11)。当用IMMU-132温育时,Trop-2+乳腺癌细胞系HCC1806具有从168(未治疗的基线)到546的中位荧光强度(MFI)增加,表明dsDNA断裂的存在增加,而用非结合性缀合物温育的细胞的MFI保持在基线水平。相反,Trop-2抗原阴性细胞系HCC1395的MFI在用IMMU-132或非结合性对照缀合物治疗后保持在基线水平。因此,通过仅仅在用结合抗Trop-2的缀合物温育的表达Trop-2的细胞中有dsDNA断裂的证据,总结性地显示了IMMU-132相对于无关ADC的特异性。
hRS7-CL2A-SN-38在TNBC异种移植物中的体内效力。在携带MDA-MB-468TNBC肿瘤的裸鼠中评估IMMU-132的效力(图20A)。与以相同的两个剂量水平给予的盐水、伊立替康(10mg/kg;按重量计约5.8mg/kg SN-38当量)或对照抗CD20 ADC即hA20-CL2A-SN-38相比,剂量为0.12或0.20mg/kg SN-38当量的IMMU-132(0.15和0.25mg IMMU-132/剂)诱导了显著的肿瘤消退(P<0.0017,曲线下面积,AUC)。由于小鼠比人(38)更有效地将伊立替康转化为SN-38(在我们的研究中,平均约25%,见下文),在此伊立替康剂量下,将产生约145至174μg的SN-38,而施用的IMMU-132剂量仅仅含有9.6μg。然而,由于IMMU-132将SN-38选择性地靶向于肿瘤,它更有效。这些结果证实了其它实体瘤模型中的发现(Cardillo等,2011,ClinCancer Res 17:3157-69),所述发现显示用IMMU-132将小量SN-38特异性靶向于肿瘤比剂量大得多的伊立替康,或就此而言,hRS7IgG与等量游离SN-38的混合物有效得多(Cardillo等,2011,Clin Cancer Res 17:3157-69)。未缀合的RS7抗体,即使在每只动物1mg的重复剂量下,也没有显示任何抗肿瘤效果(Cardillo等,2011,Clin Cancer Res 17:3157-69)。然而,用表达Trop-2的妇科癌进行的体外研究已经表明用RS7 mAb通过抗体依赖性细胞毒性杀死细胞(Bignotti等,2010,Eur J Cancer 46:944-53;Raji等,2011,J Exp Clin CancerRes 30:106;Varughese等,2011,Gynecol Oncol 122:171-7;Varughese等,2011,Am JObstet Gyneol 205:567)。同样,已经报道了另一种抗Trop-2抗体的单价Fab在体外和动物研究中具有治疗活性。
在治疗第56天,给予0.12mg/kg hA20-CL2A-SN-38对照ADC的小鼠中的7个肿瘤有4个已经进展到1.0cm3的终点(图20B)。此时,用IMMU-132治疗这些动物,选择使用0.2mg/kg的更高剂量以尝试影响这些大得多的肿瘤的进展。尽管几只动物中的肿瘤的大小相当大,所有小鼠都证明了治疗反应,5周后肿瘤大小显著更小(分别是总体积[TV]=0.14±0.14cm3与0.74±0.41cm3;P=0.0031,双尾t检验)。相似地,我们在伊立替康治疗组中选择了两只动物,其肿瘤进展到约0.7cm3,并且一只用伊立替康而另一只用IMMU-132再次治疗(未显示)。在结束治疗两周内,伊立替康治疗的动物中的肿瘤缩小了23%,然后开始进展,而IMMU-132治疗的肿瘤稳定了,肿瘤大小缩小了60%。这些结果证明即使在经非特异性ADC暴露于SN-38后继续生长的肿瘤中,当用Trop-2特异性IMMU-132治疗时可以实现显著增强的治疗反应。但是,使用IMMU-132的特异性治疗效果没有在MDA-MB-231中实现(图20C)。该细胞系具有最低的Trop-2水平,但对SN-38也是最不敏感的。
IMMU-132在TNBC中的作用机理-在TNBC细胞系MDA-MB-468和HER2+SK-BR-3细胞系中检查了IMMU-132所利用的凋亡途径,以证实基于ADC掺入的SN-38的ADC功能(未显示)。单独的SN-38和IMMU-132在MDA-MB-468中在24小时内介导p21WAF1/Cip1的>2倍增量调节,到48小时,这些细胞中的p21WAF1/Cip1量开始降低(使用SN-38或IMMU-132分别是31%和43%)。有趣的是,在HER2+SK-BR-3肿瘤细胞系中,在前24小时内SN-38和IMMU-132都不介导p21WAF1 /Cip1增量调节到高于组成型水平,但如暴露于SN-38或IMMU-13248小时后在MDA-MB-468细胞中所见,p21WAF1/Cip1量的降低>57%。SN-38和IMMU-132二者都导致胱天蛋白酶原-3(pro-caspase-3)在24小时内裂解成其活性片段,但在暴露48小时后观察到更大程度的活性片段。值得注意的是,在这两个细胞系中,与暴露于SN-38的细胞相比时,IMMU-132介导了更大程度的胱天蛋白酶原-3裂解,在48小时后观察到了最高水平。最后,SN-38和IMMU-132两者都介导了聚ADP核糖聚合酶(PARP)裂解,从24小时开始,48小时后几乎完全裂解。综上所述,这些结果证实了当在体外施用时,IMMU-132具有与游离SN-38的作用机理相似的作用机理。
在人肿瘤异种移植物模型中通过IMMU-132与伊立替康递送SN-38-在施用伊立替康(773μg;SN-38当量=448μg)和IMMU-132(1.0mg;SN-38当量=16μg)的皮下移植了人胰腺癌异种移植物(Capan-1)的小鼠的血清和肿瘤中测定了衍生自伊立替康或IMMU-132的组成型产物。
伊立替康非常迅速地从血清清除,5分钟内观察到转化为SN-38和SN-38G。在24小时没有检测到所述产物。对于伊立替康、SN-38和SN-38G,6小时时间段中的AUCs分别是21.0、2.5和2.8μg/mL·h(小鼠中的SN-38转化=[2.5+2.8)/21=25.2%])。给予IMMU-132的动物血清中具有低得多的浓度的游离SN-38,但它在48小时中都能检测到(图5A)。仅在1和6小时检测到了游离SN-38G,并且是游离SN-38的1/7至1/3。
在从伊立替康治疗的动物切除的Capan-1肿瘤中,伊立替康水平在6小时中是高的,但是在24小时不可检测(AUC5min-6 h=48.4μg/g·h)。SN-38低得多,并且仅仅到2小时可以检测到(即AUC5min-2 h=0.4μg/g·h),而SN-38G值几乎是3倍(AUC=1.1μg/g·h)(未显示)。从给予IMMU-132的动物取出的肿瘤不具有任何可检测的游离SN-38或SN-38G,但是相反,肿瘤中的所有SN-38都与IMMU-132结合。重要的是,由于在肿瘤中没有检测到SN-38G,这表明与IMMU-132结合的SN-38不是葡糖醛酸化的。即使给予伊立替康的小鼠接受的SN-38当量是用IMMU-132施用的SN-38当量的28倍(即分别是448与16μg SN-38当量),在可以检测到SN-38的2小时阶段中,这些肿瘤中与IMMU-132结合的SN-38的AUC是54.3μg/g·h,其是用伊立替康治疗的动物的肿瘤中SN-38量的135倍。
讨论
我们描述了一种新的靶向Trop-2的ADC,并且先前的临床结果表明它是良好耐受的并且在患有TNBC以及其它Trop-2+癌的患者中有效(Bardia等,2014,San AntonioBreast Cancer Symposium,P5-19-27)。由于它的独特性质,IMMU-132代表了第二代ADC。通常,ADCs需要4个广泛的属性来成为最优有效的(i)选择性靶向/活性;(ii)用于ADC中的抗体的结合、亲和力、内化和免疫原性;(iii)药物、其效能、代谢和药理学倾向(disposition),以及(iv)药物如何结合于抗体。靶选择性是所有ADCs的最常见要求,因为这在定义治疗指数中将起主要作用(对肿瘤与正常细胞的毒性的比率)。Trop-2似乎在许多上皮癌上具有高出现率两者,但它也由几种正常组织表达(Cubas等,2009,BiochimBiophys Acta 1796:309-14;Trerotola等,2013,Oncogene 32:222-33;Stepan等,2011,59:701-10),这会具有受影响的特异性。但是,在正常组织中的表达似乎低于癌中的表达(Bignotti等,2010,Eur J Cancer 46:944-53),并且Trop-2似乎受到了正常组织结构的遮蔽,该结构限制抗体的可接近性,而在癌中,这些组织屏障受到侵袭的肿瘤的破坏。其证据从猴中的初始毒理学研究是显而易见的,其中尽管升高IMMU-132剂量到导致伊立替康样中性粒细胞减少症和腹泻的水平,没有出现对表达Trop-2的正常组织的组织病理学损伤(Cardillo等,2011,Clin Cancer Res 17:3157-69)。这些结果似乎已经在临床上得到了验证,其中迄今为止除了母体化合物伊立替康的已知毒性,没有在患者中注意到特异性的器官毒性(Bardia等,2014,San Antonio Breast Cancer Symposium,P5-19-27),所述已知毒性在使用IMMU-132时是更易控制的。
ADC治疗的一个通常接受并且重要的标准是抗体应该内化,将其化学治疗剂递送到细胞内,其中它通常在溶酶体中代谢。尽管IMMU-132内化,我们认为该ADC中的接头(其提供很可能能够诱导对癌细胞的旁观者效应的SN-38的局部释放)是设置该平台的另一个特征(除使用超毒性药物的那些之外)。实际上,具有稳定连接于IgG的超毒性剂,是将保留用于那些类型化合物的有用治疗窗的唯一构型。然而,使用更中等毒性的药物不会给出使用一旦在循环中就会过早释放药物的接头的自由度。我们的小组研究了以不同的血清中的半衰期(从约10小时到高度稳定的接头)从缀合物释放SN-38的接头,但是,是具有中等稳定性的接头在小鼠-人肿瘤异种移植物模型中提供了最佳治疗反应(Moon等,2008,J Med Chem51:6916-26;Govindan等,2009,Clin Chem Res 15:6052-61)。由于该初始工作,我们显示了高度稳定的SN-38连接与在血清中具有更中等稳定性的CL2A接头相比有效性显著更低(Govindan等,2013,Mol Cancer Ther 12:968-78)。
ADC设计的另一个目前的原则是使用超细胞毒性药物来补偿肿瘤中的低水平抗体堆积,通常是每克0.003至0.08%的注射剂量(Sharkey等,1995,Cancer Res 55:5935s-45s)。当前代的超毒性药物缀合物发现≤4∶1的药物:抗体取代是最优的,因为更高的比率会不利地影响它们的药代动力学,并且通过附属毒性降低治疗指数(Hamblett等,2004,Clin Cancer Res 10:7063-70)。在该二代ADC平台中,我们选择使用IgG偶联方法,其通过暴露8个结合位点的IgG轻度还原,将药物位点特异性地连接到链间二硫键。使用该CL2A-SN-38接头,我们实现了7.6:1的DAR,LC-MS数据显示这8个偶联位点的每一个都携带该CL2A接头,但明显地,有些SN-38在制造过程中丢失。然而,95%的CL2A接头具有7-8个SN-38分子。我们随后发现(a)偶联于这些位点不会使抗体不稳定,和(b)用以更高水平取代的这些位点制备的缀合物不会破坏抗体结合,也不影响药代动力学性质。实际上,我们证明了以最大取代水平制备的该缀合物在小鼠-人肿瘤异种移植物模型中具有最佳治疗反应。
从耐受性的角度,IMMU-132的更值得注意的特征之一是与IgG结合的SN-38不是葡糖醛酸化的,葡糖醛酸化是伊立替康的脱毒中的一个关键步骤。使用伊立替康治疗,产生的大多数SN-38容易地在肝中转化为非活性的SN-38G形式。对SN-38G的AUC的估计显示它通常是SN-38的4.5至32倍(Gupta等,1994,Cancer Res 54:3723-25;Xie等,2002,J Clin Oncol20:3293-301)。SN-38G分泌到胆汁中并且随后由肠道菌群产生的β-葡糖醛酸酶去缀合,这在用伊立替康观察到的SN-38的肠肝循环中和迟发的严重腹泻强相关(Stein等,2010,TherAdv Med Oncol 2:51-63)。在施用IMMU-132后,在我们的动物和临床研究中SN-38G的浓度非常低(例如在给予IMU-132的患者血清中,仅20-40%的游离SN-38水平是SN-38G的形式),这提供了强证据表明即使SN-38的10-羟基位置是可用的,与IgG结合的SN-38很大程度受到保护而避免葡糖醛酸化。我们推测由IMMU-132产生的低水平SN-38G导致与伊立替康治疗相比,接受该ADC的患者中更低的腹泻发病率和强度。
防止与抗体结合的SN-38的葡糖醛酸化也可导致递送到肿瘤的SN-38的改进的疗效。来自给予伊立替康的动物的肿瘤的提取物发现了高水平的伊立替康,而SN-38和SN-38G的浓度是1/10。相反,在给予IMMU-132的动物的肿瘤中,发现的唯一SN-38是与IgG结合的SN-38。我们假定肿瘤中保留的该缀合物将最终被内化,由此释放其SN-38有效负载,或SN-38可以被释放到肿瘤细胞外;然而,它会以其完全活性形式释放,转化为SN-38G(其主要发生在肝中)的可能性较低。同样重要的是强调通过将接头偶联于SN-38的20-羟基位置,SN-38保持在活性内酯形式(Zhao等,2000,J Org Chem 65:4601-6)。共同地,这些结果表明,与衍生自非靶向的伊立替康的SN-38相比,IMMU-132能够以选择性方式将SN-38递送和浓集到Trop-2+肿瘤,IMMU-132递送的SN-38很可能以完全活性的、非葡糖醛酸化的内酯形式释放到肿瘤中。
伊立替康不是常规用于治疗乳腺癌患者。但是,本文显示的使用TNBC细胞系的实验表明将较高量的SN-38浓集到肿瘤中,增强其活性。在MDA-MB-468 TNBC和HER2+ SK-BR-3肿瘤细胞系两者中,IMMU-132介导固有凋亡途径的活化,其中胱天蛋白酶原裂解为它们的活性片段并且PARP裂解。与无关SN-38 ADC相比,用IMMU-132治疗的癌细胞的双链DNA断裂的证明(Bardia et al.,2014,San Antonio Breast Cancer Symposium,P5-19-27),确认了SN-38向靶细胞中的选择性递送。最重要的是,这些实验室发现得到了患有大量预先治疗过的转移性TNBC的患者的治疗的证实,其中观察到了可持续的客观反应(Bardia等,2014,San Antonio Breast Cancer Symposium,P5-19-27)。看起来IMMU-132在患有其它癌并且先前含有拓扑异构酶I抑制剂的治疗方案失败的患者中也是有活性的(Starodub等,2015,Clin Cancer Res 21:3870-78)。
综上所述,使用中等稳定接头以非常高的药物与抗体比率缀合的SN-38的使用,在动物模型中是有效的,并且在临床上也是有效的,其构建了二代ADC平台。我们的发现表明Trop-2在Trop-2+实体瘤,特别是TNBC中是临床相关的和新的靶。
实施例16.对IMMU-132的作用机理的研究
Sacituzumab govitecan(IMMU-132,也称作hRS7-CL2A-SN-38)是一种用于递送伊立替康的活性代谢物SN-38、靶向许多上皮肿瘤上表达的表面糖蛋白Trop-2的抗体-药物缀合物(ADC)。与使用超毒性药物和稳定接头的大多数ADCs不同,IMMU-132使用中等毒性的药物,在SN-38和接头之间具有中等稳定的碳酸酯键。流式细胞术和免疫组织化学公开了Trop-2在大范围的肿瘤类型,包括胃肿瘤、胰腺肿瘤、三阴性乳腺(TNBC)肿瘤、结肠肿瘤、前列腺肿瘤和肺肿瘤中表达。尽管细胞结合实验显示在IMMU-132和亲本hRS7抗体之间没有显著差异,使用Trop-2 CM5芯片的表面等离子共振分析显示IMMU-132相对于hRS7的显著结合优势。该缀合物保持与新生受体的结合,但与hRS7相比失去了大于60%的抗体依赖性细胞介导的细胞毒性活性。
肿瘤细胞暴露于游离SN-38或IMMU-132证明了相同的信号传导途径,其中pJNK1/2和p21WAF 1/Cip1增量调节,随后是胱天蛋白酶9、7和3的裂解,最终导致聚-ADP-核糖聚合酶裂解和双链DNA断裂。
小鼠中完整ADC的药代动力学显示15.4小时的平均滞留时间(MRT),而载体hRS7抗体以与未缀合的抗体相似的速度清除(MRT=约300h)。携带人胃癌异种移植物的小鼠的IMMU-132治疗(17.5mg/kg;每周两次x 4周)与用非特异性对照治疗的小鼠相比导致显著的抗肿瘤作用。IMMU-132的临床相关给药方案在携带人胰腺癌或胃癌异种移植物的小鼠中每隔一周、每周或每周两次施用,在两个模型中都证明了相似的显著的抗肿瘤作用。目前的I/II期临床试验(ClinicalTrials.gov,NCT01631552)证实了IMMU-132在表达Trop-2的癌,包括胃癌和胰腺癌患者中的抗癌活性。
引言
估计今年在美国将诊断22,220个胃癌新病例,并且有另外10,990例由该疾病导致的死亡(Siegel等,2014,CA Cancer J Clin 64:9-29)。尽管5年生存率的趋势是向上的(目前是29%),但当与大多数其它癌,包括结肠、乳腺和前列腺的癌(分别是65%、90%和100%)相比,它们仍然是相当低的。实际上,在人类癌中,仅仅食道癌、肝癌、肺癌和胰腺癌具有更差的5年生存率。胰腺癌在美国保持为所有癌症死亡的排名第四位的原因,5年生存率仅6%(Siegel等,2014,CA Cancer J Clin 64:9-29)。从胃癌和胰腺癌的这种严峻的统计学很明显可以看出需要新治疗方法。
Trop-2是属于TACSTD基因家族,特别是TACSTD22的45-kDa糖蛋白。该跨膜蛋白在很多不同上皮癌中的超量表达已经与总体的不良预后相关联。Trop-2对于不依赖贴壁的细胞生长和肿瘤发生是极其重要的(Wang等,2008,Mol Cancer Ther 7:280-85;Trerotola等,2013,Oncogene 32:222-33)。它作为需要完整细胞质尾的钙信号转导物起作用,所述细胞质尾由蛋白激酶C12-14磷酸化。与Trop-2相关的促生长信号传导包括NF-κB、细胞周期蛋白D1和ERK(Guerra等,2013,Oncogene 32:1594-1600;Cubas等,2010,Mol Cancer 9:253)。
在胰腺癌中,在研究的55%患者中观察到了Trop-2超量表达,与以治疗目的进行了手术的患者的转移、肿瘤分级和不良无进展生存正相关(Fong等,2008,Br J Cancer 99:1290-95)。同样,在胃癌中,56%的患者在他们的肿瘤上展现Trop-2的超量表达,这再次与那些具有Trop-2阳性肿瘤细胞的淋巴结累及的患者中更短的无疾病生存和更差的预后相关(Muhlmann等,2009,J Clin Pathol 63:152-58)。考虑到这些特征和Trop-2与如此多的难治的癌相关联的事实,Trop-2是使用抗体-药物缀合物(ADC)的治疗干预的有吸引力的靶。
使用抗体将药物靶向于肿瘤的通常典范包括几个关键因素,其中包括(a)与正常组织相比,优先在肿瘤上表达的抗原靶,(b)具有良好亲和力并且由肿瘤细胞内化的抗体,以及(c)与抗体稳定偶联的超毒性药物(Panowski等,2014,mAbs 6:34-45)。依据这些,我们开发了一种命名为RS7-3G11(RS7)的抗体,其以纳摩尔亲和力(Cardillo等,2011k,ClinCancer Res 17:3157-69)与多种实体瘤中的Trop-2结合(Stein等,1993,Int J Cancer55:938-46;Basu等,1995,Int J Cancer 62:472-79),并且一旦结合于Trop-2,就由细胞内化(Shih等,1995,Cancer Res 55:5857s-63s)。
通过免疫组织化学发现,Trop-2在一些正常组织中表达(尽管当与瘤组织相比通常是以低得多的强度),并且通常存在于血管进入受限的组织区域(Trerotola等,2013,Oncogene 32:222-33)。基于这些特征,将RS7人源化并且与伊立替康的活性代谢物7-乙基-10-羟基喜树碱(SN-38)缀合。在许多细胞系中的体外细胞毒性发现了与目前用于ADCs中的很多超毒性药物的皮摩尔范围相比,SN-38的IC50值在个位数纳摩尔范围(Cardillo等,2011,Clin Cancer Res 17:3157-69)。尽管普遍意见是使用超毒性药剂,如auristatins或美登素(maytansines)来制备具有与抗体稳定连接的每个抗体仅2-4个药物的ADCs,但所述药剂具有窄治疗窗,导致更新的努力来将ADCs重新工程化,以拓宽它们的治疗指数(Junutula等,2010,Clin Cancer Res 16:4769-78)。
作为与该实践背离的一种方法,我们使用在人血清中以约1天的半衰期释放SN-38的接头,每个抗体缀合7-8个SN-38分子。推测使用稳定性较低的接头,允许在ADC靶向细胞后在肿瘤部位释放SN-38,使得药物对于周围的肿瘤细胞而不仅仅是被ADC直接靶向的细胞来说是可得到的。得到的ADC,即hRS7-CL2A-SN-38(sacituzumab govitecan或IMMU-132)显示了针对大范围肿瘤类型的抗肿瘤活性(Cardillo等,2011,Clin Cancer Res 17:3157-69)。最近以来,IMMU-132已经证明了针对三阴性乳腺癌(TNBC)的临床前模型的显著抗肿瘤活性(Goldenberg等,2014,在San Antonia Breast Cancer Symposium上展示的海报,12月9-13日,摘要P5-19-08)。更重要的是,在一个目前的I/II期临床试验中,IMMU-132显示了在TNBC患者中的活性(Bardia等,2014,在San Antonia Breast Cancer Symposium上展示的海报,12月9-13日,摘要P5-19-2),由此验证了ADC化学中的该典范转移,其使用毒性较低的药物和随时间释放SN-38的接头而不是完全依赖于ADC的内化来实现活性。
SN-38是诱导对细胞的DNA的显著破坏的已知的拓扑异构酶I抑制剂。它介导早期促凋亡蛋白p53和p21WAF1/Cip1的增量调节,导致胱天蛋白酶活化和聚-ADP-核糖聚合酶(PARP)裂解。p21WAF1/Cip1的表达与细胞周期的G1停滞相关,并且因此是固有的凋亡途径的标志。我们之前证明了IMMU-132同样可以介导早期促凋亡信号传导事件(p53和p21WAF1/Cip1)的增量调节,导致NSCLC(Calu-3)和胰腺(BxPC-3)细胞系中与固有的促凋亡信号传导途径一致的PARP裂解(Cardillo等,2011,Clin Cancer Res 17:3157-69)。
本文中,我们进一步表征了IMMU-132,特别关注实体癌,特别是人胃肿瘤和胰腺肿瘤的治疗。检查了跨一系列实体瘤类型的Trop-2表面表达,并且与肿瘤异种移植物中的体内表达相关联。机理研究进一步阐明了由IMMU-132介导的固有促凋亡信号传导事件,包括增加的双链DNA(dsDNA)断裂和随后胱天蛋白酶活化的证据。最后,在胃癌和胰腺癌疾病模型中比较了临床上相关的和非毒性给药方案,测试了每周两次、每周和每隔一周方案以确定哪种治疗周期可以最佳地应用于临床环境而不损失效力。
实验程序
细胞系和化学治疗剂-使用的所有人癌细胞系都购自美国典型培养物保藏中心(ATCC)(Manassas,VA)。根据ATCC的推荐保持每种细胞系,并常规测试支原体,并且全部由ATCC通过短串联重复(STR)测定进行了验证。按照之前的描述制备IMMU-132(hRS7-SN-38)和对照ADCs(抗CD20hA20-SN-38和抗CD22hLL2-SN-38)并且在-20℃下保存(Cardillo等,2011,Clin Cancer Res 17:3157-69)。SN-38是购买的(Biddle Sawyer Pharma,LLC,NewYork,NY)并且以DMSO中的1mM等分试验在-20℃下保存。
Trop-2 ELISA-室温下以1μg将具有His标记的重组人Trop-2(Sino Biological,Inc.,北京,中国;目录号10428-H09H)和具有His标记的重组小鼠Trop-2(SinoBiological,Inc.,目录号50922-M08H)铺板到Ni-NTA Hissorb条(strips)(Qiagen GmbH目录号35023)上,持续1小时。用PBS-Tween(0.05%)洗涤缓冲液将板洗涤4次。在1%BSA-PBS稀释缓冲液中制备hRS7的系列稀释液,以测试0.1ng/mL至10μg/mL的范围。然后将板在室温下温育2小时,然后洗涤四次,之后加入过氧化物酶缀合的第二抗体(山羊抗人,Fc片段特异性的;Jackson Immunoresearch目录号109-036-098)。温育45分钟后,洗涤板,在所有孔中加入底物溶液(邻苯二胺二盐酸盐(OPD);Sigma,目录号P828)。将板在暗处温育15分钟,然后用4N硫酸终止反应。在Biotek ELX808读板仪上在450nm读取板。使用Prism GraphPad软件(v4.03)(Advanced Graphics Software,Inc.;Encinitas,CA)分析数据和作图。
体外细胞结合-用LumiGLO化学发光底物系统(KPL,Gaithersberg,MD)检测抗体与细胞的结合。简言之,将细胞铺板到96黑孔、透明平底板中过夜。将抗体系列稀释到1:2,并且以三份加入,得到0.03至66.7nM的浓度范围。在4℃下温育1小时后,移除培养基,用新鲜的冷培养基洗涤细胞,然后4℃下加入山羊抗人辣根过氧化物酶缀合的第二抗体(JacksonImmunoresearch,West Grove,PA)的1:20,000稀释液,持续1小时。再次洗涤板,然后加入LumiGLO试剂。使用Envision读板仪(Perkin Elmer,Boston MA)读取板的发光。通过非线性回归分析数据以测定平衡解离常数(KD)。用Prism GraphPad软件(v4.03)(AdvancedGraphics Software,Inc.;Encinitas,CA)进行KD值的统计学比较,所述软件使用数据的最佳拟合曲线上的F检验。显著性设置为P<0.05。
抗体依赖性细胞介导的细胞毒性(ADCC)-进行4小时LDH释放测定以评价IMMU-132、hRS7IgG、hLL2-SN-38和hLL2IgG(hLL2是用于实体瘤细胞系的非结合性抗CD22缀合物)引起的ADCC活性。简言之,以1x104个细胞/孔将靶细胞(MDA-MB-468、NIH:OVCAR-3或BxPC-3)铺板在96孔黑色平底板中,并且温育过夜。次日,从供体新鲜分离外周血单核效应细胞(PBMCs),并且以50:1的E:T比率加入到反应板上分配的孔中。人PBMCs的获得是在新英格兰伦理审查委员会(New England Institutional Review Board,Newton,MA)的批准下进行的。以33.3nM的终浓度将测试试剂加入到它们分配的孔中。一组孔接受单独的ADCC测定培养基作为背景对照,另一组孔接受单独的细胞加TritonX100作为最大细胞溶解对照。将板在37℃下温育4小时。4小时后,通过均相荧光LDH释放测定(Cyto Tox-One均相膜完整性测定(Homogenous Membrane Integrity Assay);Promega,Cat.G7891)评估靶细胞溶解。
使用Envision读板仪(PerkinElmer LAS,Inc.;Shelton,CT)读取板(544nm-590nm)。通过Microsoft Excel分析数据。特异性细胞溶解百分比如下计算:
其中:
实验的:效应物+靶细胞+抗体
效应物+靶对照:效应物+靶细胞
最大细胞溶解:靶细胞+Triton-X100
靶对照:仅靶细胞
表面等离子共振结合(BIACORE)-简言之,按照制造商关于低密度芯片的说明书,用胺偶联试剂盒(GE Healthcare;目录号BR-1000-50)将按照描述(Wang等,2011,DrugMetab Dispos 39:1469-77)生产的rhTrop-2/TACSTD2(Sino Biological,Inc.)或重组人新生受体(FcRn)固定在CM5传感器芯片(GE Healthcare;目录号BR-1000-12)上。在运行缓冲液(400nM、200nM、100nM、50nM和25nM)中制备hRS7IgG和IMMU-132的分开的三组稀释液。每组构成BIACORE(BIACORE-X;Biacore Inc.,Piscataway,NJ)上的一次分开的运行,并且使用BIAevaluation软件(Biacore Inc.,v4.1)分析数据。用1∶1(Langmuir)结合模型和拟合(Binding Model and Fit)进行分析,每个样品运行使用所有5个浓度点来确定最佳拟合(最低χ2值)。使用公式KD=kd1/ka1计算KD值,其中kd1是解离速度常数,ka1是结合速度常数。
Trop-2在福尔马林固定的、石蜡包埋的组织中的分布的免疫组织学评估-从小鼠取出肿瘤异种移植物,在10%缓冲的福尔马林中固定,并且进行石蜡包埋。脱石蜡后,在NxGen Decloaking室(Biocare Medical,Concord,CA)中95℃下将5μm切片用Tris/EDTA缓冲液(DaKo Target Retrieval溶液,pH 9.0;Dako,Denmark)温育30分钟。用10μg/mL的山羊多克隆抗人Trop-2抗体(R&D Systems,Minneapolis,MN)检测Trop-2,并且用VectorVECTASTAINR ABC试剂盒(Vector Laboratories,Inc.,Burlingame,CA)染色。正常山羊抗体用作阴性对照(R&D Systems,Minneapolis,MN)。用苏木精将组织复染6秒。
人癌细胞系上的Trop-2表面表达-细胞表面上的Trop-2表达是基于流式细胞术。简言之,用Accutase Cell Detachment溶液(Becton Dickinson(BD);Franklin Lakes,NJ二目录号561527)收获细胞,并且按照制造商的说明书,使用QuantiBRITE PE珠(BD目录号340495)和PE缀合的抗Trop-2抗体(eBiosciences,目录号12-6024)测定Trop-2表达。在使用CellQuest Pro软件的FACSCalibur流式细胞仪(BD)上获取数据。使用Flowjo软件(TreeStar;Ashland OR)分析染色。
药代动力学-8-10周龄的幼稚雌性NCr裸(nu/nu)鼠购自Taconic Farms(Germantown,NY)。给小鼠(N=5)静脉注射200μg的IMMU-132、亲本hRS7或修饰的hRS7-NEM(用TCEP处理并且与N-乙基马来酰亚胺缀合的hRS7)。在注射后30分钟、4、24、72和168小时经眶后丛给动物取血。通过用hRS7的辣根过氧化物酶缀合物竞争与抗hRS7IgG独特型抗体的结合,用ELISA测定总hRS7IgG的血清浓度。使用抗SN-38抗体捕获并且使用辣根过氧化物酶缀合的抗hRS7IgG抗体检测,测定完整IMMU-132的血清浓度。使用Phoenix WinNonlin软件(6.3版;Pharsight Corp.,Mountainview,CA)通过非房室模型分析计算药代动力学(PK)参数。
体外双链DNA断裂评估-对于药物活性测试,以5×105个细胞/孔将BxPC-3细胞接种到6孔板中,并且在37℃下保持过夜。在冰上冷却10分钟后,将细胞用终浓度为20μg/ml的IMMU-132、hA20-SN-38或hRS7-IgG在冰上温育30分钟,用新鲜培养基洗涤三次,然后回到37℃继续培养过夜。次日早晨,短暂胰蛋白酶处理细胞,离心沉淀(spun down),用FixableViability Stain 450(BD Biosciences,San Jose,CA)染色,用1%BSA-PBS洗涤,然后在4%福尔马林中固定15分钟,再次洗涤并且在PBS中的0.15%Triton-X100中透化另外的15分钟。用1%BSA-PBS洗涤两次后,用小鼠抗rH2AX-AF488(EMD Millipore Corporation,Temecula,CA)将细胞在4℃下温育45分钟。使用BD FACSCalibur(BD Biosciences,SanJose,CA)通过流式细胞术测量rH2AX的信号强度。
体内治疗研究-4-8周龄的NCr雌性无胸腺裸(nu/nu)鼠购自Taconic Farms(Germantown,NY)。通过从组织培养物收获细胞并1∶1在matrigel(BD Bioscience;SanJose,CA)中制备最终细胞悬浮液,建立NCI-N87胃肿瘤异种移植物,每只小鼠在右侧胁腹中皮下接受总共1x107个细胞。对于BxPC-3,收获1g异种移植物,并且在HBSS中制备肿瘤悬浮液至40%肿瘤w/v的浓度。将该悬浮液1∶1与matrigel混合,得到20%w/v的最终肿瘤悬浮液。然后给小鼠皮下注射300μL。肿瘤体积(TV)通过使用卡尺以2个维度进行测量来测定,体积定义为:L×w2/2,其中L是肿瘤的最长维度,并且w是最短维度。对于IHC,允许肿瘤生长至大约0.5em3,然后使小鼠安乐死并取出肿瘤,福尔马林固定并石蜡包埋。对于治疗研究,将小鼠随机分到治疗组中,并且当肿瘤体积为大约0.25cm3时开始治疗。治疗方案、剂量和每个实验中的动物数目描述于结果和图例中。根据需要将冻干的IMMU-132和对照ADC(hA20-SN-38)在无菌盐水中复水并稀释。
使小鼠安乐死并且一旦肿瘤生长到大于1.0cm3的大小则认为小鼠死于疾病。对治疗的最佳反应定义为:部分反应,即从起始大小缩小>30%;稳定疾病,即肿瘤体积缩小最多29%或增加不超过最初大小的20%;进展,即肿瘤从它们的起始大小或从它们的最低点增加≥20%。进展时间(TTP)测定为当肿瘤从它的最低点生长超过20%大小时治疗开台后的时间。
肿瘤生长的统计学分析是基于曲线下面积(AUC)。通过线性曲线建模获得个体肿瘤生长分布图。在生长曲线的统计学分析前,采用f检验确定组之间的方差齐性。使用双尾t检验评估各个治疗组和对照之间的统计学显著性,盐水对照除外,其中使用了单尾t检验(显著性为P≤0.05)。使用Prism GraphPad Software (v4.03)软件包(Advanced GraphicsSoftware,Inc.,Encinitas,CA),用Kaplan-Meier图(对数秩分析)分析生存研究。
免疫印迹-将细胞(2×106)铺板在6孔板中过夜。次日,用相当于0.4μg/mL(1μM)的SN-38浓度的游离SN-38(溶解于DMSO中)或IMMU-132治疗它们。亲本hRS7用作ADC的对照。在含有10mM Tris,pH 7.4、150mM NaCl、蛋白酶抑制剂和磷酸酶抑制剂(2mM Na2PO4,10mMNaF)的缓冲液中溶解细胞。将总共20μg蛋白在4-20%SDS聚丙烯酰胺凝胶上分辨,转移到硝酸纤维素膜上,并且用1×TBS-T(Tris缓冲的盐水,0.1%Tween-20)中的5%脱脂乳室温下封闭1小时。用第一抗体在4℃下探测膜过夜,然后室温下用抗兔第二抗体(1:2500)温育1小时。使用具有在Kodak图像站(Image Station)40000R上显现的膜的化学发光试剂盒(Supersignal West Dura,Thermo Scientific;Rockford,IL)进行信号检测。第一抗体p21Waf1/Cip1(目录号2947)、胱天蛋白酶-3(目录号9665)、胱天蛋白酶-7(目录号9492)、胱天蛋白酶-9(目录号9502)、PARP(目录号9542)、β-肌动蛋白(目录号4967)、pJNK1/2(目录号4668)、JNK(目录号9258)和山羊抗兔-HRP第二抗体(目录号7074)获自CellSignalTechnology(Danvers,MA)。
结果
多种实体瘤细胞系中的Trop-2表达水平-多种人实体瘤细胞系,包括胃、胰腺、乳腺、结肠和肺实体瘤细胞系中的Trop-2表面表达是明显的(表12)。没有一种肿瘤类型具有高于任何其它类型的表达,在给定肿瘤细胞类型内观察到变化。例如,在胃腺癌中,Trop-2水平的范围是每个细胞非常低的494±19(Hs746T)至高的246,857±64,651(NCI-N87)个表面分子。
针对Trop-2表达染色的胃肠肿瘤异种移植物显示细胞质和细胞膜都染色(未显示)。染色强度与通过FACS分析确定的表面Trop-2表达的结果非常相关。对于胰腺腺癌,所有三种具有均匀染色,其中BxPC-3代表2+至3+染色。NCI-N87胃腺癌具有更不均匀的染色模式,具有腺体顶部粘膜的3+染色和周围肿瘤细胞的较不明显的染色。COLO 205显示仅仅非常局灶的1+至2+染色,而HT-29显示少数细胞的非常罕见的1+染色。
表12.经FACS分析得到的多种实体瘤细胞系中的Trop-2表面表达水平。a
a进行了三个分开的测定,提供了平均值和标准差。
IMMU-132结合特征-为了进一步证明hRS7不与鼠Trop-2交叉反应,在用重组鼠Trop-2或人Trop-2包被的板上进行ELISA(未显示)。人源化RS7仅仅特异性结合于人Trop-2(KD=0.3nM);与鼠Trop-2没有交叉反应性。对照多克隆兔抗鼠Trop-2和抗人Trop-2抗体不交叉反应,并且结合于这两种形式的Trop-2(数据未显示)。
与亲本hRS7以及修饰的hRS7,即hRS7-NEM(用TCEP处理并且与N-乙基马来酰亚胺缀合的hRS7)比较,检查了IMMU-132与多种细胞系的结合(未显示)。在所有情况下,计算的KD值在亚纳摩尔范围,在给定细胞系中在hRS7、IMMU-132和hRS7-NEM之间没有显著差异。
使用表面等离子共振(BIACORE)分析进一步研究了IMMU-132和hRS7的结合的比较(未显示)。采用了低密度Trop-2生物传感器芯片(密度=1110RU),其使用重组人Trop-2。不仅三个独立的结合运行证明了IMMU-132不受到SN-38缀合过程的不利影响,它也证明了相较于hRS7,与Trop-2的更高结合亲和力(分别是0.26±0.14nM与0.51±0.04nM;P=0.0398)。
作用机理:ADCC和固有的凋亡信号传导途径-在三种不同的细胞系,即TNBC(MDAMB-468)、卵巢(NIH:OVCAR-3)和胰腺(BxPC-3)细胞系中将IMMU-132的ADCC活性与hRS7比较(图21)。在所有三个细胞系中,与所有其它治疗,包括IMMU-132相比,hRS7显著介导细胞溶解(P<0.0054)。与hRS7相比,当用IMMU-132靶向细胞时,ADCC减少了超过60%。例如,在MDA-MB-468中,与IMMU-132的8.6±2.6%相比,由hRS7介导的特异性细胞溶解是29.8±2.6%(图21A;P<0.0001)。同样在NIH:OVCAR-3和BxPC-3中观察到了ADCC活性的相似损失(图21B和图21C;分别是P<0.0001和P<0.0054)。这种减少的ADCC活性似乎是缀合过程中抗体改变的结果,因为这种相同的特异性细胞溶解的丧失在使用hRS7-NEM时是明显的,所述hRS7-NEM缺乏CL2A-SN-38接头,而是用N-乙基马来酰亚胺将半胱氨酸封闭(图21C)。没有与hRS7或IMMU-132相关的CDC活性(数据未显示)。
之前已经显示了IMMU-132介导早期促凋亡信号传导事件(p53和p21WAF1/Cip1)的增量调节,最终导致PARP的裂解。为了更好地定义IMMU-132利用的凋亡途径,将NCI-N87人胃癌和BxPC-3胰腺腺癌细胞系暴露于1μM的游离SN-38或等同量的IMMU-132(未显示)。游离SN-38和IMMU-132这两者都介导p21WAF1/Cip1的增量调节,但直到48小时暴露于游离SN-38与IMMU-132的NCI-N87细胞之间的增量调节才是相同的(未显示),而在BxPC-3中,最大增量调节在24小时内是明显的(未显示)。游离SN-38和IMMU-132两者都显示了在暴露48小时内胱天蛋白酶原-9和-7的裂解。胱天蛋白酶原-3在这两种细胞系中都裂解,在48小时后观察到了最高程度的裂解。最后,游离SN-38和IMMU-132两者都介导PARP裂解。这首先在24小时变得明显,在48小时具有增加的裂解。一并考虑,这些数据证实了IMMU-132中包含的SN-38与游离SN-38具有相同的活性。
除了这些随后的凋亡信号传导事件,与该途径相关的更早的事件,即JNK的磷酸化(pJNK)在短时间暴露于游离SN-38或IMMU-132而不是暴露于裸hRS7的BxPC-3细胞中也是明显的(未显示)。到4小时,增加的pJNK量是明显的,在6小时没有可察觉的改变。与IMMU-132相比,在暴露于游离SN-38的细胞中有更高强度的磷酸化,但两者都实质上高于对照。作为IMMU-132的作用机理的终点,在BxPC-3细胞中进行了dsDNA断裂的测量。与非靶向对照ADC相比时,BxPC-3暴露于IMMU-132仅仅30分钟就导致了大于2倍的γH2AX诱导(表13)。与裸hRS7、hA20-SN-38无关ADC和未治疗对照的<20%相比,大约70%的细胞是γH2AX染色阳性的(P<0.0002)。
表13.BxPC-3中的IMMU-132介导的dsDNA断裂:γH2AX诱导。a
aIMMU-132与所有3个对照组相比,P<0.0002(单尾t检验;N=3).
IMMU-132的药代动力学-通过BIACORE分析测定了与人新生受体(FcRn)的结合(未显示)。使用低密度FcRn生物传感器芯片(密度=1302RU),对每种药剂进行了5个不同浓度(400至25nM)下的三个独立结合运行。总体上,hRS7和IMMU-132两者都显示了纳摩尔范围的KD值(分别为92.4±5.7nM和191.9±47.6nM),在两者之间没有显著差异。给小鼠注射IMMU-132,使用两个ELISAs将IMMU-132与hRS7IgG的清除与亲本hRS7进行比较(图22)。注射hRS7的小鼠显示双相清除模式(图22A),该模式与对IMMU-132的hRS7靶向部分观察到的模式相似(图22B),其中α和β半衰期分别是大约3和200小时。相反,观察到了完整IMMU-132的快速清除,其半衰期为11小时并且平均滞留时间(MRT)为15.4h(图22C)。
为了进一步证实链间二硫键的破坏不改变靶向抗体的PK,将亲本hRS7的PK与修饰的hRS7(hRS7-NEM)进行比较。没有注意到任一药剂在半衰期、Cmax、AUC、清除或MRT方面的显著差异(未显示)。
IMMU-132在人胃癌异种移植物中的效力-之前已经在非小细胞肺癌、结肠癌、TNBC和胰腺癌异种移植物模型中证明了IMMU-132的效力(Cardillo等,2011,Clin Cancer Res17:3157-69;Goldenberg等,在San Antonia Breast Cancer Symposium上展示的海报,12月9-13日,摘要P5-19-08)。为了将这些发现进一步延伸到其它胃肠癌,在携带人胃癌异种移植物NCI-N87的小鼠中测试了IMMU-132(图23)。与盐水和非靶向hA20(抗CD20)-SN-38ADC对照相比,用IMMU-132治疗实现了显著的肿瘤消退(图23A;P<0.001)。IMMU-132组中的7只小鼠中的6只是在给动物施用最后一次治疗剂量后持续了多于18天的部分反应者。与具有4.1±2.0天的进展时间(TTP)的对照ADC组中的无反应者相比,这导致了41.7±4.2天的平均TTP(P<0.0001)。总体上,与对照ADC的24天和盐水对照动物的14天相比,IMMU-132治疗的小鼠的中位生存时间(MST)是66天(图23B;P<0.0001)。
临床相关的给药方案-目前正在临床上测试的IMMU-132的耐受的最高重复剂量是在21天周期的第1和8天给予的8和10mg/kg。8mg/kg的人剂量转换为98.4mg/kg的鼠剂量或给予20g小鼠大约2mg。在人胰腺腺癌异种移植物模型(BxPC-3)中检查了分次的2mg IMMU-132的三种不同剂量方案。使用三种不同的给药方案之一将该总剂量分次:一组接受两剂IMMU-132,每剂1mg(第1和15治疗日),一组接受4剂,每剂0.5mg(第1、8、22和29治疗日),并且最后一组接受8剂,每剂0.25mg(第1、4、8、11、22、25、29和32治疗日)。当与未治疗对照动物相比时,在肿瘤生长抑制和总体生存这两方面,所有三个给药方案都提供了显著的抗肿瘤作用(图24A;分别为P<0.0009和P<0.0001)。在这三个不同的治疗组之间TTP没有显著差异,其范围是1-mg给药组的22.4±10.1天至0.25-mg给药组的31.7±14.5天(未治疗对照组的TTP=5.0±2.3天)。
在携带NCI-N87人胃肿瘤异种移植物的小鼠中进行了相似的剂量方案实验(图24B)。当与未治疗对照小鼠相比时所有三个剂量方案都具有显著的抗肿瘤作用,但彼此没有差异(AUC;P<0.0001)。同样地,在总体生存方面,尽管当与未治疗对照相比时所有三个剂量方案都提供了显著的生存获益(P<0.0001),但在这三个不同的方案中任意之间没有差异。
为了进一步区别可能的给药方案,使携带NCI-N87肿瘤的小鼠进行长期IMMU-132给药,其中如目前的临床试验方案那样,小鼠接受每周一次0.5mg IMMU-132注射,持续2周,然后休息一周,再开始另一周期(图24C)。总共给动物施用4个治疗周期。
该给药方案减慢了肿瘤生长,与对照ADC治疗的小鼠的4.7±2.2天相比,其TTP为15.7±11.1天(P=0.0122)。总体上,长期给药使中位19存活提高到3倍,从对照ADC治疗的小鼠的21天提高到施用IMMU-132的那些动物的63天(P=0.0001)。重要的是,在所有这些不同的给药方案评价中,如通过没有显著的体重减轻所证明的,在小鼠中没有观察到治疗相关毒性(数据未显示)。
讨论
在目前的I/II期临床试验(ClinicalTrials.gov,NCT01631552)中,IMMU-132(sacituzumab govitecan)正在证明在出现大范围实体瘤的患者中的客观反应(Starodub等,2015,Clin Cancer Res 21:3870-78)。随着该I/II期临床试验继续进行,需要进一步探索IMMU-132在Trop-2阳性癌的扩展列表中的效力。此外,随着我们在IMMU-132的临床开发中前进,与利用超毒性药物的其它临床上相关的ADCs相比之下,IMMU-132的独特性需要进一步阐明。
[01]本文展示的工作进一步表征了IMMU-132,并且证明了其在临床相关给药方案下的针对胃和胰腺腺癌的效力。成功ADC的普遍观点是它应该使用识别相对于正常组织具有高肿瘤表达水平的抗原的抗体,和当结合于肿瘤细胞时优选内化的抗体(Panowski等,2014,mAbs 6:34-45)。所有目前批准的ADCs都使用了以低取代比(每个抗体2-4个药物)通过高稳定接头与抗体偶联的超毒性药物(pM IC50)。IMMU-132在三个主要方面与该典范不同:(i)中等细胞毒性的药物SN-38(nM IC50)用作化学治疗剂;(ii)SN-38与抗体的8个链间硫醇位点特异性地缀合,产生每个抗体7.6个药物的取代,和(iii)使用碳酸酯接头,其在低pH下可裂解,但在血清中也将以约24小时的半衰期释放药物(Cardillo等,2011,ClinCancer Res 17:3157-69)。IMMU-132包含抗体,如我们所显示的,该抗体在结合于人Trop-2特有的表位后内化,所述人Trop-2在很多不同类型的上皮肿瘤中高表达,并且在它们的相应正常组织中以更低浓度表达(Shih等,1995,Cancer Res 55:5857s-63s)。尽管存在于正常组织中,在猴(也在相似组织中表达Trop-2)中的先前研究表明相对轻度和可逆的组织病理学改变(甚至在出现剂量限制性中性粒细胞减少症和腹泻的非常高的剂量下),表明正常组织中的该抗原以某种方式被隔离,或使用毒性较低的药物使这些正常组织免于严重损伤(Cardillo等,2011,Clin Cancer Res 17:3157-69)。
本文中,我们在多种人实体瘤细胞系上扩展了Trop-2表达的评估,比以前报道的更定量的方式检查了体外表达,但也重要是,在异种移植物中说明从均匀(例如NCIN87)到非常局灶(例如COLO 205)的Trop-2表达。总体上,体外测定的Trop-2的表面表达水平与异种移植物的IHC分析时的染色强度相关。特别令人感兴趣的是甚至在如COLO 205(其中通过免疫组织学发现仅有Trop-2表达细胞的局灶袋(focal pockets))的肿瘤中,IMMU-132仍然能够引起特异性肿瘤消退,表明旁观者效应可以作为从与抗原呈递细胞结合的缀合物释放SN-38的结果出现(Cardillo等,2011,Clin Cancer Res 17:3157-69)。实际上,SN-38容易地穿透细胞膜,因此其在肿瘤微环境内的局部释放提供了其进入细胞的另一种机理,而不需要完整缀合物的内化。重要的是,与缀合物结合的SN-38保持在完全活性状态;即,它不是葡糖醛酸化的,并且在释放时将是内酯环的形式(Sharkey等,2015,Clin Cancer Res,21:5131-8)。该特性是独特的,区分出IMMU-132的以比迄今为止研究的任何其它缓释SN-38或伊立替康药剂更选择性的方式定位完全活性形式的SN-38的能力。
使用IMMU-132的I期临床试验鉴定出在21天周期中每周给予8至10mg/kg持续两周,用于在II期中进一步调查(Starodub等,2015,Clin Cancer Res 21:3870-78)。患有大范围转移性实体瘤,包括胰腺癌和胃癌的患者显示了在多种先前治疗复发后延长的疾病稳定期(Starodub等,2015,Clin Cancer Res 21:3870-78;Starodub等,2014,J Clin Oncol32:5s(Suppl Abstr 3032))。进行了在异种移植物模型中的额外研究,以确定不同的给药方案是否可以更有效。为此目的,在三个不同的给药方案中将8mg/kg的人剂量的等效量(98.4mg/kg的小鼠剂量)分次,包括在21天周期中每隔一周、每周或每周两次。在胰腺和胃肿瘤模型中,对于所有三种方案,没有观察到治疗反应的显著差异,仅仅在治疗停止后肿瘤才进展。因此,这些数据支持目前在临床上进行的每周一次给药方案的继续使用。
对于推荐8至10mg/kg的IMMU-132每个治疗剂量的临床试验(Starodub等,2015,Clin Cancer Res 21:3870-78),重要的是检查单独的抗体是否可以导致IMMU-132的活性。先前在裸鼠-人异种移植物模型中的研究包括了单独的未缀合的hRS7IgG(例如25至50mg/kg的重复剂量),没有治疗活性的证据(Cardillo等,2011,Clin Cancer Res 17:3157-69);但是,在小鼠中的研究不能总是预测免疫学功能性。在Trop-2阳性卵巢和子宫癌中已经报道了hRS7的体外ADCC活性(Raji等,2011,J Exp Clin Cancer Res 30:106;Bignotti等,2011,Int J Gynecol Cnacer 21:1613-21;Varughese等,2011,Am J Obstet Gynecol205:567;Varughese等,2011,Cancer 117:3163-72)。我们证实了三种不同的细胞系中的未缀合的hRS7的ADCC活性,但是发现IMMU-132丧失了60-70%的其效应物功能。由于还原的/NEM封闭的IgG具有相似的ADCC活性丧失,似乎不是CL2A-SN-38成分的连接自身造成的。
抗体也可以通过作用于多种凋亡信号传导途径引起细胞死亡。但是,我们没有在许多凋亡信号传导途径中观察到未缀合的抗体的任何作用,而是注意到IMMU-132与SN-38引起了相似的固有凋亡事件。早期事件包括JNK1/2的磷酸化以及p21WAF 1/Cip1的增量调节,导致胱天蛋白酶-9、胱天蛋白酶-7和胱天蛋白酶-3的活化,最后的结果是PARP裂解和显著水平的dsDNA断裂,所述dsDNA断裂是通过增加量的磷酸化组蛋白H2AX(γH2AX)41测量到的。这些数据表明IMMU-132的主要作用机理与SN-38相关。
尽管平均结合水平对于IMMU-132是约1/2,表面等离子共振(BIACORE)分析没有检测到IMMU-132与人新生受体(FcRn)的结合的显著差异。FcRn结合已经与血清中延长的IgG半衰期相关联(Junghans&Anderson,1996,Proc Natl Acad Sci USA 93:5512-16),但由于抗体对FcRn的体外亲和力可能与体内清除速度不相关(Datta-Mannan等,2007,J BiolChem 282:1709-17),该发现的总体重要性是未知的。先前使用111In-DTPA-IMMU-132在携带肿瘤的小鼠中的实验发现相比于111In-DTPA-hRS7,缀合物以稍微更快的速度从血清清除,尽管两者具有相似的肿瘤摄取(Cardillo等,2011,Clin Cancer Res 17:3157-69)。在目前的研究中,也测量IgG成分的清除的ELISA测定发现IMMU-132以及还原和NEM封闭的IgG以与未缀合的hRS7相似的速度清除,表明与链间二硫键的偶联没有使抗体不稳定。如预期的,当使用监测完整缀合物的清除的ELISA时(使用抗SN-38抗体捕获并且使用抗独特型抗体探测),其清除速度比当仅监测IgG成分时更快。该差异简单地反映了SN-38以约1天的半衰期从缀合物释放。我们也通过ELISA检查了以不同取代水平制备的hRS7-SN-38缀合物的清除速度,并且再次发现它们的清除速度没有可察觉的差异(Goldenberg等,2015,Oncotarget8:22496-512)。总体上,这些数据表明抗体的轻度还原,以及后续对一些或全部链间二硫键的位点特异性修饰,对IgG的血清清除具有最小(如果有)影响,但IMMU-132的总体清除速度将很大程度由SN-38从接头释放的速度限定。
此外,广泛的细胞结合实验证明在IMMU-132、未缀合的抗体或NEM修饰的抗体的结合之间没有显著差异,表明与链间二硫键的位点特异性连接保护了抗体的抗原结合性质。有趣的是,当通过BIACORE分析(除总体亲和力外,其更准确测量结合速度(on-rate)和解离速度(off-rate))时,当与裸hRS7比较时,IMMU-132对Trop-2结合的计算KD值具有显著的2倍改进。
我们推测该改进可能是当SN-38缀合于抗体时添加的疏水性的结果。疏水性残基,以及蛋白结合位点的封闭区的疏水性,已经显示给表位赋予更强的亲和力(Park等,2000,Nat Biotechnol 18:194-98;Berezov等,2001,J Med Chem 44:2565-74;Young等,2007,Proc Natl Acad Sci USA 104:808013)。这些区域不是必须位于蛋白-蛋白界面,而是可以位于周围、较不积极接触的残基中(Li等,2005,Structure 13:297-307)。尽管hRS7的互补决定区(CDR)中不存在SN-38缀合位点,抗体上的SN-38可能置换表位周围的一些水分子的预期(其导致对IMMU-132观察到的相对于裸hRS7的改进的结合亲和力)不能被低估。
ADC开发中的大多数努力已经针对使用稳定的接头和超毒性药物,临床研究表明对于那些缀合物的特定最优要求(Panowski等,2014,mAbs 6:34-45;Phillips等,2008,Cancer Res 68:9280-90)。例如,T-DM1与另外一种较不稳定的衍生物T-SSPDM1的比较发现,在未携带肿瘤的小鼠中,完整T-SSP-DM1的清除速度是T-DM-1的大约2倍(Phillips等,2008,Cancer Res 68:9280-90;Erickson等,2012,Mol Cancer Ther 11:1133-42),在肿瘤中,T-DM1是T-SSPDM1的大约1.5倍水平。出乎意料地,并且最令人感兴趣的是以下发现:靶向的肿瘤中的游离、活性美登素类化合物(maytansinoid)分解代谢产物在两种ADCs之间是非常相似的(Erickson等,2012,Mol Cancer Ther 11:1133-42)。
也就是说,T-SSP-DM1能够克服其在接头稳定性方面的缺陷,这是因为以下事实:较低的稳定性导致在肿瘤中药物比更稳定的T-DM1更有效释放。不出意料,肿瘤中这两种ADCs之间的活性药物分解代谢产物的等同性导致在携带肿瘤的动物中的相似抗肿瘤作用。最终,基于当使用超毒性药物和较不稳定接头时产生的毒性问题选择T-DM1(Phillips等,2008,Cancer Res 68:9280-90)。由于SN-38的毒性至少比这些美登素的毒性低对数倍,预期其从ADC的释放具有较低毒性。但是,即使其在血清中释放,定位于人胃或胰腺肿瘤异种移植物中的SN-38量最高达注射具有>20倍SN-38当量的伊立替康剂量的携带肿瘤的小鼠中的136倍(Sharkey等,2015,Clin Cancer Res,21:5131-8)。尽管我们在IMMU-132开发中测试了更稳定的接头,它们在异种移植物肿瘤模型中的有效性显著低于IMMU-132(Govindan等,2013,Mol Cancer Ther 12:968-78)。
类似地,更快释放SN-38(例如约10小时的血清半衰期)的接头在异种移植物模型中的有效性也较低(Moon等,2008,J Med Chem 51:6916-26;Govindan等,2009,Clin ChemRes 15:6052-61),表明存在最优窗(在其上SN-38的释放导致改进的效力)。因此,目前的数据证明IMMU-132是比伊立替康更有效的途径来靶向肿瘤和在肿瘤上释放药物。
早期临床研究显示了在多种实体瘤中的令人鼓舞的客观反应,并且重要的是表明了相较于伊立替康治疗更好的安全性谱(profile),具有更低的腹泻发生率(Starodub等,2015,Clin Cancer Res 21:3870-78)。
总之,IMMU-132(sacituzumab govitecan)是ADC开发中的典范转移。它使用了中等稳定的接头来将7-8个分子的伊立替康的更可耐受的活性代谢物SN-38缀合于抗Trop-2抗体。尽管有这些相比于超毒性ADCs的看起来违反直觉的特征,非临床研究证明了IMMU-132非常有效地靶向表达Trop-2的肿瘤,具有显著效力并且没有可感知的毒性。在针对大范围实体瘤,包括胰腺癌、胃癌、TNBC、小细胞和非小细胞肺癌的在先I/II期临床试验中,IMMU-132在这些患者中同样展示了抗肿瘤作用,具有可控制的毒性,而没有检测到对IgG或SN-38的免疫反应,即使在给药很多个月以后也是如此(Starodub等,2015,Clin CancerRes 21:3870-78)。考虑到Trop-2在如此多种实体瘤上的升高的表达,继续在临床上研究IMMU-132,特别是在已经对于大多数目前的治疗策略难治的晚期癌中。
实施例17.来自IMMU-132的I/II期临床研究的进一步结果
三阴性乳腺癌(TNBC)
继续进行上文实施例讨论的I/II期临床试验(NCT01631552),增加了56个用10mg/kg治疗的TNBC患者。患者群体在开始IMMU-132治疗之前,先前已经用至少2个更前线的治疗,包括紫杉烷治疗进行过广泛治疗。先前的治疗包括环磷酰胺、阿霉素、卡铂、吉西他滨、卡培他滨、艾日布林(eribulin)、顺铂、阿那曲唑、长春瑞滨、贝伐单抗和他莫昔芬。尽管有这种广泛治疗史,TNBC患者对IMMU-132反应良好,其中有2个证实的完全反应(CR),13个部分反应(PR)和25个稳定疾病(SD),得到29%的客观反应率(15/52)(图25)。将CR+PR+SD的发生率相加,TNBC中的治疗得到IMMU-132治疗的患者的71%有利反应率(图26)。迄今为止这个大量预先治疗过的TNBC患者群体中的中位进展时间是9.4个月,范围是2.9至14.2个月。但是,该研究中72%的患者仍然在进行治疗。该组患者中的无进展生存显示于图27。
转移性NSCLC
也正在对患有转移性非小细胞肺癌(NSCLC)的患者进行临床试验,迄今为止增加了29个可评估的患者,其用8或10mg/kg IMMU-132治疗。通过RESIST 1.1标准判断的最佳反应示于图28。在29个患者中,有8个PR和13个SD。NSCLC患者的进展时间示于图29,该图显示了21/33(64%)的NSCLC患者展示PR或SD。中位进展时间是9/4个月,范围是1.8至15.5+个月,并且47%的患者仍然在进行治疗。用8或10mg/kg IMMU-132治疗的NSCLC患者中的无进展生存示于图30。中位PFS是8mg/kg下的3.4个月和10mg/kg下的3.8个月。但是,仍然在进行研究,并且中位无进展生存数目很可能改进。
转,移性SCLC
转移性SCLC患者中的可比较结果示于图31-33。通过RECIST 1.1判断的用8或10mg/kg IMMU-132治疗的转移性SCLC患者的最佳反应显示25个可评估患者中的6个PR和8个SD(图31)。进展时间(图32)显示中位数为4.9个月,范围为1.8至15.7+个月,并且7个患者仍然在进行用IMMU-132的治疗。无进展生存(图33)显示中位PFS为8mg/kg下的2.0个月和10mg/kg下的3.6个月。中位OS是8mg/kg下的8.1个月,并且对于10mg/kg还不能确定。
尿道上皮癌
用8或10mg/kg IMMU-132治疗的尿道上皮癌患者获得了相似的结果。11个可评估患者的最佳反应数据显示6个PR和2个SD(图34)。进展时间(图35)显示中位数是8.1个月,范围是3.6至9.7+个月。
概言之,继续进行的I/II期临床试验显示了当以提到的ADC剂量在至少TNBC、NSCLC、SCLC和尿道上皮癌中施用时IMMU-132的卓越效果。在这些大量预先治疗过并且有抗性的转移癌中出现了卓越疗效,而没有诱导可能排除临床使用的严重毒性。IMMU-132显示了在具有多种实体癌的大量预先治疗过并且中位数是2-5次先前治疗的患者中的可接受的安全性谱。对于3级或更高级不良反应,仅中性粒细胞减少症显示了发生率大于患者群体的20%。该研究进一步证明可以给人患者施用重复剂量的IMMU-132(在治疗剂量下),而没有引起干扰性的宿主抗IMMU-132抗体。这些结果证明了IMMU-132用于治疗人患者中的多种Trop-2阳性癌的安全性和用途。
实施例18.使用抗Trop-2 ADC和ABCG2抑制剂的组合治疗
概述
如上文讨论的,IMMU-132正在患有转移性三阴性乳腺癌以及已经大量预先治疗过(ClinicalTrials.gov,NCT01631552)和表达高水平Trop-2的其它癌的患者的II期试验中显示有希望的治疗结果。这种新的靶向Trop-2的人源化抗体通过专有的接头与7.6摩尔的SN-38(伊立替康的活性形式)缀合,并且与伊立替康相比在体内较少葡糖醛酸化,这解释了用该药剂治疗的患者中腹泻的显著更低发生率。由于ATP结合盒(ABC)转运蛋白的成员,尤其是P-gp(ABCB1)和BCRP(ABCG2),通过主动药物流出赋予抗性(这是治疗失败的常见原因),我们在临床前研究中检查了ABC转运蛋白的已知抑制剂用于通过克服SN-38抗性而改进IMMU-132的治疗结果的用途。
通过在培养基中连续暴露于逐步增加浓度的SN-38(最高达120nM),制备两种SN-38抗性人癌细胞系MDA-MB-231-S120(乳腺癌)和NCI-N87-S120(胃癌),并且通过流式细胞术分析ABCG2和ABCB1的功能活性,通过免疫印迹和RT-qPCR分析ABCG2在蛋白和mRNA水平这两者的表达,以及通过MTS测定分析单独或与ABC转运蛋白调节剂组合的SN-38的效能。同样,用NCI-N87-S120在SCID小鼠中的异种移植物模型评估体内抗肿瘤活性。
MDA-MB-231-S120和NCI-N87-S120展示了对SN-38的敏感性降低,IC50值是亲本MDA-MB-231和NCI-N87细胞的大约50倍。两种S-120细胞的药物抗性增加与以下相关:功能性ABCG2而不是ABCB1的表达;2至4倍的拓扑异构酶-I;和通过监测磷酸化H2AX(γH2AX)水平在3小时的时间段中对亲本细胞观察到的双链断裂的持续积累的缺乏。重要的是,用已知ABCG2抑制剂(烟曲霉毒素C、Ko143、GF120918和YHO-13351)治疗这两种S-120细胞在体外恢复了SN-38的毒性,并且与单独的IMMU-132相比,YHO-13351与IMMU-132的组合改进了携带NCI-N87-S 120异种移植物的小鼠的中位存活。我们的结论是IMMU-132和YHO-13351或其它ABC转运蛋白抑制剂的组合治疗可以用于治疗对喜树碱化学治疗剂和/或喜树碱缀合的ADC有抗性的癌。
材料和方法
细胞系和培养物。人癌细胞系(MDA-MB-231,乳腺;NCI-N87,胃;A549,肺;HCT15,结肠)购自美国典型培养物保藏中心(ATCC),并且通过短串联重复谱分析(profiling)验证。根据ATCC的推荐保持每种细胞系,并且使用MYCOALERTTM支原体检测试剂盒(Lonza)常规测试支原体。通过在大约2年的时间段中将亲本细胞连续暴露于逐步增加浓度的SN-38(从6pM至120nM)建立两种SN-38抗性细胞系,即MDA-MB-231-S120和NCI-N87-S120。此外,在无SN-38培养基中将NCI-N87-S120培养4个月后获得回复突变细胞系(NCI-N87-S 120-REV)。将S-120克隆保持在含120nM SN-38的培养基中,但是在任何实验前在无药物培养基中培养7至14天。使所有细胞在37℃下在5%CO2的潮湿气氛下作为单层培养物生长。
抗体、IMMU-132和试剂。多克隆兔抗ABCG2抗体(#4477)购自Cell Signaling,并且鼠抗γH2AX-AF488(05-636-AF488)购自EMD Millipore。脱镁叶绿酸A(PhA)、烟曲霉毒素C(FTC)、Ko143、YHO-13351、阿霉素、紫杉醇、若丹明123和维拉帕米获自Sigma。将购自BiddleSawyer Pharma的SN-38在二甲亚砜(DMSO)中稀释到1mM,并且以等分试样在-20℃下保存。伊立替康-HCl注射液购自AREVA Pharmaceuticals。IMMU-132的特性和制备以前已经有描述(Cardillo等,2011,Clin Cancer Res 17:3157-69;Cardillo等,2015,BioconjugateChem 26:919-31;Goldenberg等,2015,Oncotarget 6:22496-512;美国专利号7,999,083)。
ABC转运蛋白的功能测定。基本按照Robey等的描述(Robey等,2004,Cancer Res64:1242-6),以PhA作为底物并且以FTC作为抑制剂进行ABCG2的功能测定。简言之,37℃下在5%CO2中用1μM PhA或用1μM PhA和10μM FTC的组合将胰蛋白酶消化的细胞温育30分钟并洗涤。对于仅仅用PhA处理的细胞在无PhA培养基中,或对于用PhA和FTC两者处理的细胞在含10μM FTC的无PhA培养基中,37℃下进行后续温育1小时。在装备有635-nm红色二极管激光器的FACScanto流式细胞仪上测量PhA荧光。
按照上文对ABCG2的描述进行ABCB1的功能测定,其中用若丹明123替代PhA并且用维拉帕米替代FTC。
蛋白印迹。在RIPA缓冲液(Cell Signaling)中溶解细胞。使用牛血清白蛋白作为标准,通过Pierce BCA蛋白测定试剂盒(ThermoFisher Scientific)对溶胞产物的蛋白浓度进行定量。加载等量的溶胞产物,并且通过SDS-聚丙烯酰胺凝胶(4-20%)分离,并且转移到硝酸纤维素膜上。用TBS中的5%脱脂奶粉将膜封闭1小时,并且用合适的第一抗体探测。用TBS-T洗涤后,用抗兔IgG、HRP连接的抗体(Cell Signaling)温育膜,并且用增强的化学发光显现。
体外细胞毒性。使用CELL TITERAQueousOne溶液(Promega),通过基于MTS的测定来确定对SN-38或IMMU-132的敏感性。简言之,将细胞铺板到96孔板的孔中。从无菌培养基中各自的原液制备IMMU-132(浓度为以SN-38当量表示的2,500nM)和2,500nM SN-38的工作溶液。从这些工作溶液,在无菌培养基中进行5倍系列稀释,以在测试孔中产生500至0.0064nM的终浓度。37℃下在潮湿室中用5%CO2将板温育96小时,此后加入3-(4,5-二甲基噻唑-2-基)-5-(3-羧基甲氧基苯基)-2-(4-磺苯基)-2H-四唑,并且放回培养箱中直到未治疗对照的细胞具有大于1.0的吸光度。细胞毒性测量为相对于未治疗细胞的生长百分比。从三份测定的平均值生成剂量-反应曲线,并且用Prism GraphPad软件6.05版(AdvancedGraphics Software)计算IC50值。
从非毒性浓度的ABCG2抑制剂存在下对SN-38获得的各自的剂量-反应曲线确定ABCG2抑制剂对SN-38对亲本和抗性细胞系的IC50值的影响。
用γH2AX染色的细胞的测量值估计双链断裂。
将细胞(每个样品5x105个细胞/mL)在有或没有SN-38(250nM)的条件下在37℃下温育指出的时间,在4%福尔马林中固定15分钟,然后在PBS中的0.15%TRITONTM X-100中洗涤和透化15分钟。用1%牛血清白蛋白-PBS洗涤两次后,用鼠抗rH2AX-AF488将细胞在4℃下温育45分钟。使用FACSCALIBURTM(BD Biosciences)通过流式细胞术测量γH2AX的信号强度。
逆转录-定量实时PCR(RT-qPCR)。使用微型试剂盒(Qiagen)提取总RNA,并且使用IV第一链合成系统(Life Technologies)逆转录为互补DNA。使用均购自Life Technologies的基因表达测定(具有用于ABCG2的引物组Hs01053790_m1和用于GAPDH的引物组Hs99999905_m1)和通用主混合物II,在BioRad CFX96实时系统上以三份对每个样品进行定量实时PCR(qPCR)。ABCG2的mRNA水平标准化为GAPDH的mRNA水平,并且表示为2-ΔCt,其中ΔCt=[Ct(ABCG2)-Ct(GAPDH)],并且Ct(阈循环)是对应于扩增曲线和对于靶基因确定的阈值线之间的交叉点的PCR循环数。
体内治疗研究。4周龄的NCr雌性无胸腺裸(nu/nu)鼠购自Taconic Farms。通过从组织培养物收获细胞,在(BD Bioscience)中制备1∶1细胞悬浮液,并且每只小鼠在右侧胁腹中皮下注射总共1x107个细胞,建立NCI-N87和NCI-N87-S120肿瘤异种移植物。肿瘤体积(TV)通过使用卡尺以2个维度进行测量来测定,体积定义为:L×w2/2,其中L是肿瘤的最长维度,并且w是最短维度。将小鼠随机分组为每组9-10只的治疗组,并且当肿瘤体积为约0.25em3时开始治疗。用伊立替康(40mg/kg静脉注射,q2dx5d)或IMMU-132(0.5mg静脉注射每周两次,持续4周)治疗携带NCI-N87-S-120肿瘤的小鼠。在治疗开始的同时施用YHO-13351(0.6mg静脉注射),在治疗后4小时再次施用。对于IMMU-132+YHO-13351组合组,在IMMU-132施用后24小时施用YHO-13351的第三次注射。对照小鼠接受单独的每种药剂。对于YHO-13351对照小鼠,当与伊立替康组合时按相同的方案给它们注射。另一组携带亲本NCI-N87肿瘤的小鼠作为IMMU-132和伊立替康在缺乏ABCG2泵的肿瘤中的效力的对照。根据需要将冻干的IMMU-132在无菌盐水中复水并稀释。在无菌盐水中稀释伊立替康-HCl注射液并且最终剂量基于体重(40mg/kg)。使小鼠安乐死并且一旦肿瘤生长到大于1.0cm3的大小则认为小鼠死于疾病。
统计学。-对肿瘤生长数据的统计学分析基于曲线下面积(AUC)和生存时间。通过线性曲线建模来获得个体肿瘤生长分布图。在生长曲线的统计学分析前,采用f检验确定组之间的方差齐性。使用双尾t检验评估组之间的统计学显著性。作为由于死亡导致的一些生长曲线的不完整性的结果,AUC的统计学比较仅仅进行到处死组内第一只动物的时间。用GraphPad Prism 6.05版进行对数秩分析来比较两组的Kaplan-Meier生存曲线。显著性设置为P≤0.05。
结果
SN-38抗性细胞系的建立。表14概括了对SN-38、阿霉素和紫杉醇测定的,对亲本细胞系(MDA-MB-231和NCI-N87)和它们的SN-38抗性对应物(MDA-MB-231-S120和NCI-N87-S120)的IC50值。与亲本细胞相比,两种S-120细胞对SN-38的抗性都是约50倍,并且对阿霉素或紫杉醇是相对无交叉抗性的。在无SN-38培养基中培养三周或更长时间的NCI-N87-S120细胞逐渐恢复了它们对SN-38的敏感性,在4个月的时间段中得到了对SN-38的抗性降低(IC50=50nM)的回复突变细胞系(NCI-N87-S120-REV)。
表14.亲本和SN-38抗性细胞系对选择的药物的敏感性。
aRF是用[S120的IC50平均值]除以[亲本的IC50平均值]得到的抗性系数。
b用于YHO-13351和Ko143的非毒性浓度分别是2和1μM。
S-120细胞系中的功能性ABCG2的超量表达。通过蛋白印迹分析显示ABCG2在S-120中的存在,但是在亲本细胞中很少(如果有)(数据未显示),并且通过RT-qPCR证实,所述RT-qPCR表明在MDA-MB-231和NCI-N87细胞中几乎不能检测到ABCG2的mRNA转录物(数据未显示)。另一方面,计算出MDA-MB-231-S120和NCI-N87-S120中相对于GAPDH的ABCG2的mRNA水平分别是MDA-MB-231和NCI-N87中该水平的27,408倍和167倍(数据未显示)。也在获自NCI-N87-S120异种移植物(而不是NCI-N87异种移植物)的样品中证实了ABCG2的表达(数据未显示)。
ABCG2在这两个S-120细胞群体中都是有功能活性的,但是在亲本细胞中没有,这是通过ABCG2的荧光底物PhA的柱状图分析证明的。在这两种亲本细胞中,通过平均荧光强度(MFI)测量的PhA细胞内水平是相对高的,并且在有或没有FTC的条件下保持几乎相同(数据未显示),FTC是一种最初由于其对多药物选择的细胞系中的米托蒽醌、阿霉素和拓扑替康抗性的有效逆转而鉴定的强效真菌毒素。相比之下,在任一种S-120细胞中,只有在添加FTC时才能观察到与亲本细胞中的水平相似的高水平细胞内PhA,而省略FTC导致细胞内PhA降低大于95%(数据未显示)。在已知表达功能性ABCG2的人肺癌A549细胞中获得了相似的结果(Scharenberg等,2002,Blood 99:507-12)。在分别用若丹明123和维拉帕米作为ABCB1的底物和抑制剂的分开的研究中,在作为表达ABCB1的阳性对照的人结肠癌HCT15细胞中检测到了ABCB1活性(Alvarez等,1995,J Clin Invest 1995;95:2205-14),而在NCI-N87-S120或NCI-N87中没有检测到(数据未显示)。
也通过比较由SN-38诱导的DNA双链断裂(DSBs)水平与亲本细胞中的水平证明了ABCG2在这两种S-120抗性细胞系中的活性,所述DNA双链断裂水平是通过用于γH2AX定量的流式细胞术测定而测量的,γH2AX的信号强度直接对应于形成的DSBs数目(Rogakou等,1998,J Biol Chem 273:5858-68)。如图36A所示,在用250nM SN-38治疗后,γH2AX的水平在亲本细胞中稳定上升(而在抗性S-120细胞中则没有),3小时后达到顶点,即相对于未治疗对照,对于MDA-MB-231增加到约2倍,对于NCI-N87增加到约4倍(图36B)。ABCG2涉及防止用SN-38治疗的S-120细胞中的γH2AX增加,因为在MDA-MB-231-S120中添加FTC(10μM)和SN-38(250nM)这两者可以提高γH2AX水平,而与SN-38治疗的MDA-MB-231具有类似的增加倍数(图36C)。当在FTC存在下用SN-38或IMMU-132治疗时用NCI-N87-S120获得了相似的结果(图36D)。
用选择的ABCG2抑制剂使S-120细胞对SN-38致敏。在体外在不影响亲本或S-120细胞生长的浓度下检查两种已知的ABCG2抑制剂,即Ko143(Allen等,2002,Mol Cancer Ther1∶417-25)和YHO-13351(Yamazaki等,2011,Mol Cancer Ther 10:1252-63)对逆转S-120细胞对SN-38的抗性的作用。如代表性剂量-反应曲线的图37A-C和对应的IC50值的表14所示,任一种ABCG2抑制剂的加入,尽管对亲本细胞对SN-38的敏感性赋予很少的影响,但使两种抗性S-120细胞系中SN-38的IC50都减少了超过90%。也对其它ABCG2抑制剂,如FTC(Rabindran等,2000,Cancer Res 60:47-50)、环孢霉素A(Qadir等,2005,Clin Cancer Res11:2320-6)和GF120918(de Bruin等,1999,Cancer Lett 146:117-26)进行了有限的研究,结果显示类似的或更低的效能(数据未显示)。注意到了报道的Ko143在大鼠血清中的不稳定性(Weidner等,2015,354:384-93),对于体内评价,选择了YHO-13351而不是Ko143。
当在SN-38抗性NCI-N87-S-120肿瘤中与YHO-13351组合时IMMU-132的改进效力。NCI-N87-S-120肿瘤在小鼠中比亲本NCI-N87生长更缓慢(图38A;P=0.005,AUC),未治疗动物的中位存活长度是携带NCI-N87-S-120的小鼠的2倍多(与NCI-N87相比P=0.0006)。尽管用IMMU-132或伊立替康治疗没有给携带NCI-N87-S-120肿瘤的小鼠提供显著的生存获益(图38B),但这两种治疗都导致携带NCI-N87的小鼠中的生存增加到大于2倍(P<0.0001;图38C)。然而,当IMMU-132治疗在携带SN-38抗性NCI-N87-S-120的小鼠中与YHO-13351组合时,与未治疗动物相比,实现了显著的64%生存改进(P=0.0278)。尽管伊立替康加YHO-13551同样改进了小鼠的生存,它没有达到显著(P=0.0852)。由于体外测定显示在用单独或与YHO-13351组合的SN-38治疗的亲本细胞系之间没有差异,并且通过蛋白印迹显示NCI-N87的肿瘤异种移植物样品没有ABCG2(未显示),因此在携带NCI-N87的小鼠中没有检查IMMU-132和YHO-13351的组合。
讨论
IMMU-132是通过用部分稳定的接头将中等毒性药物SN-38(纳摩尔效能)位点特异性地并且以7.6的高DAR缀合于人源化抗体而制备的首创ADC,所述人源化抗体针对在很多实体癌中表达的抗原Trop-2。临床前研究证明了与伊立替康相比,IMMU-132保护IgG结合的SN-38免于葡糖醛酸化,并且给肿瘤异种移植物递送多得多的SN-38(20至136倍),导致改进的药代动力学和药效动力学(Sharkey等,2015,Clin Cancer Res 21:5131-8)。这样,IMMU-132提供了与普遍的方法相反的典范改变,所述普遍方法用稳定的接头将低水平的超毒性有效负载(皮摩尔效能)与能够在靶紧密结合(engagement)之后内化的抗体缀合(Sievers等,2013,Annu Rev Med 64:15-29;Gordon等,2015,Bioconjugate Chem 26:2198-2215)。
重要的是,正在进行的在患有转移性三阴性乳腺癌(mTNBC)的患者中使用IMMU-132作为单一药剂的II期研究显示了在58个可评价的患者中通过RECIST1.1判断的31%的中期客观反应率,所述患者已经接受过中位数为5次(范围=2至12)的更前线的治疗(Bardia等,Safety and efficacy of anti-Trop-2antibody drug conjugate,sacituzumab govitecan(IMMU-132),in heavily pretreated patients with TNBC.SanAntonia Breast Cancer Symposium2015),由此扩展了I期试验获得的结果,所述结果表明IMMU-132在患有难治实体癌的患者中具有可接受的毒性和令人鼓舞的治疗活性(Starodub等,2015,Clin Cancer Res 21:3870-8)。对于给患有铂抗性尿道上皮癌的患者施用IMMU-132也已经报道了有希望的初步结果(Faltas等,2016,Clin Genitourinary Cancer 14:e75-9)。而在大量预先治疗过的mTNBC患者中观察到的II期结果已经使FDA给IMMU-132授予了突破治疗称号(Breakthrough Therapy Designation),显示疾病早期进展,因此IMMU-132失败的那些患者可能反映由一种或多种预先存在的流出泵导致的可能的药物抗性,因为SN-38容易受到多种ABC转运蛋白的影响(Szakacs等,2006,Nat Rev Drug Discov 5:219-34)。
在当前实施例中,两种被制备为抗SN-38的亚系NCI-N87-S120和MDA-MB-231-S120显示了与它们的亲本细胞相比对SN-38的反应性是1/50。当在体外没有SN-38的情况下繁殖时,在3周或更长的时间段后,NCI-N87-S120对SN-38的敏感性可以恢复到NCI-N87的5倍以内,表明这种获得性抗性的非遗传来源。这两种S120亚系中ABCG2的存在(而在它们的亲本中不存在)得到了几个证据链的支持,包括PhA的主动流出的显示;通过蛋白印迹对表达蛋白的检测,其得到了mRNA的RT-qPCR的证实;使用γH2AX作为替代标记物通过FTC测定的SN-38的积累增加;和通过YHO-13351或Ko143回复的抗性。值得注意的是,两个S-120亚系都被发现不携带ABCB1并且表型都不对阿霉素或紫杉醇有交叉抗性,这类似于以前的观察结果(Candeil等,2004,Int J Cancer 2004;109:848-54),即表达ABCG2的SN-38抗性人结肠直肠HCT116-SN50癌亚系显示没有与阿霉素(以及与5-氟尿嘧啶和奥沙利铂)的显著交叉抗性。在通过将亲本细胞系连续暴露于培养物中的药物而选择对SN-38的抗性的其它人癌克隆中,也报道了从MCF-7(Imai等,2014,JSM Clin Oncol Res 2∶1008;Jandu等,2016,BMCCancer 16:34)、MDA-MB-231(Jandu等,2016,BMC Cancer 16:34)、小细胞肺癌PC-6(Kawabata等,2001,Biochem Biophys Res Commun 280:1216-23)、非小细胞肺癌腺癌H23(Bessho等,2006,Cancer Sci 97:192-8)和宫颈癌HeLa(Takara等,2009,Cancer Lett278:88-96)产生的亚系的ABCG2超量表达。这些亚系对阿霉素的交叉抗性稍微不同,抗性比率(抗性亚系中的IC50除以亲本细胞中的IC50)对于PC-6的亚系是小于1.3(Kawabata等,2001,Biochem Biophys Res Commun 280:1216-23),对于HeLa的亚系是2.5(Takara等,2009,Cancer Lett 278:88-96),并且对于H23的亚系是约7.0(Bessho等,2006,Cancer Sci97:192-8)。而对于源自MCF-7(Imai等,2014,JSM Clin Oncol Res 2:1008;Jandu等,2016,BMC Cancer 16:34)或MDA-MB-231(Jandu等,2016,BMC Cancer 16:34)的SN-38抗性亚系没有测定对阿霉素的交叉抗性,这些亚系系保持对长春新碱(Imai等,2014,JSM Clin OncolRes 2:1008)、顺铂(Imai等,2014,JSM Clin Oncol Res 2:1008;Jandu等,2016,BMCCancer 16:34)和多西他赛(Jandu等,2016,BMC Cancer 16:34)敏感。
当在体外培养时,MCF-7或MDA-MB-231的SN-38抗性亚系比它们的亲本细胞具有更长的倍增时间(Jandu等,2016,BMC Cancer 16:34)。因此,NCI-N87-S120异种移植物在小鼠中比NCI-N87生长显著更慢并不出乎意料,这与以下概念一致:在体外选择的药物抗性肿瘤亚系通常与它们的药物敏感性亲本细胞系相比展示侵袭性更低的性质(Kerbel等,1994,JCel1 Biochem 56:37-47)。然而,体内研究显示NCI-N87-S-120异种移植物保持ABCG2表达并且对IMMU-132有抗性,然而其生长可以被与YHO-13351组合的IMMU-132显著抑制。一项平行研究显示亲本异种移植物对IMMU-132或伊立替康有反应,但具有更短的中位生存时间。一起考虑,这些体内结果表明被宿主动物很好耐受的合适的抑制剂可以克服ADC抗性,并且抗性肿瘤细胞系可以变得对IMMU-132有明显反应,并且在较低程度对伊立替康有反应。进一步显示测试药物抗性可以用作预测性生物测定(Jandu等,2016,BMC Cancer 16:34,Bessho等,2006,Cancer Sci 97:192-8)用于选择应接受采用IMMU-132的ABC阻断治疗的患者。进一步显示临床测试的酪氨酸激酶抑制剂(其中的一些在非毒性水平干扰ABC转运蛋白的功能(Anreddy等,2014,Molecules 19:13848-77))可以用于增强IMMU-132在固有或制备为对SN-38有抗性的癌细胞中的效能。
从前面的说明书,本领域技术人员可容易地确定本发明的必要特征,并且在不脱离其精神和范围的情况下,无需过度实验,可对本发明进行各种改变和修改以使它适合于各种用途和条件。本文引用的所有专利、专利申请和出版物都通过引用并入。

Claims (49)

1.治疗Trop-2阳性癌的方法,包括:
a.给患有Trop-2阳性癌的人患者施用抗Trop-2抗体-药物缀合物(ADC),所述ADC包含与抗Trop-2抗体或其抗原结合片段缀合的抗癌药物;以及
b.给所述患者施用ABCG2抑制剂。
2.权利要求1的方法,其中所述ABCG2抑制剂选自烟曲霉毒素C、Ko143、GF120918、YHO-13351、姜黄色素、CID44640177、CID1434724、CID46245505、CCT129202、青蒿酯、ST1481、二氢吡啶、富马酸多非喹达、吉非替尼、甲磺酸伊马替尼、拉帕替尼、WK-X-34和YHO-13177。
3.权利要求2的方法,其中所述ABCG2抑制剂是烟曲霉毒素C、Ko143或YHO-13351。
4.权利要求2的方法,其中所述ABCG2抑制剂是YHO-13351。
5.权利要求1的方法,其中所述抗癌药物选自喜树碱、蒽环类药物、蒽二酮、紫杉烷、长春花生物碱、表鬼臼毒素和铂化合物。
6.权利要求6的方法,其中所述抗癌药物选自SN-38、拓扑替康、阿霉素、柔红霉素、米托蒽醌、紫杉醇、长春新碱、长春花碱、依托泊苷、替尼泊苷和顺铂。
7.权利要求6的方法,其中所述抗癌药物是SN-38。
8.权利要求1的方法,其中所述抗Trop-2抗体是hRS7。
9.权利要求1的方法,其中所述ADC以3mg/kg至18mg/kg的剂量施用。
10.权利要求1的方法,其中所述患者在施用ADC和ABCG2抑制剂之前已经用喜树碱治疗后复发,或未能对用喜树碱治疗有反应。
11.权利要求10的方法,其中所述患者在施用ADC和ABCG2抑制剂之前已经用伊立替康或SN-38治疗后复发,或未能对用伊立替康或SN-38治疗有反应。
12.权利要求1的方法,其中所述患者在施用ADC和ABCG2抑制剂之前已经用药物缀合的抗体治疗后复发,或未能对用药物缀合的抗体治疗有反应。
13.权利要求1的方法,进一步包括:(i)筛选来自患者的癌细胞对ADC的敏感性;和(ii)选择其癌细胞对使用单独ADC的治疗有抗性的患者来用ADC和ABCG2抑制剂治疗。
14.权利要求1的方法,其中所述癌选自结肠直肠癌、肺癌、胃癌、膀胱癌、肾癌、胰腺癌、乳腺癌、卵巢癌、子宫癌、食道癌和前列腺癌。
15.权利要求9的方法,其中所述剂量选自3mg/kg、4mg/kg、6mg/kg、7mg/kg、8mg/kg、9mg/kg、10mg/kg、11mg/kg、12mg/kg、16mg/kg和18mg/kg。
16.权利要求1的方法,其中所述治疗导致肿瘤大小缩小至少15%、至少20%、至少30%或至少40%。
17.权利要求1的方法,其中所述癌选自三阴性乳腺癌、HER+、ER+、孕酮+乳腺癌、转移性非小细胞肺癌、转移性小细胞肺癌、转移性尿道上皮癌和转移性胰腺癌。
18.权利要求7的方法,其中所述ADC包含4个或更多个分子的与抗体或其抗原结合片段缀合的SN-38。
19.权利要求7的方法,其中所述ADC包含6至8个分子的与抗体或其抗原结合片段缀合的SN-38。
20.权利要求1的方法,其中所述癌是转移性的。
21.权利要求20的方法,进一步包括缩小转移灶的大小或消除转移灶。
22.权利要求7的方法,其中在SN-38和抗体之间有接头。
23.权利要求22的方法,其中所述接头是CL2A,并且所述ADC的结构是MAb-CL2A-SN-38
MAb-CL2A-SN-38。
24.权利要求23的方法,其中MAb-CL2A-SN-38中的SN-38的10-羟基位置是使用‘COR’部分的10-O-酯或10-O-碳酸酯衍生物,其中″CO″是羰基并且″R″基团选自(i)N,N-二取代的氨基烷基基团“N(CH3)2-(CH2)n-”,其中n是1-10,并且其中末端氨基基团任选是季盐的形式;(ii)烷基残基“CH3-(CH2)n-”,其中n是0-10;(iii)烷氧基部分“CH3-(CH2)n-O-”,其中n是0-10;(iv)“N(CH3)2-(CH2)n-O-”,其中n是2-10;或(v)“R1O-(CH2-CH2-O)n-CH2-CH2-O-”,其中R1是乙基或甲基,并且n是数值为0-10的整数。
25.权利要求1的方法,其中所述抗体与包含轻链CDR序列CDR1(KASQDVSIAVA,SEQ IDNO:14);CDR2(SASYRYT,SEQ ID NO:15);和CDR3(QQHYITPLT,SEQ ID NO:16)以及重链CDR序列CDR1(NYGMN,SEQ ID NO:17);CDR2(WINTYTGEPTYTDDFKG,SEQ ID NO:18)和CDR3(GGFGSSYWYFDV,SEQ ID NO:19)的抗Trop-2抗体结合相同的表位或竞争结合Trop-2。
26.权利要求1的方法,其中所述抗体包含轻链CDR序列CDR1(KASQDVSIAVA,SEQ ID NO:14);CDR2(SASYRYT,SEQ ID NO:15);和CDR3(QQHYITPLT,SEQ ID NO:16)以及重链CDR序列CDR1(NYGMN,SEQ ID NO:17);CDR2(WINTYTGEPTYTDDFKG,SEQ ID NO:18)和CDR3(GGFGSSYWYFDV,SEQ ID NO:19)。
27.权利要求1的方法,进一步包括给所述患者施用至少一种选自下组的其它抗癌治疗:手术、外部放射、放射免疫治疗、免疫治疗、化学治疗、反义治疗、干扰RNA治疗、使用治疗剂的治疗和基因治疗。
28.权利要求27的方法,其中所述治疗剂是药物、毒素、免疫调节剂、第二抗体、第二抗体的抗原结合片段、促凋亡剂、毒素、RNA酶、激素、放射性核素、抗血管生成剂、siRNA、RNAi、化学治疗剂、细胞因子、趋化因子、前药或酶。
29.权利要求28的方法,其中所述药物选自5-氟尿嘧啶、阿法替尼、aplidin、阿扎立平、阿那曲唑、蒽环类药物、阿西替尼、AVL-101、AVL-291、苯达莫司汀、博莱霉素、硼替佐米、博舒替尼、苔藓抑素-1、白消安、刺孢霉素、喜树碱、卡铂、10-羟基喜树碱、卡莫司汀、西乐葆、苯丁酸氮芥、顺铂、Cox-2抑制剂、伊立替康(CPT-11)、SN-38、卡铂、克拉屈滨、坎托替康、克唑替尼、环磷酰胺、阿糖胞苷、达卡巴嗪、达沙替尼、迪那昔利布、多西他赛、更生霉素、柔红霉素、阿霉素、2-吡咯啉并阿霉素(2P-DOX)、氰基-吗啉代阿霉素、葡糖苷酸阿霉素、葡糖苷酸表柔比星、埃罗替尼、雌氮芥、表鬼臼毒素、埃罗替尼、恩替司他、雌激素受体结合剂、依托泊苷(VP16)、葡糖苷酸依托泊苷、磷酸依托泊苷、依西美坦、芬戈莫德、氟尿苷(FUdR)、3′,5′-O-二油酰-FudR(FUdR-dO)、氟达拉滨、氟他胺、法呢基-蛋白转移酶抑制剂、黄酮吡醇、福他替尼、ganetespib、GDC-0834、GS-1101、吉非替尼、吉西他滨、羟基脲、依鲁替尼、伊达比星、艾代拉里斯、异环磷酰胺、伊马替尼、L-天冬酰胺酶、拉帕替尼、来那度胺、甲酰四氢叶酸、LFM-A13、洛莫司汀、二氯甲基二乙胺、美法仑、巯基嘌呤、6-巯基嘌呤、甲氨蝶呤、米托蒽醌、光辉霉素、丝裂霉素、米托坦、诺维本、来那替尼、尼罗替尼、亚硝基脲、奥拉帕尼、普卡霉素、丙卡巴肼、紫杉醇、PCI-32765、喷司他汀、PSI-341、雷洛昔芬、司莫司汀、索拉非尼、链脲霉素、SU11248、舒尼替尼、他莫昔芬、替莫唑胺(DTIC的含水形式)、反铂、沙利度胺、硫鸟嘌呤、噻替派、替尼泊苷、拓扑替康、尿嘧啶氮芥、瓦他拉尼、长春瑞滨、长春花碱、长春新碱、长春花生物碱和ZD1839。
30.权利要求28的方法,其中所述免疫调节剂选自细胞因子、淋巴因子、单核因子、干细胞生长因子、淋巴毒素、造血因子、集落刺激因子(CSF)、干扰素(TNF)、甲状旁腺激素、甲状腺素、胰岛素、胰岛素原、松弛素、松弛素原、卵泡刺激激素(FSH)、甲状腺刺激激素(TSH)、促黄体生成激素(LH)、肝生长因子、前列腺素、成纤维细胞生长因子、促乳素、胎盘催乳激素、OB蛋白、转化生长因子(TGF)、TGF-α、TGF-β、胰岛素样生长因子(IGF)、红细胞生成素、血小板生成素、肿瘤坏死因子(TNF)、TNF-α、TNF-β、mullerian抑制物质、小鼠促性腺激素相关肽、抑制素、激活蛋白、血管内皮生长因子、整联蛋白、白介素(IL)、粒细胞-集落刺激因子(G-CSF)、粒细胞巨噬细胞-集落刺激因子(GM-CSF)、干扰素-α、干扰素-β、干扰素-γ、S1因子、IL-1、IL-1cc、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-12、IL-13、IL-14、IL-15、IL-16、IL-17、IL-18、IL-21、IL-23、IL-25、LIF、kit配体、FLT-3、制管张素、血小板反应蛋白和内皮抑制素。
31.权利要求1的方法,进一步包括给患者施用ABCB1或ABCC1的抑制剂。
32.权利要求1的方法,进一步包括给患者施用酪氨酸激酶抑制剂。
33.治疗对SN-38或伊立替康有抗性的癌的方法,包括:
a.给患有对SN-38或伊立替康有抗性的癌的人患者施用ADC,所述ADC包含与抗体或其抗原结合片段缀合的SN-38,所述抗体或其抗原结合片段结合于所述癌表达的抗原;以及
b.给所述患者施用ABCG2抑制剂。
34.权利要求33的方法,其中所述ABCG2抑制剂选自烟曲霉毒素C、Kol43、GF120918、YHO-13351、姜黄色素、CID44640177、CID1434724、CID46245505、CCT129202、青蒿酯、ST1481、二氢吡啶、富马酸多非喹达、吉非替尼、甲磺酸伊马替尼、拉帕替尼、WK-X-34和YHO-13177。
35.权利要求33的方法,其中所述ABCG2抑制剂选自烟曲霉毒素C、Ko143、GF120918和YHO-13351。
36.权利要求33的方法,其中所述ABCG2抑制剂是YHO-13351。
37.权利要求33的方法,其中所述抗原选自碳酸酐酶IX、甲胎蛋白(AFP)、α-辅肌动蛋白-4、A3、A33抗体的特异性抗原、ART-4、B7、Ba 733、BAGE、BrE3-抗原、CA125、CAMEL、CAP-1、CASP-8/m、CCL19、CCL21、CD1、CD1a、CD2、CD3、CD4、CD5、CD8、CD11A、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD29、CD30、CD32b、CD33、CD37、CD38、CD40、CD40L、CD44、CD45、CD46、CD52、CD54、CD55、CD59、CD64、CD66a-e、CD67、CD70、CD70L、CD74、CD79a、CD80、CD83、CD95、CD126、CD132、CD133、CD138、CD147、CD154、CDC27、CDK-4/m、CDKN2A、CTLA-4、CXCR4、CXCR7、CXCL12、HIF-1α、结肠特异性抗原-p(CSAp)、CEA(CEACAM5)、CEACAM6、c-Met、DAM、EGFR、EGFRvIII、EGP-1(Trop-2)、EGP-2、ELF2-M、Ep-CAM、成纤维细胞生长因子(FGF)、Flt-1、Flt-3、叶酸受体、G250抗原、GAGE、gp100、GRO-β、HLA-DR、HM1.24、人绒毛膜促性腺激素(HCG)及其亚基、HER2/neu、HMGB-1、低氧诱导因子(HIF-1)、HSP70-2M、HST-2、Ia、IGF-1R、IFN-γ、IFN-α、IFN-β、IFN-λ、IL-4R、IL-6R、IL-13R、IL-15R、IL-17R、IL-18R、IL-2、IL-6、IL-8、IL-12、IL-15、IL-17、IL-18、IL-23、IL-25、胰岛素样生长因子-1(IGF-1)、KC4-抗原、KS-1-抗原、KS1-4、Le-Y、LDR/FUT、巨噬细胞迁移抑制因子(MIF)、MAGE、MAGE-3、MART-1、MART-2、NY-ESO-1、TRAG-3、mCRP、MCP-1、MIP-1A、MIP-1B、MIF、MUC1、MUC2、MUC3、MUC4、MUC5ac、MUC13、MUC16、MUM-1/2、MUM-3、NCA66、NCA95、NCA90、PAM4抗原、胰腺癌黏蛋白、PD-1受体、胎盘生长因子、p53、PLAGL2、前列腺酸性磷酸酶、PSA、PRAME、PSMA、PlGF、ILGF、ILGF-1R、IL-6、IL-25、RS5、RANTES、T101、SAGE、S100、存活蛋白、存活蛋白-2B、TAC、TAG-72、生腱蛋白、TRAIL受体、TNF-α、Tn抗原、Thomson-Friedenreich抗原、肿瘤坏死抗原、VEGFR、ED-B纤连蛋白、WT-1、17-1A-抗原、补体因子C3、C3a、C3b、C5a、C5、血管生成标记物、bcl-2、bcl-6、Kras和癌基因标记物。
38.权利要求33的方法,其中所述抗原选自Trop-2、CEACAM-5、CD74、CD22、CD20、MUC-5ac和HLA-DR。
39.权利要求33的方法,其中所述抗体选自LL1(抗CD74)、LL2(抗CD22)、RFB4(抗CD22)、维妥珠单抗(hA20,抗CD20)、利妥昔单抗(抗CD20)、奥滨尤妥珠单抗(GA101,抗CD20)、兰罗利珠单抗(抗PD-1受体)、纳武单抗(抗PD-1受体)、伊匹单抗(抗CTLA-4)、RS7(抗Trop-2)、PAM4(抗MUC-5ac)、KC4(抗黏蛋白)、MN-14(抗CEACAM5)、MN-15(抗CEACAM6)、MN-3(抗CEACAM6)、Mu-9(抗CSAp)、Immu 31(抗甲胎蛋白)、R1(抗IGF-1R)、A19(抗CD19)、TAG-72(抗PSMA)、Tn(抗PSMA)、J591(抗PSMA)、HuJ591(抗PSMA)、AB-PG1-XG1-026(抗PSMA二聚体)、D2/B(抗PSMA)、G250(抗碳酸酐酶IX)、L243(抗HLA-DR)、阿仑单抗(抗CD52)、贝伐单抗(抗VEGF)、西妥昔单抗(抗EGFR)、吉妥单抗(抗CD33)、替伊莫单抗(抗CD20)、帕尼单抗(抗EGFR)、托西莫单抗(抗CD20)和曲妥珠单抗(抗ErbB2)。
40.权利要求33的方法,其中所述抗体选自hRS7、hMN-13、hLL1、hLL2、hA20、hPAM4和hL243。
41.权利要求33的方法,其中所述癌选自B细胞淋巴瘤、B细胞白血病、霍奇金氏病、T细胞白血病、T细胞淋巴瘤、骨髓瘤、结肠癌、胃癌、食道癌、甲状腺髓样癌、肾癌、乳腺癌、肺癌、胰腺癌、膀胱癌、卵巢癌、子宫癌、宫颈癌、睾丸癌、前列腺癌、肝癌、皮肤癌、骨癌、脑癌、直肠癌和黑素瘤。
42.权利要求41的方法,其中所述B细胞白血病或B细胞淋巴瘤选自惰性形式的B细胞淋巴瘤、侵袭形式的B细胞淋巴瘤、慢性淋巴细胞性白血病、急性淋巴细胞性白血病、毛细胞白血病、非霍奇金氏淋巴瘤、霍奇金氏淋巴瘤、伯基特淋巴瘤、滤泡性淋巴瘤、弥漫性B细胞淋巴瘤、套细胞淋巴瘤和多发性骨髓瘤。
43.权利要求33的方法,其中所述ADC包含6至8个分子的与抗体或其抗原结合片段缀合的SN-38。
44.权利要求33的方法,其中所述癌是转移性的。
45.权利要求33的方法,其中在SN-38和抗体之间有接头。
46.权利要求45的方法,其中所述接头是CL2A,并且所述ADC的结构是MAb-CL2A-SN-38
MAb-CL2A-SN-38。
47.权利要求33的方法,其中所述ADC以8mg/kg至12mg/kg的剂量施用。
48.权利要求33的方法,其中所述ADC以8mg/kg至10mg/kg的剂量施用。
49.权利要求33的方法,进一步包括给所述患者施用至少一种选自下组的其它抗癌治疗:手术、外部放射、放射免疫治疗、免疫治疗、化学治疗、反义治疗、干扰RNA治疗、使用治疗剂的治疗和基因治疗。
CN201780008716.8A 2016-02-10 2017-02-10 Abcg2抑制剂与sacituzumab govitecan(immu-132)的组合克服表达trop-2的癌中对sn-38的抗性 Pending CN108601841A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211361578.0A CN115969970A (zh) 2016-02-10 2017-02-10 Abcg2抑制剂与sacituzumab govitecan的组合

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201662293530P 2016-02-10 2016-02-10
US62/293530 2016-02-10
US201662329788P 2016-04-29 2016-04-29
US62/329788 2016-04-29
US201662336985P 2016-05-16 2016-05-16
US62/336985 2016-05-16
PCT/US2017/017435 WO2017139623A1 (en) 2016-02-10 2017-02-10 Combination of abcg2 inhibitors with sacituzumab govitecan (immu-132) overcomes resistance to sn-38 in trop-2 expressing cancers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202211361578.0A Division CN115969970A (zh) 2016-02-10 2017-02-10 Abcg2抑制剂与sacituzumab govitecan的组合

Publications (1)

Publication Number Publication Date
CN108601841A true CN108601841A (zh) 2018-09-28

Family

ID=59496017

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780008716.8A Pending CN108601841A (zh) 2016-02-10 2017-02-10 Abcg2抑制剂与sacituzumab govitecan(immu-132)的组合克服表达trop-2的癌中对sn-38的抗性
CN202211361578.0A Pending CN115969970A (zh) 2016-02-10 2017-02-10 Abcg2抑制剂与sacituzumab govitecan的组合

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202211361578.0A Pending CN115969970A (zh) 2016-02-10 2017-02-10 Abcg2抑制剂与sacituzumab govitecan的组合

Country Status (5)

Country Link
US (2) US20170224837A1 (zh)
EP (1) EP3413914A4 (zh)
CN (2) CN108601841A (zh)
CA (1) CA3011372A1 (zh)
WO (1) WO2017139623A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171469A (zh) * 2020-10-16 2021-07-27 中山大学孙逸仙纪念医院 靶向肿瘤细胞表面Trop2蛋白的肿瘤治疗纳米药物及其制备方法
CN114096250A (zh) * 2019-05-20 2022-02-25 匹兹堡大学联邦高等教育系统 红细胞生成性原卟啉症(epp)和x连锁原卟啉症(xlp)的新疗法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210393617A1 (en) * 2012-12-13 2021-12-23 Immunomedics, Inc. Therapy for metastatic urothelial cancer with the antibody-drug conjugate, sacituzumab govitecan (immu-132)
PL3298033T5 (pl) 2015-05-18 2023-10-30 TCR2 Therapeutics Inc. Kompozycje i zastosowania medyczne do reprogramowania TCR z zastosowaniem białek fuzyjnych
TWI794171B (zh) 2016-05-11 2023-03-01 美商滬亞生物國際有限公司 Hdac抑制劑與pd-l1抑制劑之組合治療
TWI808055B (zh) 2016-05-11 2023-07-11 美商滬亞生物國際有限公司 Hdac 抑制劑與 pd-1 抑制劑之組合治療
JP2020512314A (ja) * 2017-03-27 2020-04-23 イミューノメディクス、インコーポレイテッドImmunomedics, Inc. サシツズマブゴビテカンとRAD51阻害剤を用いたTrop−2発現トリプルネガティブ乳癌の治療
CA3114137A1 (en) * 2018-09-26 2020-04-02 Jiangsu Hengrui Medicine Co., Ltd. Ligand-drug conjugate of exatecan analogue, preparation method therefor and application thereof
CN112646038A (zh) * 2019-10-11 2021-04-13 迈威(上海)生物科技股份有限公司 抗人Trop-2抗体及其应用
CN112402608B (zh) * 2020-11-30 2021-09-07 深圳先进技术研究院 5-烷氧基吲哚-3-乙烯基喹啉盐作为靶向可迁移光敏剂的应用
WO2021168274A1 (en) 2020-02-21 2021-08-26 Silverback Therapeutics, Inc. Nectin-4 antibody conjugates and uses thereof
CN116209678A (zh) 2020-07-01 2023-06-02 安尔士制药公司 抗asgr1抗体缀合物及其用途
GB202011993D0 (en) 2020-07-31 2020-09-16 Adc Therapeutics Sa ANTI-IL 13Ra2 antibodies
CN112274517A (zh) * 2020-10-30 2021-01-29 江苏大学 一种治疗套细胞淋巴瘤的药物组合物
CA3222752A1 (en) 2021-06-11 2022-12-15 Gilead Sciences, Inc. Combination mcl-1 inhibitors with anti-body drug conjugates
TW202315637A (zh) 2021-06-11 2023-04-16 美商基利科學股份有限公司 Mcl-1抑制劑與抗癌劑之組合
WO2023044039A1 (en) * 2021-09-16 2023-03-23 TCR2 Therapeutics Inc. Compositions and methods for treating cancer
WO2023076983A1 (en) 2021-10-28 2023-05-04 Gilead Sciences, Inc. Pyridizin-3(2h)-one derivatives
AU2022376954A1 (en) 2021-10-29 2024-05-02 Gilead Sciences, Inc. Cd73 compounds
CA3237577A1 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023122581A2 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
TW202340168A (zh) 2022-01-28 2023-10-16 美商基利科學股份有限公司 Parp7抑制劑
WO2023175483A1 (en) * 2022-03-16 2023-09-21 Astrazeneca Uk Limited A scoring method for an anti-trop2 antibody‑drug conjugate therapy
TW202346277A (zh) 2022-03-17 2023-12-01 美商基利科學股份有限公司 Ikaros鋅指家族降解劑及其用途
WO2023183817A1 (en) * 2022-03-24 2023-09-28 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
WO2023201268A1 (en) 2022-04-13 2023-10-19 Gilead Sciences, Inc. Combination therapy for treating tumor antigen expressing cancers
WO2023201267A1 (en) 2022-04-13 2023-10-19 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
WO2023205719A1 (en) 2022-04-21 2023-10-26 Gilead Sciences, Inc. Kras g12d modulating compounds
US20240116928A1 (en) 2022-07-01 2024-04-11 Gilead Sciences, Inc. Cd73 compounds
WO2024097812A1 (en) 2022-11-04 2024-05-10 Gilead Sciences, Inc. Therapy for treating bladder cancer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140288078A1 (en) * 2011-03-28 2014-09-25 St. John's University Use of phosphodiesterase inhibitors for treating multidrug resistance
CN104837508A (zh) * 2012-12-13 2015-08-12 免疫医疗公司 功效改进且毒性降低的抗体与sn-38的免疫缀合物的剂量

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1541435A (en) 1975-02-04 1979-02-28 Searle & Co Immunological materials
US4036945A (en) 1976-05-03 1977-07-19 The Massachusetts General Hospital Composition and method for determining the size and location of myocardial infarcts
US4200690A (en) 1976-12-16 1980-04-29 Millipore Corporation Immunoassay with membrane immobilized antibody
US4331647A (en) 1980-03-03 1982-05-25 Goldenberg Milton David Tumor localization and therapy with labeled antibody fragments specific to tumor-associated markers
US5204095A (en) 1980-04-09 1993-04-20 National Research Development Corporation Monoclonal antibodies against hepatitis B virus
US4359457A (en) 1980-09-30 1982-11-16 Neville Jr David M Anti Thy 1.2 monoclonal antibody-ricin hybrid utilized as a tumor suppressant
US4916213A (en) 1983-02-22 1990-04-10 Xoma Corporation Ribosomal inhibiting protein-immunoglobulin conjugates with specificity for tumor cell surface antigens, and mixtures thereof
US4925922A (en) 1983-02-22 1990-05-15 Xoma Corporation Potentiation of cytotoxic conjugates
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5672347A (en) 1984-07-05 1997-09-30 Genentech, Inc. Tumor necrosis factor antagonists and their use
US4824659A (en) 1985-06-07 1989-04-25 Immunomedics, Inc. Antibody conjugates
US5776093A (en) 1985-07-05 1998-07-07 Immunomedics, Inc. Method for imaging and treating organs and tissues
US5525338A (en) 1992-08-21 1996-06-11 Immunomedics, Inc. Detection and therapy of lesions with biotin/avidin conjugates
US4918163A (en) 1985-09-27 1990-04-17 Pfizer Inc. Monoclonal antibodies specific for lipid-A determinants of gram negative bacteria
US5618920A (en) 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US4699784A (en) 1986-02-25 1987-10-13 Center For Molecular Medicine & Immunology Tumoricidal methotrexate-antibody conjugate
US5057313A (en) 1986-02-25 1991-10-15 The Center For Molecular Medicine And Immunology Diagnostic and therapeutic antibody conjugates
US4997913A (en) 1986-06-30 1991-03-05 Oncogen pH-sensitive immunoconjugates and methods for their use in tumor therapy
US4704692A (en) 1986-09-02 1987-11-03 Ladner Robert C Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5567610A (en) 1986-09-04 1996-10-22 Bioinvent International Ab Method of producing human monoclonal antibodies and kit therefor
CA1320905C (en) 1986-11-06 1993-08-03 Joseph M. Cummins Treatment of immuno-resistant disease
US4932412A (en) 1986-12-18 1990-06-12 Immunomedics, Inc. Intraoperative and endoscopic tumor detection and therapy
WO1988007553A1 (en) 1987-03-26 1988-10-06 Teijin Limited Process for preparing antibody complex
US4981979A (en) 1987-09-10 1991-01-01 Neorx Corporation Immunoconjugates joined by thioether bonds having reduced toxicity and improved selectivity
IL89220A (en) 1988-02-11 1994-02-27 Bristol Myers Squibb Co Immunoconjugates of anthracycline, their production and pharmaceutical preparations containing them
US5112954A (en) 1988-02-26 1992-05-12 Neorx Corporation Method of enhancing the effect of cytotoxic agents
US4861579A (en) 1988-03-17 1989-08-29 American Cyanamid Company Suppression of B-lymphocytes in mammals by administration of anti-B-lymphocyte antibodies
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
GB8903021D0 (en) 1989-02-10 1989-03-30 Celltech Ltd Chemical compounds
US5134075A (en) 1989-02-17 1992-07-28 Oncogen Limited Partnership Monoclonal antibody to novel antigen associated with human tumors
US5171665A (en) 1989-04-17 1992-12-15 Oncogen Monoclonal antibody to novel antigen associated with human tumors
JPH02283294A (ja) 1989-04-24 1990-11-20 Sumitomo Chem Co Ltd ヒトモノクローナル抗体
ATE149841T1 (de) 1990-01-26 1997-03-15 Immunomedics Inc Impfstoffe gegen krebs und infektionskrankheiten
AU7566991A (en) 1990-03-14 1991-10-10 Biomembrane Institute, The Monoclonal antibody and immunoconjugates for the treatment and detection of b cell disorders
US5229275A (en) 1990-04-26 1993-07-20 Akzo N.V. In-vitro method for producing antigen-specific human monoclonal antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
GB9020075D0 (en) 1990-09-14 1990-10-24 Filler Aaron G Contrast agents for magnetic resonance imaging of axonal transport
US5679640A (en) 1991-02-12 1997-10-21 Cytel Corporation Immunosuppressant peptides
JP3105629B2 (ja) 1991-04-23 2000-11-06 サングスタット メディカル コーポレイション 特異的結合ペアのメンバーの細胞活性調節接合体
IE922437A1 (en) 1991-07-25 1993-01-27 Idec Pharma Corp Recombinant antibodies for human therapy
EP0861893A3 (en) 1991-09-19 1999-11-10 Genentech, Inc. High level expression of immunoglobulin polypeptides
US5622929A (en) 1992-01-23 1997-04-22 Bristol-Myers Squibb Company Thioether conjugates
US5965132A (en) 1992-03-05 1999-10-12 Board Of Regents, The University Of Texas System Methods and compositions for targeting the vasculature of solid tumors
US6096289A (en) 1992-05-06 2000-08-01 Immunomedics, Inc. Intraoperative, intravascular, and endoscopic tumor and lesion detection, biopsy and therapy
EP0643583B1 (en) 1992-05-06 2000-07-26 Immunomedics, Inc. Intraoperative, intravascular and endoscopic tumor and lesion detection and therapy
US5686072A (en) 1992-06-17 1997-11-11 Board Of Regents, The University Of Texas Epitope-specific monoclonal antibodies and immunotoxins and uses thereof
DE69329503T2 (de) 1992-11-13 2001-05-03 Idec Pharma Corp Therapeutische Verwendung von chimerischen und markierten Antikörpern, die gegen ein Differenzierung-Antigen gerichtet sind, dessen Expression auf menschliche B Lymphozyt beschränkt ist, für die Behandlung von B-Zell-Lymphoma
EP0684814B1 (en) 1993-02-22 1998-06-17 Alza Corporation Compositions for oral delivery of active agents
US6214345B1 (en) 1993-05-14 2001-04-10 Bristol-Myers Squibb Co. Lysosomal enzyme-cleavable antitumor drug conjugates
KR100220864B1 (ko) 1993-05-17 1999-09-15 오트리브 데이비스 더블유 비오틴/아비딘-금속 단백질 콘쥬게이트로 병변을 검출 및 치료하기 위한 조성물
US5484892A (en) 1993-05-21 1996-01-16 Dana-Farber Cancer Institute, Inc. Monoclonal antibodies that block ligand binding to the CD22 receptor in mature B cells
US5565215A (en) 1993-07-23 1996-10-15 Massachusettes Institute Of Technology Biodegradable injectable particles for imaging
US5417972A (en) 1993-08-02 1995-05-23 The Board Of Trustees Of The Leland Stanford Junior University Method of killing B-cells in a complement independent and an ADCC independent manner using antibodies which specifically bind CDIM
WO1995009917A1 (en) 1993-10-07 1995-04-13 The Regents Of The University Of California Genetically engineered bispecific tetravalent antibodies
US5824701A (en) 1993-10-20 1998-10-20 Enzon, Inc. Taxane-based prodrugs
US5443953A (en) 1993-12-08 1995-08-22 Immunomedics, Inc. Preparation and use of immunoconjugates
US5639725A (en) 1994-04-26 1997-06-17 Children's Hospital Medical Center Corp. Angiostatin protein
US5686578A (en) 1994-08-05 1997-11-11 Immunomedics, Inc. Polyspecific immunoconjugates and antibody composites for targeting the multidrug resistant phenotype
IL114909A (en) 1994-08-12 1999-10-28 Immunomedics Inc Immunoconjugates and humanized antibodies specific for b-cell lymphoma and leukemia cells
US8771694B2 (en) 1994-08-12 2014-07-08 Immunomedics, Inc. Immunoconjugates and humanized antibodies specific for B-cell lymphoma and leukemia cells
US5874540A (en) 1994-10-05 1999-02-23 Immunomedics, Inc. CDR-grafted type III anti-CEA humanized mouse monoclonal antibodies
US5798554A (en) 1995-02-24 1998-08-25 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno MOS-technology power device integrated structure and manufacturing process thereof
AUPO591797A0 (en) 1997-03-27 1997-04-24 Commonwealth Scientific And Industrial Research Organisation High avidity polyvalent and polyspecific reagents
US6441025B2 (en) 1996-03-12 2002-08-27 Pg-Txl Company, L.P. Water soluble paclitaxel derivatives
CA2249320C (en) 1996-03-20 2008-12-23 Immunomedics, Inc. Glycosylated humanized b-cell specific antibodies
AU717020B2 (en) 1996-05-03 2000-03-16 Immunomedics Inc. Targeted combination immunotherapy of cancer
WO1998004281A1 (en) 1996-07-26 1998-02-05 Smithkline Beecham Corpration Improved method of treating immune cell mediated systemic diseases
DE19640207A1 (de) 1996-09-30 1998-04-02 Bayer Ag Glycokonjugate von modifizierten Camptothecin-Derivaten (A- oder B-Ring-Verknüpfung)
US6056973A (en) 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
US6653104B2 (en) 1996-10-17 2003-11-25 Immunomedics, Inc. Immunotoxins, comprising an internalizing antibody, directed against malignant and normal cells
US7122636B1 (en) 1997-02-21 2006-10-17 Genentech, Inc. Antibody fragment-polymer conjugates and uses of same
US6183744B1 (en) 1997-03-24 2001-02-06 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
US6306393B1 (en) 1997-03-24 2001-10-23 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
JP3835827B2 (ja) 1997-05-02 2006-10-18 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ,アズ リプレゼンティッド バイ ザ セクレタリーオブ ザ デパートメント オブ ヘルス アンド ヒューマン サービシーズ 悪性細胞に対する、oncタンパク質を含む、免疫毒素
US6368596B1 (en) 1997-07-08 2002-04-09 Board Of Regents, The University Of Texas System Compositions and methods for homoconjugates of antibodies which induce growth arrest or apoptosis of tumor cells
US6165440A (en) 1997-07-09 2000-12-26 Board Of Regents, The University Of Texas System Radiation and nanoparticles for enhancement of drug delivery in solid tumors
US6051228A (en) 1998-02-19 2000-04-18 Bristol-Myers Squibb Co. Antibodies against human CD40
BRPI9909860B8 (pt) 1998-04-21 2021-05-25 Amgen Res Munich Gmbh polipeptídeo multifuncional de cadeia simples, polinucleotídeo, vetor, célula procariótica, de levedura ou unicelular, composição, usos de polipeptídeo e polinucleotídeo e métodos para preparo do referido polipeptídeo e para identificação de ativadores ou inibidores de ativação ou estimulação das células t
US7387779B2 (en) 1998-06-17 2008-06-17 Beth Israel Deaconess Medical Center Anti-angiogenic proteins and fragments and methods of use thereof
ATE344837T1 (de) 1998-11-16 2006-11-15 Ca Nat Research Council Hitzestabile xylanasen
US6201104B1 (en) 1998-12-04 2001-03-13 Entremed, Inc. Angiogenesis—inhibiting protein binding peptides and proteins and methods of use
US6379698B1 (en) 1999-04-06 2002-04-30 Isis Pharmaceuticals, Inc. Fusogenic lipids and vesicles
DK1176981T3 (da) 1999-05-07 2006-04-10 Genentech Inc Behandling af autoimmune sygdomme med antagonister som binder til B celleoverflademarkörer
US8119101B2 (en) 1999-05-10 2012-02-21 The Ohio State University Anti-CD74 immunoconjugates and methods of use
US7074403B1 (en) 1999-06-09 2006-07-11 Immunomedics, Inc. Immunotherapy of autoimmune disorders using antibodies which target B-cells
DE19926154A1 (de) 1999-06-09 2000-12-14 Ktb Tumorforschungs Gmbh Verfahren zur Herstellung einer injizierbaren Arzneimittelzubereitung
EP2289549A3 (en) 1999-10-01 2011-06-15 Immunogen, Inc. Immunoconjugates for treating cancer
US6530944B2 (en) 2000-02-08 2003-03-11 Rice University Optically-active nanoparticles for use in therapeutic and diagnostic methods
US20030133972A1 (en) 2000-10-11 2003-07-17 Targesome, Inc. Targeted multivalent macromolecules
US6716821B2 (en) 2001-12-21 2004-04-06 Immunogen Inc. Cytotoxic agents bearing a reactive polyethylene glycol moiety, cytotoxic conjugates comprising polyethylene glycol linking groups, and methods of making and using the same
CN101914158A (zh) 2002-02-14 2010-12-15 免疫医疗公司 抗cd 20抗体及其融合蛋白和使用方法
US8435529B2 (en) 2002-06-14 2013-05-07 Immunomedics, Inc. Combining radioimmunotherapy and antibody-drug conjugates for improved cancer therapy
US7591994B2 (en) 2002-12-13 2009-09-22 Immunomedics, Inc. Camptothecin-binding moiety conjugates
US8877901B2 (en) 2002-12-13 2014-11-04 Immunomedics, Inc. Camptothecin-binding moiety conjugates
SI3483183T1 (sl) 2002-03-01 2021-08-31 Immunomedics, Inc. Imunokonjugat ki obsega humanizirana RS7 protitelesa
CA2478012C (en) 2002-03-01 2012-06-19 Immunomedics, Inc. Internalizing anti-cd74 antibodies and methods of use
US9770517B2 (en) * 2002-03-01 2017-09-26 Immunomedics, Inc. Anti-Trop-2 antibody-drug conjugates and uses thereof
FR2840532B1 (fr) 2002-06-11 2005-05-06 Ethypharm Sa Nanocapsules lipidiques furtives, procede de preparation et utilisation comme vecteur de principes(s) actif(s)
US8420086B2 (en) 2002-12-13 2013-04-16 Immunomedics, Inc. Camptothecin conjugates of anti-CD22 antibodies for treatment of B cell diseases
WO2004054622A1 (en) 2002-12-13 2004-07-01 Immunomedics, Inc. Immunoconjugates with an intracellularly-cleavable linkage
US8551480B2 (en) 2004-02-13 2013-10-08 Immunomedics, Inc. Compositions and methods of use of immunotoxins comprising ranpirnase (Rap) show potent cytotoxic activity
WO2006047419A2 (en) 2004-10-25 2006-05-04 Intezyne Technologies, Incorporated Heterobifunctional poly(ethylene glycol) and uses thereof
DK3332808T3 (da) 2005-03-03 2020-12-14 Immunomedics Inc Humaniserede L243-antistoffer
US8349332B2 (en) 2005-04-06 2013-01-08 Ibc Pharmaceuticals, Inc. Multiple signaling pathways induced by hexavalent, monospecific and bispecific antibodies for enhanced toxicity to B-cell lymphomas and other diseases
CA2648895C (en) 2006-04-19 2015-02-10 Bionumerik Pharmaceuticals, Inc. Camptothecin-analog with a novel, "flipped" lactone-stable, e-ring and methods for making and using same
US8715662B2 (en) 2009-02-05 2014-05-06 Oncoxx Biotech S.R.L. Anti-trop-2 monoclonal antibodies and uses thereof in the treatment and diagnosis of tumors
DK3903829T3 (da) 2009-02-13 2023-06-26 Immunomedics Inc Immunkonjugater med en intracellulær spaltelig binding
CA2774015A1 (en) 2009-09-15 2011-03-24 Cerulean Pharma Inc. A cdp-camptothecin conjugate, particle or composition and uses thereof
CA2798778C (en) 2010-05-17 2016-01-05 Livtech, Inc. Anti-human trop-2 antibody having anti-tumor activity in vivo
KR101783529B1 (ko) 2011-04-01 2017-09-29 와이어쓰 엘엘씨 항체-약물 접합체
EP2704751B1 (en) 2011-05-02 2019-04-17 Immunomedics, Inc. Ultrafiltration concentration of allotype selected antibodies for small-volume administration
SA112330988B1 (ar) 2011-11-11 2015-07-22 رينات نيوروساينس كورب. أجسام مضادة تخص trop-2 واستخداماتها
US9382329B2 (en) 2012-08-14 2016-07-05 Ibc Pharmaceuticals, Inc. Disease therapy by inducing immune response to Trop-2 expressing cells
US9107960B2 (en) * 2012-12-13 2015-08-18 Immunimedics, Inc. Antibody-SN-38 immunoconjugates with a CL2A linker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140288078A1 (en) * 2011-03-28 2014-09-25 St. John's University Use of phosphodiesterase inhibitors for treating multidrug resistance
CN104837508A (zh) * 2012-12-13 2015-08-12 免疫医疗公司 功效改进且毒性降低的抗体与sn-38的免疫缀合物的剂量

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHARKEY, ET AL: "Enhanced Delivery of SN-38 to Human Tumor Xenografts with an Anti-Trop-2–SN-38 Antibody Conjugate (Sacituzumab Govitecan)", 《CLINICAL CANCER RESEARCH 》 *
YAMAZAKI, ET AL: "Novel acrylonitrile derivatives, YHO-13177 and YHO-13351, reverse BCRP/ABCG2-mediated drug resistance in vitro and in vivo.", 《MOLECULAR CANCER THERAPEUTICS》 *
YOSHIKAWA, ET AL: "Transport of SN-38 by the wild type of human ABC transporter ABCG2 and its inhibition by quercetin, a natural flavonoid.", 《J EXP THER ONCOL》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114096250A (zh) * 2019-05-20 2022-02-25 匹兹堡大学联邦高等教育系统 红细胞生成性原卟啉症(epp)和x连锁原卟啉症(xlp)的新疗法
CN113171469A (zh) * 2020-10-16 2021-07-27 中山大学孙逸仙纪念医院 靶向肿瘤细胞表面Trop2蛋白的肿瘤治疗纳米药物及其制备方法
CN113171469B (zh) * 2020-10-16 2022-06-14 中山大学孙逸仙纪念医院 靶向肿瘤细胞表面Trop2蛋白的肿瘤治疗纳米药物及其制备方法

Also Published As

Publication number Publication date
US10954305B2 (en) 2021-03-23
CA3011372A1 (en) 2017-08-17
EP3413914A4 (en) 2019-10-16
CN115969970A (zh) 2023-04-18
WO2017139623A1 (en) 2017-08-17
US20170224837A1 (en) 2017-08-10
EP3413914A1 (en) 2018-12-19
US20190248917A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
US10954305B2 (en) Combination of ABCG2 inhibitors with sacituzumab govitecan (IMMU-132) overcomes resistance to SN-38 in Trop-2 expressing cancers
JP7144121B2 (ja) 抗体-薬物コンジュゲートのネオアジュバント使用
US20210395385A1 (en) Efficacy of anti-trop-2-sn-38 antibody drug conjugates for therapy of tumors relapsed/refractory to checkpoint inhibitors
US10918734B2 (en) Treatment of high Trop-2 expressing triple negative breast cancer (TNBC) with sacituzumab govitecan (IMMU-132) overcomes homologous recombination repair (HRR) rescue mediated by Rad51
US10744129B2 (en) Therapy of small-cell lung cancer (SCLC) with a topoisomerase-I inhibiting antibody-drug conjugate (ADC) targeting Trop-2
ES2953441T3 (es) Combinación de anticuerpos anti-hla-dr o anti-Trop-2 con inhibidores de microtúbulos, inhibidores de parp, inhibidores de la cinasa de bruton o inhibidores de la fosfoinositida 3-cinasa mejora significativamente el resultado terapéutico en el cáncer
US20210046185A1 (en) Dosages of immunoconjugates of antibodies and sn-38 for improved efficacy and decreased toxicity
CN107735090A (zh) 具有cl2a接头的抗体‑sn‑38免疫缀合物
CN110352201A (zh) 用于癌症疗法的抗体药物缀合物的皮下施用
CN105407891A (zh) 具有cl2a接头的抗体-sn-38免疫缀合物
CN110248680A (zh) 使用抗体-药物缀合物沙西妥珠单抗戈维替康(immu-132)的用于转移性尿路上皮癌的疗法
EP3585442B1 (en) Therapy of small-cell lung cancer (sclc) with a topoisomerase-i inhibiting antibody-drug conjugate (adc) targeting trop-2
CN109562172A (zh) 抗HLA-DR抗体药物缀合物IMMU-140(hL243-CL2A-SN-38)在HLA-DR阳性癌症中的功效
US20240139324A1 (en) Dosages of immunoconjugates of antibodies and sn-38 for improved efficacy and decreased toxicity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180928

RJ01 Rejection of invention patent application after publication