CN108595819A - 基于转换矩阵的变压器三相模型建立方法 - Google Patents

基于转换矩阵的变压器三相模型建立方法 Download PDF

Info

Publication number
CN108595819A
CN108595819A CN201810354603.XA CN201810354603A CN108595819A CN 108595819 A CN108595819 A CN 108595819A CN 201810354603 A CN201810354603 A CN 201810354603A CN 108595819 A CN108595819 A CN 108595819A
Authority
CN
China
Prior art keywords
transformer
phase
voltage
matrix
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810354603.XA
Other languages
English (en)
Other versions
CN108595819B (zh
Inventor
姚玉斌
吴志良
王丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Shanghai Ship and Shipping Research Institute Co Ltd
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN201810354603.XA priority Critical patent/CN108595819B/zh
Publication of CN108595819A publication Critical patent/CN108595819A/zh
Application granted granted Critical
Publication of CN108595819B publication Critical patent/CN108595819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本发明公开了一种基于转换矩阵的变压器三相模型建立方法,包括以下步骤:建立三相变压器的原始导纳矩阵Yp,并根据变压器原副边连接方式修改Yp阵的变比;根据原边连接方式确定原边电压变换矩阵Cp;根据原副边接线方式确定Csp和Cps;根据组别标号由基本副边电压变换矩阵Css经转换矩阵转换得副边电压变换矩阵Cs并修改Cps;根据电压变换矩阵各子矩阵形成变压器的电压变换矩阵C和电流变换矩阵G;根据Yp阵和变换矩阵推导三相变压器节点导纳矩阵YTn。本发明解决了关联矩阵法不适用于某些连接组别变压器的节点导纳矩阵的求取问题,进一步简化了软件编写的工作量并减少出错的概率,提高了求取三相变压器三相模型的准确性。

Description

基于转换矩阵的变压器三相模型建立方法
技术领域
本发明涉及一种变压器三相模型的建立方法,特别是一种配电网三相潮流计算所使用的配电三相变压器的三相模型建立方法。
背景技术
配电系统是由配电线路、配电变压器、配电调压器、配电开关、配电电容器和配电负荷等组成的直接向终端用户分配电能的一个网络系统。进行电力系统分析首先需要对系统中各个元件建立合适的模型。与高压输电网的三相对称运行方式不同,配电网的负荷和网络都可能不对称,配电网进行潮流计算时,应考虑三相不对称的特点,进行三相潮流计算。因此配电网三相潮流计算需要建立配电网络各元件的三相模型。
单相潮流计算的三相变压器模型采用变压器单相模型,人们一般只关心变压器变比和阻抗。但在配电网三相潮流计算中,变压器模型要复杂得多,不仅要考虑变压器变比,还要关心变压器绕组的连接方式和连接组别以及中性点是否接地等问题。三相变压器的原边和副边各有3个绕组,将三相绕组的首端和末端进行连接并引出三相首端,有两种连接方式:一种是把三相变压器三相绕组的一端接在一起,另一端引出,称为三相变压器星形连接;另一种是依次将一相绕组的首端和另一相绕组末端连接成三角形,称为三相变压器三角形连接。
三相变压器的原副边绕组都有可能接成星形或三角形,国标规定:三相变压器绕组为星形连接时,标号为Y(原边绕组)和y(副边绕组),中性点引出时,标号为YN或yn;绕组为三角形连接时,标号为D(原边绕组)和d(副边绕组)。
由于三相变压器的原副边绕组都有可能接成星形或三角形,三相变压器的原副边绕组的不同接法,可以得到多种组合,其中三角形接法可分为左行接线和右行接线,星形接法的中性点又有接地和不接地之分。将这些连接方式组合后,能得到16种组合方式。
三相变压器原副边绕组的极性可能相同也可能相反,所以每种组合有两种极性关系。
三相变压器原副边绕组各相可能会一一对应,即原边绕组的A、B、C分别对应于副边绕组的a、b、c,对应的绕组在同一铁芯柱上;三相变压器原副边绕组各相也可能不对应,即原边绕组的A相对应于副边绕组的b相或者c相,但副边绕组的三相电压间要满足正相序的关系,因此每种极性对应3种相位关系。
因此三相变压器的每种连接组合方式下有6种相位关系,则16种组合方式共有96种连接组。
三相变压器连接组别标号的数字采用相位差的时钟序数表示,新国标采用原副边对应的相电压相量的相位差判断,以原边的相电压相量为参考指向时钟0点,副边对应的相电压相量所指向的时钟点数即为三相变压器连接组别标号,三角形的虚拟中性点为三角形中心。三相变压器两侧都采用相同连接方式,即Yy、Dd时,为0、2、4、6、8、10点的偶数点接线;三相变压器一侧采用星形接线另一侧采用三角形接线,即Yd、Dy时,为1、3、5、7、9、11点的奇数点接线。变压器绕组三角形接法采用左行接线或右行接线都能得到某一要求的组别标号的连接组,并且效果相同。一般情况下连接组不需要区分三角形接法的左行接线或右行接线,但要考虑星形接线的中性点是否接地的区别,这样变压器连接组减少至54种。
三相变压器建模时,考虑三相变压器正常运行时的电压变化不大,因而励磁回路的消耗功率变化不大,可以与负荷的功率合并,统一考虑。因此三相变压器建模一般不包含励磁回路。
在输电网中,由于三相负荷和网络都是对称的,输电系统各处的电压(或电流)也是对称的,即三相电压(或电流)的大小相等,两相电压(或电流)之间相位相差120°,B相滞后A相120°,C相滞后B相120°。分析计算时,可以用单相等值电路计算某一相(如A相)的电压(或电流),其他两相的电压(或电流)根据对称关系直接写出结果。单相等值电路中三相变压器模型只有变压器变比和等值阻抗。
在配电网中,由于三相负荷和网络不对称,配电系统各处的电压(或电流)也不是对称的,分析计算时,必须采用三相电路模型,一起计算。在三相等值电路中三相变压器模型不仅要考虑变压器变比和等值阻抗,还要考虑变压器的原边绕组和副边绕组的接线和组别。
变压器三相模型的建立方法有对称分量法和关联矩阵法两种方法。如果变压器三相参数对称,采用对称分量法比较方便;如果变压器三相参数不对称,三序不能解耦,采用对称分量法就很困难了。关联矩阵法推导变压器三相模型则与变压器三相参数是否对称无关,且推导过程简洁方便,利于程序实现,现有基于关联矩阵法的变压器三相模型建立方法如下:
变压器三相模型如图1所示,其中励磁回路的消耗功率变化不大,可以与负荷的功率合并,统一考虑。因此变压器三相建模一般不包含励磁回路的参数GT,仅考虑串联导纳YT的建模。
三相变压器通常有一个公共铁芯,因而各绕组之间相互耦合。三相变压器三相绕组支路的电压向量Ub和电流向量Ib之间的关系可以通过三相变压器的原始导纳矩阵来描述,如下式:
Ib=YpUb (1)
式中,是变压器绕组支路电流列向量,是变压器绕组支路电压列向量,下标1、2、3表示原边绕组,下标4、5、6表示副边绕组,Yp是三相变压器的原始导纳矩阵,表示为:
式中,三相变压器的每相等值导纳为:
y=1/z=1/(r+jx) (3)
式中,z、r和x分别为三相变压器每相绕组的等值阻抗、等值电阻和等值漏抗。
考虑如图2所示的三相变压器非标准变比的模型,三相变压器的原始导纳矩阵Yp表示为:
式中,α0是原边绕组的非标准变比,为原边绕组额定电压与原边相电压基准值之比,β0是副边绕组的非标准变比,为副边绕组额定电压与副边相电压基准值之比。
在实际配电网络中,三相变压器的等效星形连接的非标准变比是已知的,它与三相变压器绕组非标准变比的关系如下:
原边为星形(中性点接地或不接地)连接时,为:
α0=α (5)
式中,α是三相变压器的原边等效星形连接的非标准变比,为原边相电压额定值与原边相电压基准值之比。
原边为三角形连接时,为:
副边为星形(中性点接地或不接地)连接时,为:
β0=β (7)
式中,β是三相变压器的副边等效星形连接的非标准变比,为副边相电压额定值与副边相电压基准值之比。
副边为三角形连接时,为:
潮流计算使用的是节点电压Un和节点注入功率(或注入电流In),是反映三相变压器各端点的节点电压Un和节点注入电流In之间关系。
In=YTnUn (9)
式中,是三相变压器各端点的节点电流列向量,是三相变压器各端点的节点电压列向量,下标A、B、C表示原边绕组所连接的节点,下标a、b、c表示副边绕组所连接的节点,YTn是三相变压器的节点导纳矩阵。
式(1)中三相变压器导纳矩阵Yp是反映三相变压器内部三相支路电压Ub和支路电流Ib之间关系的导纳矩阵,通过Yp和三相变压器连接关系可以推导出反映三相变压器各端点的节点电压Un和节点注入电流In之间关系的节点导纳矩阵YTn
设三相变压器支路电压Ub与节点电压Un之间关系为:
Ub=CUn (10)
式中,C为支路电压Ub与节点电压Un的关联矩阵,称为电压关联矩阵。
考虑到通常情况下支路电流Ib与节点电流In的电流关联矩阵G为电压关联矩阵C的转置。因此,可以由原始导纳矩阵求出节点导纳矩阵,为:
YTn=CTYpC (11)
式中,上标T表示矩阵的转置。
如图3所示的Dyn11接线的三相变压器等值电路为例推导三相变压器的节点导纳矩阵。
Dyn11接线的三相变压器关联矩阵C为:
Dyn11接线变压器的原边为三角形连接,有副边为中性点接地的星形连接,有β0=β。把变压器变比代入式(4),得变压器原始导纳矩阵Yp为:
由式(11)得到三相变压器的节点导纳矩阵YTn为:
三相变压器连接有96种组合,常见有十几种。可以证明同一连接组别的三相变压器的节点导纳矩阵是相同的,变压器原副边接线方式有YNyn、YNy、YNd、Yyn、Yy、Yd、Dyn、Dy、Dd共9种组合,每种组合又有6种组别标号,合计共有54种连接组别,也很多。编制配电网三相潮流计算程序,必须考虑所有这些组合,写出各自的关联矩阵,把这54种组合的模型推导出来,即把这些组合的变压器节点导纳矩阵的公式写出来。如此多种类的变压器三相模型都采用手工推导,比较繁琐,且容易出错。相关文献只给出一部分典型连接组别的三相变压器节点导纳矩阵,且多有错误。为了设计完善的配电网三相潮流计算程序,需要程序编写者自己手工一一推导这些连接组别的变压器的三相模型,非常不便,也很难保证所推导的变压器三相模型的准确性。因此,中国专利CN201610579878.4提出一种配电三相变压器三相模型自动生成方法,可以充分利用Matlab特有的擅长矩阵运算和复数运算的特点,利用符号运算自动推导出三相变压器的节点导纳矩阵模型,解决了手工推导配电三相变压器三相模型费时费力的问题,提高了求取三相变压器三相模型的效率。但该方法导出三相变压器的节点导纳矩阵模型时所使用的关联矩阵较多,比较复杂,编程时容易出错,仍有待进一步优化和简化建模流程。另外,采用传统的关联矩阵法也无法直接推导出变压器原副边绕组采用中性点不接地星形接线的三相变压器的节点导纳矩阵。
发明内容
为解决现有技术存在的上述问题,本发明要提出基于转换矩阵的变压器三相模型建立方法,以便进一步优化和简化建模流程,使得三相变压器三相模型的建模流程更加简洁,提高编程的效率和正确性。
本发明的技术方案如下:基于转换矩阵的变压器三相模型建立方法,建立变压器原副边相同连接方式下不同组别的变压器变换矩阵的联系,由一个基本电气量变换矩阵与转换矩阵运算直接写出同一连接方式下不同组别变压器的变换矩阵,然后推导出变压器三相模型。
定义原边时钟和副边时钟如下:假设三相变压器原边绕组按AX、BY、CZ顺序排列并设正极性在首端A、B、C侧,则定义原边采用星形接线时的变压器连接组别标号为副边时钟。如连接组别为Yd1的变压器的副边时钟为1。上述假设条件下,如果原边绕组的端子X、端子Y和端子Z连在一起成星形连接,则定义原边时钟为0;如果原边采用三角形连接,端子A与端子Z、端子B与端子X、端子C与端子Y分别连接,则定义原边时钟为1。变压器组别标号为变压器副边时钟与原边时钟之差,变压器副边时钟为变压器组别标号与原边时钟之和,如得到的变压器副边时钟大于或等于12,则减去12作为副边时钟。如果原边接线相同的两种连接组别的副边时钟相差6,则该两种连接组别的副边绕组支路电压反相,这里称这两个副边时钟互为反相时钟,如时钟0与时钟6、时钟3与时钟9。
为分析方便起见,设变压器原边绕组采用如图4所示的中性点接地星形连接、中性点不接地星形连接或三角形连接,原边时钟分别为0、0或1,对应的电压关联矩阵分别为:
式中,CYN为原边绕组采用时钟为0的接地星形接线时的电压变换矩阵,CY为原边绕组采用时钟为0的不接地星形接线时的电压变换矩阵,CD为原边绕组采用时钟为1的三角形接线时的电压变换矩阵。
副边绕组采用时钟为0的接地星形接线、时钟为0的不接地星形接线、时钟为1的三角形接线时的副边电压变换矩阵也为式(15)-(17)。
下面根据图5讨论YNd接线时,变压器原副边相同接线方式下不同连接组别变压器的副边关联矩阵的特点。
如图5所示,变压器采用YNd接线且原边时钟为0的中性点接地星形接线时,原边绕组的电压关联矩阵Cp=CYN。YNd接线的变压器组别标号可以为1、3、5、7、9、11。YNd1接线变压器的副边电压关联矩阵Cs1=CD
YNd1接线变压器副边绕组支路电压与节点电压的关系式为:
式中,Cs1的下标1为变压器副边时钟,YNd接线变压器的组别标号与变压器副边时钟相同。
YNd1接线变压器的副边三相绕组4、5、6的正极性分别接电网的a、b、c相,而YNd5接线变压器的副边三相绕组4、5、6的正极性则分别接电网的c、a、b相,但变压器内部接线是相同的。因此YNd5接线变压器的副边绕组支路电压与节点电压的关系式为:
电压向量与电压向量的关系为:
式中,T为转换矩阵。
式(20)代入式(19),得:
由式(21)得YNd5接线变压器的副边电压关联矩阵为:
式(22)与由图5(c)根据接线方式所得的YNd5变压器的副边关联矩阵相同。
YNd9接线变压器的副边三相绕组4、5、6的正极性分别接电网的b、c、a相,因此YNd9接线变压器的副边绕组支路电压与节点电压的关系式为:
电压向量转换到电压向量的转换矩阵仍为T,因此,得:
由式(24)得YNd9接线变压器的副边电压变换矩阵为:
式(25)与由图5(e)根据接线方式所得的YNd9变压器的副边关联矩阵相同。
YNd7接线变压器的副边三相绕组4、5、6的负极性分别接电网的a、b、c相,其支路电压与YNd1接线变压器的支路电压反相,因此副边时钟为7的副边关联矩阵为其反相时钟副边关联矩阵的相反数,即Cs7=-Cs1。同理有Cs11=-Cs5,Cs3=-Cs9
副边时钟为奇数时的关联矩阵关系为:Cs5=Cs1T,Cs9=Cs1T2,Cs7=-Cs1,Cs11=-Cs5,Cs3=-Cs9。这样,只需要设定Cs1,其他组别标号的副边关联矩阵都可以由Cs1得到,减少了需要设置的副边关联矩阵的个数。
同理副边时钟为偶数时的关联矩阵关系为:Cs4=Cs0T,Cs8=Cs0T2,Cs6=-Cs0,Cs10=-Cs4,Cs2=-Cs8
综合上述两种情况,各副边时钟的关联矩阵为:
Csk=sCssTq k=0,…,11 (26)
式中,当副边时钟为偶数时,Css为Cs0,当副边时钟为奇数时,Css为Cs1;系数s和指数q分别由式(27)和式(28)求得:
式中,mod为Matlab求余函数,得到k除以4后的余数,k为副边时钟。
式中,floor为Matlab向下取整函数,得到k除以4后的整数部分。
应用传统的关联矩阵法可以推导出原副边接线为YNyn、YNd、Dyn、Dd的各组别三相变压器的节点导纳矩阵。其中电压关联矩阵具有以下形式:
式中,O为3×3阶零矩阵。
原副边接线为YNy、Yy、Yyn、Yd、Dy的三相变压器的节点导纳矩阵则无法直接由关联矩阵法推导出来。本发明用电气量变换矩阵法推导这5种变压器的节点导纳矩阵。电气量变换矩阵反映两个电气量的变换关系,包括电压变换矩阵和电流变换矩阵,关联矩阵可以看作变换矩阵的特例。关联矩阵的元素仅有0、1、-1,变换矩阵的元素可以为任何实数。下面推出这几种情况的电气量变换矩阵。
(1)Dy接线的变压器和Yd接线的变压器
如果图3所示的Dyn11接线的变压器副边中性点不接地就是Dy11接线的变压器,参考图3所示等值电路推导接线为Dy11的三相变压器的电气量变换矩阵。
Dy11接线的三相变压器副边的中性点电压不为0,设考虑了副边中性点电压的电压关联矩阵为C′,则变压器绕组支路电压与节点电压的关系式为:
由式(30)得到为:
根据对称分量法,可知Dy接线的三相变压器的副边绕组中无零序电压,副边绕组电压之和为0,由式(31)得:
式(32)代入式(30),得:
式(33)中C已不在是电压关联矩阵,称为电压变换矩阵,由于电压变换矩阵与电压关联矩阵有许多相同的性质且电压关联矩阵可以看作电压变换矩阵的特例,故仍用C表示电压变换矩阵。Dy11接线的三相变压器的电压变换矩阵C为:
考虑到不接地星形接线的三相电流之和为0的约束条件,可以推导出Dy11接线三相变压器的电流变换矩阵为电压变换矩阵的转置。
同理可以推导出Yd1接线的三相变压器的电压变换矩阵为:
Yd1接线的三相变压器的电流变换矩阵也是电压变换矩阵的转置。
(2)Yy接线的变压器
以如图6所示的Yy0接线的三相变压器等值电路为例推导接线为Yy的三相变压器的电气量变换矩阵。
Yy0接线的三相变压器的原副边的中性点电压都不为0,设考虑了原边中性点电压和副边中性点电压的电压关联矩阵为C′,则变压器绕组支路电压与节点电压的关系式为:
由式(36)得到为:
根据对称分量法,可知Yy0接线的三相变压器的原副边绕组中均无零序电压,原边绕组电压之和及副边绕组电压之和都为0,由式(37)得:
式(38)代入式(36),得:
由式(39)得,Yy0接线三相变压器的电压变换矩阵C为:
考虑不接地星形接线的三相电流之和为0的约束条件,可以推导出Yy0接线三相变压器的电流变换矩阵为电压变换矩阵的转置。
(3)YNy接线的变压器和Yyn接线的变压器
如果图6所示的Yy0接线的变压器原边中性点接地就是YNy0接线的变压器,参考图6所示的等值电路推导YNy0接线的三相变压器的电气量变换矩阵。
YNy0接线的三相变压器的副边中性点电压不为0,设考虑了副边中性点电压的关联矩阵为C′,则变压器绕组支路电压与节点电压的关系式为:
由式(41)得到为:
根据对称分量法,可知YNy接线的三相变压器的原边有零序通路,如果原边节点电压包含零序电压,则有零序电流流过励磁回路,会在变压器原副边绕组内产生零序电压,原副边绕组电压之和都不为0。YNy接线变压器原副边绕组支路电压存在以下关系:
由式(41)得:
式(43)和式(44)代入式(42),得:
式(45)代入式(41),得:
由式(46)得电压变换矩阵C为:
考虑到不接地星形接线的三相电流之和为0的约束条件,YNy0接线三相变压器的电流变换矩阵为:
对于YNy接线的三相变压器,电流变换矩阵仍为分块对角矩阵,电压变换矩阵则不是分块对角矩阵,电压变换矩阵具有以下形式:
以如图7所示的Yyn0接线和Yyn6接线的三相变压器等值电路为例推导Yyn接线的三相变压器的电气量变换矩阵。
Yyn0接线的三相变压器的原边中性点电压不为0,设考虑了原边中性点电压的电压关联矩阵为C′,则变压器绕组支路电压与节点电压的关系式为:
由式(50)得到为:
根据对称分量法,可知Yyn接线的三相变压器的副边有零序通路,如果副边节点电压包含零序电压,则有零序电流流过励磁回路,会在变压器原副边绕组内产生零序电压,原副边绕组电压之和都不为0。Yyn接线变压器原副边绕组支路电压存在以下关系:
由式(50)得:
式(52)和式(53)代入式(51),得:
式(54)代入式(50),得:
由式(55)得电压变换矩阵C为:
考虑到不接地星形接线的三相电流之和为0的约束条件,Yyn0接线三相变压器的电流变换矩阵为:
Yyn6接线的三相变压器的原边中性点电压不为0,设考虑了原边中性点电压的电压关联矩阵为C',则变压器绕组支路电压与节点电压的关系式为:
Yyn6接线的三相变压器的原边中性点电压和原副边绕组支路电压关系也分别为式(51)和式(52),由式(58)得:
式(52)和式(59)代入式(51),得:
式(60)代入式(58),得:
由式(61)得电压变换矩阵C为:
考虑到不接地星形接线的三相电流之和为0的约束条件,Yyn6接线三相变压器的电流变换矩阵为:
对于Yyn接线的三相变压器,电流变换矩阵仍为分块对角矩阵,电压变换矩阵则不是分块对角矩阵,电压变换矩阵具有以下形式:
式(64)中Cps的矩阵元素,当Yyn接线且副边时钟为0、4、8时,为正值;当Yyn接线且副边时钟为2、6、10时,为负值;其他情况为零。
由原始导纳矩阵Yp和变换矩阵C和G推导三相变压器节点导纳矩阵YTn为:
YTn=GYpC (65)
对所有类型接线的三相变压器,电流变换矩阵都是分块对角矩阵,电压变换矩阵则不全是分块对角矩阵,电压变换矩阵写成统一形式如下:
电流变换矩阵为:
对于相同的变压器原副边接线方式,式(60)中Cp、Csp都相同,Cps、Cs则与接线组别标号有关。同副边电压关联矩阵特点类似,相同原副边接线方式下不同组别标号的变压器的副边电压变换矩阵Cs是相互联系的,Cps则仅存在正负号的区别。这样,只需要设定一个基本的副边电压变换矩阵Cs0,其他组别标号的副边电压变换矩阵都可以由Cs0得到,减少了需要设置的副边电压变换矩阵的个数。
基于转换矩阵的变压器三相模型建立方法,包括以下步骤:
A、读变压器原边绕组连接方式k1、副边绕组连接方式k2、变压器连接组别标号k3,设置原边变比变量α与副边变比变量β。
三相变压器的原边绕组接线方式k1有YN、Y、D三种,副边绕组接线方式k2有yn、y、d三种。变压器连接组别标号k3与原副边接线组合有关,原副边接线为YNyn、YNy、Yyn、Yy、Dd五种接线组合时k3为0、2、4、6、8、10;原副边接线为YNd、Yd、Dyn、Dy四种接线组合时k3为1、3、5、7、9、11。α是三相变压器的原边等效星形连接的非标准变比,为原边相电压额定值与原边相电压基准值之比,β是三相变压器的副边等效星形连接的非标准变比,为副边相电压额定值与副边相电压基准值之比。
B、建立反映三相变压器绕组支路电压与节点电压关系的电压变换矩阵(15)-(17)及一个常数矩阵。
一个常量矩阵为:
C、建立式(4)所示的三相变压器的原始导纳矩阵Yp,并根据三相变压器的原副边绕组连接方式按式(5)-(8)修改Yp阵的变比。
D、设Cps0、Csp为3×3阶矩阵,并初始化为零矩阵;
E、判断是否满足k1为Y且k2为yn,如果不满足转至步骤G;
F、令Cps0=(α/β)P,转至步骤I;
G、判断是否满足k1为YN且k2为y,如果不满足转至步骤I;
H、令Csp=(β/α)P;
I、判断k1是否为YN,如果不满足转至步骤K;
J、令Cp=CYN、p=0,转至步骤N;
K、判断k1是否为Y,如果不满足转至步骤M;
L、令Cp=CY、p=0,转至步骤N;
M、Cp=CD、p=1;
N、判断k2是否为yn,如果不满足转至步骤P;
O、令Cs0=CYN,转至步骤S;
P、判断k2是否为y,如果不满足转至步骤R;
Q、令Cs0=CY,转至步骤S;
R、Cs0=CD
S、根据变压器连接组别标号k3和原边时钟p确定副边时钟k为
k=mod(k3+p,12) (69)
式中,mod为Matlab求余函数,得到k3+p除以12后的余数。
T、根据k确定变压器副边的电压变换矩阵Cs及Cps
确定变压器副边的电压变换矩阵Cs及Cps的步骤如下:
T1、令
T2、读变压器副边时钟k;
T3、令m=mod(k,4);
T4、判断是否满足m>1,如果不满足则令s=1后转至步骤T9;
T5、令s=-1;
T6、判断是否满足k<6,如果不满足转至步骤T8;
T7、令q=floor((k+6)/4),转至步骤T10;
T8、令q=floor((k-6)/4),转至步骤T10;
T9、令q=floor(k/4);
T10、令Cs=sCs0Aq,Cps=sCps0
U、根据变压器电压变换矩阵各子矩阵按式(66)和式(67)形成变压器的电压变换矩阵C和电流变换矩阵G;
V、根据原始导纳矩阵Yp和变换矩阵按式(65)由符号运算推导三相变压器节点导纳矩阵YTn
与现有技术相比,本发明具有以下有益效果:
1、本发明提出的基于转换矩阵的变压器三相模型建立方法,解决了关联矩阵法不适用于某些连接组别变压器的节点导纳矩阵的求取问题。本发明推导出了相同原副边接线方式下不同组别标号的变压器的电气量变换矩阵是相互联系的,可以通过转换矩阵从一个基本副边电压变换矩阵得到相同原边连接方式下各连接组别的副边电压变换矩阵,减少了需要设置的电气量变换矩阵的个数;提出并利用变压器原副边时钟的概念,进一步简化软件编写的工作量并减少出错的概率,提高了求取三相变压器三相模型的准确性。
2、本发明利用Matlab的符号运算自动推导变压器的节点导纳矩阵模型,保证推导结果的正确性,解决了手工推导配电三相变压器三相模型费事费力且容易出错的问题,提高了求取三相变压器三相模型的效率。
附图说明
本发明共有附图9张,其中:
图1是三相变压器三相模型图。
图2是考虑三相变压器非标准变比的单相模型图。
图3是Dyn11接线的三相变压器等值电路图。
图4是定义变压器原边时钟的接线图。
图5是不同组别YNd接线的三相变压器等值电路图。
图6是Yy0接线的三相变压器等值电路图。
图7是Yyn0接线和Yyn6接线的三相变压器等值电路图。
图8是本发明的主流程图。
图9是本发明形成变压器副边电压变换矩阵流程图。
具体实施方式
下面结合附图以Yyn0和Yyn6接线的三相变压器为例进一步说明本发明的变压器三相模型推导过程。
(1)Yyn0接线的变压器三相模型推导
根据图8和图9所示的基于转换矩阵的变压器三相模型建立方法求取图7(a)所示的Yyn0接线的变压器三相模型。输入变压器原边连接方式k1为Y,变比为α;副边绕组连接方式k2为yn,变比为β;变压器连接组别标号k3为0。
运行结果得到Yyn0接线的三相变压器的电压变换矩阵和电流变换矩阵分别为:
得到三相变压器的节点导纳矩阵YTn为:
式中,y为三相变压器的每相等值导纳。
(2)Yyn6接线的变压器三相模型推导
对于图7(b)所示的Yyn6接线的变压器,输入变压器原边连接方式k1为Y,变比为α;副边绕组连接方式k2为yn,变比为β;变压器连接组别标号k3为6。
运行结果得到Yyn6接线的三相变压器的电压变换矩阵和电流变换矩阵分别为:
得到三相变压器的节点导纳矩阵YTn为:
本发明可以在任何具有符号运算功能的MATLAB编程语言实现,但建议使用较新版本的MATLAB语言。

Claims (1)

1.基于转换矩阵的变压器三相模型建立方法,其特征在于:包括以下步骤:
A、读变压器原边绕组连接方式k1、副边绕组连接方式k2、变压器连接组别标号k3,设置原边变比变量α与副边变比变量β;
三相变压器的原边绕组接线方式k1有YN、Y、D三种,符号YN、Y、D分别表示原边绕组的中性点接地星形连接、中性点不接地星形连接和三角形连接;副边绕组接线方式k2有yn、y、d三种,符号yn、y、d分别表示副边绕组的中性点接地星形连接、中性点不接地星形连接和三角形连接;变压器连接组别标号k3与原副边接线组合有关,原副边接线为YNyn、YNy、Yyn、Yy、Dd五种接线组合时k3为0、2、4、6、8、10;原副边接线为YNd、Yd、Dyn、Dy四种接线组合时k3为1、3、5、7、9、11;α是三相变压器的原边等效星形连接的非标准变比,为原边相电压额定值与原边相电压基准值之比,β是三相变压器的副边等效星形连接的非标准变比,为副边相电压额定值与副边相电压基准值之比;
B、建立反映三相变压器绕组支路电压与节点电压关系的电压变换矩阵及一个常数矩阵;
电压变换矩阵分别为:
式中,CYN为原/副边绕组采用时钟为0的接地星形接线时的电压变换矩阵,CY为原/副边绕组采用时钟为0的不接地星形接线时的电压变换矩阵,CD为原/副边绕组采用时钟为1的三角形接线时的电压变换矩阵;
原边时钟和副边时钟的定义如下:假设三相变压器原边绕组按AX、BY、CZ顺序排列并设正极性在首端A、B、C侧,则定义原边采用星形接线时的变压器连接组别标号为副边时钟;如连接组别为Yd1的变压器的副边时钟为1;上述假设条件下,如果原边绕组的端子X、端子Y和端子Z连在一起成星形连接,则定义原边时钟为0;如果原边采用三角形连接,端子A与端子Z、端子B与端子X、端子C与端子Y分别连接,则定义原边时钟为1;变压器组别标号为变压器副边时钟与原边时钟之差,变压器副边时钟为变压器组别标号与原边时钟之和,如得到的变压器副边时钟大于或等于12,则减去12作为副边时钟;
一个常量矩阵为:
C、建立三相变压器的原始导纳矩阵Yp,并根据三相变压器的原副边绕组连接方式按式(7)-(10)修改Yp阵的变比;
式中,α0是原边绕组的非标准变比,为原边绕组额定电压与原边相电压基准值之比,β0是副边绕组的非标准变比,为副边绕组额定电压与副边相电压基准值之比,y为三相变压器的每相等值导纳,其表达式为:
y=1/z=1/(r+jx) (6)
式中,z、r和x分别为三相变压器每相绕组的等值阻抗、等值电阻和等值漏抗;
在实际配电网络中,三相变压器的等效星形连接的非标准变比是已知的,它与三相变压器绕组非标准变比的关系如下:
原边为星形(中性点接地或不接地)连接时,为:
α0=α (7)
式中,α是三相变压器的原边等效星形连接的非标准变比,为原边相电压额定值与原边相电压基准值之比;
原边为三角形连接时,为:
副边为星形(中性点接地或不接地)连接时,为:
β0=β (9)
式中,β是三相变压器的副边等效星形连接的非标准变比,为副边相电压额定值与副边相电压基准值之比;
副边为三角形连接时,为:
D、设Cps0、Csp为3×3阶矩阵,并初始化为零矩阵;
E、判断是否满足k1为Y且k2为yn,如果不满足转至步骤G;
F、令Cps0=(α/β)P,转至步骤I;
G、判断是否满足k1为YN且k2为y,如果不满足转至步骤I;
H、令Csp=(β/α)P;
I、判断k1是否为YN,如果不满足转至步骤K;
J、令Cp=CYN、p=0,转至步骤N;
K、判断k1是否为Y,如果不满足转至步骤M;
L、令Cp=CY、p=0,转至步骤N;
M、Cp=CD、p=1;
N、判断k2是否为yn,如果不满足转至步骤P;
O、令Cs0=CYN,转至步骤S;
P、判断k2是否为y,如果不满足转至步骤R;
Q、令Cs0=CY,转至步骤S;
R、Cs0=CD
S、根据变压器连接组别标号k3和原边时钟p确定副边时钟k为
k=mod(k3+p,12) (11)
式中,mod为Matlab求余函数,得到k3+p除以12后的余数;
T、根据k确定变压器副边的电压变换矩阵Cs及Cps
确定变压器副边的电压变换矩阵Cs及Cps的步骤如下:
T1、令
T2、读变压器副边时钟k;
T3、令m=mod(k,4);
T4、判断是否满足m>1,如果不满足则令s=1后转至步骤T9;
T5、令s=-1;
T6、判断是否满足k<6,如果不满足转至步骤T8;
T7、令q=floor((k+6)/4),转至步骤T10;
T8、令q=floor((k-6)/4),转至步骤T10;
T9、由式(12)求q;
q=floor(k/4) (12)
式中,floor为Matlab向下取整函数,得到k除以4后的整数部分;
T10、令Cs=sCs0Aq,Cps=sCps0
U、根据变压器电压变换矩阵各子矩阵按式(13)和式(14)形成变压器的电压变换矩阵C和电流变换矩阵G;
式中,O为3×3阶零矩阵,上标T表示矩阵的转置;
V、根据原始导纳矩阵Yp和变换矩阵按式(15)由符号运算推导三相变压器节点导纳矩阵YTn
YTn=GYpC (15)
结束。
CN201810354603.XA 2018-04-19 2018-04-19 基于转换矩阵的变压器三相模型建立方法 Active CN108595819B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810354603.XA CN108595819B (zh) 2018-04-19 2018-04-19 基于转换矩阵的变压器三相模型建立方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810354603.XA CN108595819B (zh) 2018-04-19 2018-04-19 基于转换矩阵的变压器三相模型建立方法

Publications (2)

Publication Number Publication Date
CN108595819A true CN108595819A (zh) 2018-09-28
CN108595819B CN108595819B (zh) 2020-03-31

Family

ID=63613997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810354603.XA Active CN108595819B (zh) 2018-04-19 2018-04-19 基于转换矩阵的变压器三相模型建立方法

Country Status (1)

Country Link
CN (1) CN108595819B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111324997A (zh) * 2020-01-21 2020-06-23 大连海事大学 基于计及中性点的关联矩阵的变压器三相模型建立方法
CN112380638A (zh) * 2020-10-21 2021-02-19 云南电网有限责任公司临沧供电局 一种用于低压侧脉冲注入的变压器模型及构建方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102842908A (zh) * 2012-09-11 2012-12-26 河海大学 含多变压器支路的配电网三相解耦潮流计算方法
US20130226482A1 (en) * 2012-02-24 2013-08-29 Hongbo Sun Decoupled Three-Phase Power Flow Analysis Method for Unbalanced Power Distribution Systems
CN104331544A (zh) * 2014-10-20 2015-02-04 国家电网公司 一种基于eic原理的三相三柱变压器建模方法
CN106202791A (zh) * 2016-07-21 2016-12-07 大连海事大学 基于Matlab的变压器三相模型可视化自动生成方法
CN106227936A (zh) * 2016-07-21 2016-12-14 大连海事大学 一种配电三相变压器三相模型自动生成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130226482A1 (en) * 2012-02-24 2013-08-29 Hongbo Sun Decoupled Three-Phase Power Flow Analysis Method for Unbalanced Power Distribution Systems
CN102842908A (zh) * 2012-09-11 2012-12-26 河海大学 含多变压器支路的配电网三相解耦潮流计算方法
CN104331544A (zh) * 2014-10-20 2015-02-04 国家电网公司 一种基于eic原理的三相三柱变压器建模方法
CN106202791A (zh) * 2016-07-21 2016-12-07 大连海事大学 基于Matlab的变压器三相模型可视化自动生成方法
CN106227936A (zh) * 2016-07-21 2016-12-14 大连海事大学 一种配电三相变压器三相模型自动生成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUI HUANG ET AL.: "Modeling and control of a cascaded multilevel converter-based electronic power transformer", 《IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING》 *
JIE TIAN ET AL.: "Analysis and control of electronic power transformer with star-configuration under unbalanced conditions", 《 IET ELECTRIC POWER APPLICATIONS》 *
张力元: "配电网三相潮流使用的变压器模型实用化研究", 《万方数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111324997A (zh) * 2020-01-21 2020-06-23 大连海事大学 基于计及中性点的关联矩阵的变压器三相模型建立方法
CN111324997B (zh) * 2020-01-21 2022-09-09 大连海事大学 基于计及中性点的关联矩阵的变压器三相模型建立方法
CN112380638A (zh) * 2020-10-21 2021-02-19 云南电网有限责任公司临沧供电局 一种用于低压侧脉冲注入的变压器模型及构建方法

Also Published As

Publication number Publication date
CN108595819B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
Ambriz-Perez et al. Advanced SVC models for Newton-Raphson load flow and Newton optimal power flow studies
CN102567603B (zh) 基于实测拓扑和量测数据自动生成bpa计算文件的方法
CN107464048B (zh) 一种基于研究态的日前计划安全校核方法
CN105388392B (zh) 基于视在阻抗辨识的直流配电电缆单端在线故障定位方法
CN102832618A (zh) 基于输配网结合的配电网合环冲击电流计算实用化方法
CN103278686B (zh) 一种谐波分析滤波系统及智能选择谐波检测方法
CN108595819A (zh) 基于转换矩阵的变压器三相模型建立方法
CN109494719A (zh) 一种中低压混合配电网层次化阻抗分析方法
CN104298834B (zh) 基于面向对象技术的直流系统建模方法及故障仿真方法
CN106202791B (zh) 基于Matlab的变压器三相模型可视化自动生成方法
CN106097156A (zh) 配电网线损计算方法和系统
CN106227936B (zh) 一种配电三相变压器三相模型自动生成方法
CN108462182B (zh) 一种基于电气量变换矩阵的变压器三相模型建立方法
CN111324997B (zh) 基于计及中性点的关联矩阵的变压器三相模型建立方法
CN108565866A (zh) 一种基于统一转换矩阵的变压器三相模型建立方法
Kocar et al. General and simplified computation of fault flow and contribution of distributed sources in unbalanced distribution networks
CN104881566A (zh) 一种用于电网不对称潮流计算的变压器三相建模方法
CN105977958A (zh) 基于网络分裂法的双边交易网损分摊方法
Geth et al. Real-value power-voltage formulations of, and bounds for, three-wire unbalanced optimal power flow
CN110208634B (zh) 一种复杂电力系统不对称短路电流直流分量获取方法
CN105322541B (zh) 一种变电站仿真潮流计算方法
CN205960648U (zh) 一种链式静止同步补偿器控制系统
CN108900138A (zh) 一种多相电机缺相故障下坐标变换矩阵的构造方法
CN106059586A (zh) 采样装置
CN106356860B (zh) 一种配电系统三相潮流计算的电压初值设置方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220117

Address after: 116026 No. 1, Ling Hai Road, Liaoning, Dalian

Patentee after: Dalian Maritime University

Patentee after: Shanghai Shipping Research Institute Co., Ltd

Address before: 116026 1 Linghai Road, hi tech park, Dalian, Liaoning

Patentee before: Dalian Maritime University

TR01 Transfer of patent right