CN108588533A - 一种CVD涂层用Ti(C,N)基金属陶瓷基体材料及其制备方法 - Google Patents

一种CVD涂层用Ti(C,N)基金属陶瓷基体材料及其制备方法 Download PDF

Info

Publication number
CN108588533A
CN108588533A CN201810462009.2A CN201810462009A CN108588533A CN 108588533 A CN108588533 A CN 108588533A CN 201810462009 A CN201810462009 A CN 201810462009A CN 108588533 A CN108588533 A CN 108588533A
Authority
CN
China
Prior art keywords
graphene
sintering
based ceramic
ceramic metal
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810462009.2A
Other languages
English (en)
Other versions
CN108588533B (zh
Inventor
杨天恩
熊计
时然
倪磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201810462009.2A priority Critical patent/CN108588533B/zh
Publication of CN108588533A publication Critical patent/CN108588533A/zh
Application granted granted Critical
Publication of CN108588533B publication Critical patent/CN108588533B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种CVD涂层用Ti(C,N)基金属陶瓷基体材料及其制备方法,其中,通过在Ti(C,N)基金属陶瓷中添加石墨烯,利用石墨烯的碳单质属性提高Ti(C,N)基金属陶瓷作为CVD涂层基体时的抗脱碳能力,并且,只加入少量的石墨烯即可提高Ti(C,N)基金属陶瓷作为CVD涂层基体时的抗脱碳能力;同时,利用石墨烯超高的杨氏模量与本征强度提高基体材料的横向断裂强度和硬度,阻碍涂层裂纹的扩展;并且,所述制备方法在真空预烧结以及低压终烧结过程中,严格控制升温速率,进一步提高了材料的性能。

Description

一种CVD涂层用Ti(C,N)基金属陶瓷基体材料及其制备方法
技术领域
本发明涉及一种金属陶瓷材料及其制备方法,特别是CVD 涂层用Ti(C,N)基金属陶瓷基体材料及其制备方法,属于金属陶 瓷材料领域。
背景技术
Ti(C,N)基金属陶瓷的涂层主要包括化学气相沉积 (Chemical vapordeposition,简称CVD)和物理气相沉积(Physical vapor deposition,简称PVD)两种方式。CVD涂层相比PVD涂层 具有涂层源的制备相对容易、涂层材料种类多、基体结合强度 高、耐磨性能好等优点。
但是,CVD涂层沉积温度高,通常在1000℃左右。一方面, 高温下容易造成基体表面脱碳,在涂层与基体之间易产生一层 脆性的脱碳相,比如CVD涂覆TiC涂层,在1000℃时,发生如 下的反应:
TiCl4+CH4+H2=TiC+4HCl+H2
化学反应过程中生成的TiC沉积在基体的表层,然而,在 沉积TiC涂层过程中,伴随着如下反应的进行:
TiCl4+C+2H2=TiC+4HCl;
因此,反应的结果将导致涂层基体的表面脱碳,从而使涂 层与基体之间形成脱碳相(η相),脱碳相使得基体横向断裂强度 下降,这会引起涂层刀具脆性破裂;另外一方面,涂层材料通 常是陶瓷材料,例如TiC、TiN、TiCN、Al2O3等,由于涂层材 料和基体材料的热膨胀系数存在差异,在涂层从高温冷却过程 中,不可避免地会形成残余应力,对基体而言是拉应力,应力 集中处容易形成裂纹源和微裂纹。涂层刀具切削加工时,外力 作用诱发裂纹扩展,当应力超过金属陶瓷基体的断裂强度时, 就容易导致刀具崩刃失效。
发明内容
为了解决上述问题,本发明人进行了锐意研究,通过在 Ti(C,N)基金属陶瓷中添加微量石墨烯,利用石墨烯的碳单质属 性及石墨烯超高的杨氏模量(1020GPa)与本征强度(130GPa)提 高基体材料的表面碳含量及横向断裂强度,阻止涂层过程的脱 碳相形成和阻碍涂层裂纹扩展,从而完成本发明。
本发明一方面提供了一种CVD涂层用Ti(C,N)基金属陶瓷 基体材料,具体体现在以下几个方面:
(1)一种CVD涂层用Ti(C,N)基金属陶瓷基体材料,所述 材料由一种组合物制成,所述组合物包括Ti(C,N)、Co、Ni、 WC、Mo2C和石墨烯。
(2)根据上述(1)所述的CVD涂层用Ti(C,N)基金属陶瓷 基体材料,其中,所述组合物中组分的重量百分配比如下:
(3)根据上述(1)或(2)所述的CVD涂层用Ti(C,N)基 金属陶瓷基体材料,其中,所述组合物中组分的重量百分配比 如下:
(4)根据上述(1)至(3)之一所述的CVD涂层用Ti(C,N) 基金属陶瓷基体材料,其中,
在所述组合物中,Co的粒度为0.6~1.8μm,WC的粒度为 0.6~1.8μm,Mo2C的粒度为0.8~3.5μm,Ti(C,N)的粒度为0.8~4.0 μm;
优选地,在所述组合物中,Co的粒度为0.8~1.5μm,WC 的粒度为0.8~1.5μm,Mo2C的粒度为1.0~3.0μm,Ti(C,N)的粒 度为1.0~3.5μm。
(5)根据上述(1)至(4)之一所述的CVD涂层用Ti(C,N) 基金属陶瓷基体材料,其中,
所述石墨烯为改性石墨烯,优选为聚山梨酯-80改性石墨 烯;和/或
在Ti(C,N)粉末中,C原子与N原子的摩尔比为(6~8):3, 优选为7:3。
本发明另一方面提供本发明第一方面所述CVD涂层用 Ti(C,N)基金属陶瓷基体材料的制备方法,具体体现在以下几个 方面:
(6)上述(1)至(5)之一所述CVD涂层用Ti(C,N)基金 属陶瓷基体材料的制备方法,其中,所述方法包括以下步骤:
步骤1、石墨烯的预处理,得到改性石墨烯;
步骤2、生坯的压制;
步骤3、对步骤2得到的生坯进行真空预烧结;
步骤4、将步骤3真空预烧结后的金属陶瓷置于低压烧结炉 内,进行低压终烧结。
(7)根据上述(6)所述的制备方法,其中,步骤1包括以 下子步骤:
步骤1-1、将石墨烯加入有机溶剂中,得到石墨烯悬浊液;
步骤1-2、向石墨烯悬浊液中加入聚山梨酯-80;
步骤1-3、调pH值,进行超声分散,得到改性石墨烯。
(8)根据上述(6)或(7)所述的制备方法,其中,步骤 2包括以下子步骤:
步骤2-1、按重量百分比称取Co、Ni、WC、Mo2C、Ti(C,N) 粉和步骤1预处理后的改性石墨烯,加入球磨机中进行球磨;
步骤2-2、球磨结束后进行过滤、干燥,然后压制成生坯;
优选地,在步骤2-2的干燥后,加入SD橡胶成型剂,并再 次进行干燥;
更优选地,SD橡胶成型剂的加入量为7~16%。
(9)根据上述(6)至(8)之一所述的制备方法,其中, 步骤3包括以下子步骤:
步骤3-1、将生坯置于真空炉中,并以0.5~2.5℃/min(优选 0.8~2℃/min,更优选1~1.5℃/min)的速率升至400~700℃,保 温0.5~3h,然后于10~15Pa的真空下脱出成型剂;
步骤3-2、以2~6℃/min(优选2.5~5℃/min,更优选3~4.5℃ /min)的升温速率升至1150~1250℃,保温0.5~2h,然后于5~10Pa 的真空下完成固相阶段烧结;
步骤3-3、以1~5℃/min(优选1.5~4℃/min,更优选2~3℃ /min)的升温速率升至1280~1350℃,保温0.2~1h,然后于1~5Pa 的真空下完成液相阶段烧结。
(10)根据上述(6)至(9)之一所述的制备方法,其中, 所述低压终烧结如下进行:以2~8℃/min的速率升至 1350~1500℃,保温0.5~3h,然后于5~15Pa的保护性气氛(例如氩气气氛)下进行低压终烧结;
优选地,以3~6℃/min(例如4~5℃/min)的速率升至 1400~1450℃,保温1~2h,然后于5~10Pa的保护性气氛(例如 氩气气氛)下进行低压终烧结。
附图说明
图1示出实施例与对比例采用的石墨烯的微观形貌图;
图2示出实施例1~3以及对比例1~3得到的材料的微观组织 结构图;
图3示出实施例1~3以及对比例1~3得到的材料的断口组织 结构图。
具体实施方式
下面通过对本发明进行详细说明,本发明的特点和优点将 随着这些说明而变得更为清楚、明确。
本发明一方面提供了一种CVD涂层用Ti(C,N)基金属陶瓷 基体材料,所述材料由一种组合物制成,所述组合物包括 Ti(C,N)、Co、Ni、WC、Mo2C和石墨烯。
其中,在Ti(C,N)基金属陶瓷中添加石墨烯,利用石墨烯的 碳单质属性提高Ti(C,N)基金属陶瓷作为CVD涂层基体时的抗 脱碳能力,同时利用石墨烯超高的杨氏模量与本征强度提高基 体材料的横向断裂强度和硬度,阻碍涂层裂纹的扩展。
在现有技术中有涉及采用过渡族碳化物添加剂比如VC、 Cr3C2、TaC、NbC、WC、Mo2C、ZrC、HfC等可以提高强度, 但不能形成抗脱碳作用,而石墨烯的添加同时解决两类涂层问题。
另外,由于石墨烯非常细小,厚度在纳米级别,比表面积 大(石墨烯比表面积为2630m2/g,炭黑比表面积不到900m2/g, 碳纳米管比表面积为100~1000m2/g),表面能很高,溶解分散均 匀,对基体的割裂作用非常小,因此这种方式避免了直接添加 石墨或炭黑形成的石墨相(软相)从而引起基体强度下降的问 题。而且,添加游离态的石墨在烧结过程中会助长其周围的碳 化物晶粒长大,导致合金的晶粒不均匀,因此也避免了添加石 墨或炭黑导致的组织不均匀问题。
并且,石墨烯的本征强度为130GPa,显著高于碳纤维(2-7 GPa)或碳纳米管(63GPa),因此,对Ti(C,N)基金属陶瓷复合材 料强度的促进作用更显著。
根据本发明一种优选的实施方式,所述组合物中组分的重 量百分配比如下:
在进一步优选的实施方式中,所述组合物中组分的重量百 分配比如下:
其中,发明人经过大量实验发现,只加入少量的石墨烯即 可提高Ti(C,N)基金属陶瓷作为CVD涂层基体时的抗脱碳能力。 并且,优选石墨烯的加入量为0.5~1.0%,当小于0.3%或大于 1.3%时,其性能均不佳。
根据本发明一种优选的实施方式,在所述组合物中,Co的 粒度为0.6~1.8μm,WC的粒度为0.6~1.8μm,Mo2C的粒度为 0.8~3.5μm,Ti(C,N)的粒度为0.8~4.0μm。
在进一步优选的实施方式中,在所述组合物中,Co的粒度 为0.8~1.5μm,WC的粒度为0.8~1.5μm,Mo2C的粒度为1.0~3.0 μm,Ti(C,N)的粒度为1.0~3.5μm。
其中,在本发明中,所述原料采用微米级别即可,并且可 以得到性能优异的材料。但是,在现有技术中,很多是采用纳 米级别的原料,这样必然会增大成本。
根据本发明一种优选的实施方式,所述石墨烯为改性石墨 烯,优选为聚山梨酯-80改性石墨烯。
其中,选择聚山梨酯-80改性石墨烯可以促进石墨烯在原料 中的分散,得到性能均一的材料。
根据本发明一种优选的实施方式,在Ti(C,N)粉末中,C原 子与N原子的摩尔比为(6~8):3。
在进一步优选的实施方式中,在Ti(C,N)粉末中,C原子与 N原子的摩尔比为7:3。
这样,在Ti(C,N)粉末中,N的比例相对较低。其中,发明 人经过大量实验发现,Ti(C,N)中N比例越高,氮气平衡分压就 越大,Ti(C,N)的分解能力就越强,在烧结过程中,越容易产生 N2,烧结时内部大量气体逸出会导致金属陶瓷材料的孔隙增 加,进而导致机械性能下降,因此,在本发明中,采用C原子 与N原子的摩尔比为7:3。
同时,发明人经过实验发现:在同一制备条件下,采用C∶ N=3:7,得到的金属陶瓷孔隙度为A08B08;采用C∶N=5:5,得 到的金属陶瓷孔隙度为A06B04;采用C∶N=7:3,得到的金属 陶瓷孔隙度为A02B02。其中:A类孔代表小于或等于10μm的 孔隙,分为A02、A04、A06、A08等级别,分别对应表示孔隙 体积比为0.02%、0.06%、0.2%、0.6%;B类孔代表10-25μm的 孔隙,以B02、B04、B06、B08分别表示这类大小的孔隙的比 例为140个/cm2、430个/cm2、1300个/cm2、4000个/cm2
本发明另一方面提供了一种本发明第一方面所述CVD涂 层用Ti(C,N)基金属陶瓷基体材料的制备方法,其中,所述方法 包括以下步骤:
步骤1、石墨烯的预处理,得到改性石墨烯。
根据本发明一种优选的实施方式,步骤1包括以下子步骤:
步骤1-1、将石墨烯加入有机溶剂中,得到石墨烯悬浊液;
步骤1-2、向石墨烯悬浊液中加入聚山梨酯-80;
步骤1-3、调pH值,进行超声分散,得到改性石墨烯。
在进一步优选的实施方式中,在步骤1-1中,石墨烯悬浊液 的质量浓度为0.001~0.05wt%。
在更进一步优选的实施方式中,在步骤1-2中,聚山梨酯-80 的体积浓度为0.2~2vol%。
在更进一步优选的实施方式中,在步骤1-3中,调节pH值 到3.5~6或8.5~10.5。
其中,在上述pH值范围内,石墨烯胶体溶液的Zeta电位的 绝对值较大,石墨烯纳米片的分散稳定性较好。
Zeta电位是纳米颗粒在吸引异号离子时,在聚集、扩散处 的电位值。Zeta电位可直观的反映胶体溶液静电稳定的能力。 一般的,当Zeta电位的绝对值越大时,颗粒间的排斥力越大, 则胶体溶液越稳定;Zeta电位值越小,则溶液的稳定性越差。
发明人发现,在石墨烯的胶体溶液中,Zeta电位随着pH 值的增加由正变负,并在pH值约为3.5~6或者8.5~10.5两 个范围内,Zeta电位的分别是正值和负值较大的区间。此范围 内,溶液中颗粒间的静电作用强,排斥力大,颗粒不容易发生 再团聚,胶体溶液更加稳定。
因此,优选地,控制pH值约为3.5~6或者8.5~10.5, 发明人进一步发现,pH值在3.5~6区间内的绝对值更大些, 所以进一步优选地,pH值控制在3.5~6,更进一步优选地,pH值控制在4~5.5。
这样,经过对石墨烯的预处理,使其表面包覆一层聚山梨 酯-80分子膜,利于后期与其它原料的共混,即利用后期的分散。
根据本发明一种优选的实施方式,在步骤1-1中,所述有机 溶剂选自汽油和/或乙醇(优选无水乙醇)。
根据本发明一种优选的实施方式,在步骤1-3中,超声分散 10~80min。
在进一步优选的实施方式中,在步骤1-3中,超声分散20~60 min。
步骤2、生坯的压制。
根据本发明一种优选的实施方式,步骤2包括以下子步骤:
步骤2-1、按重量百分比称取Co、Ni、WC、Mo2C、Ti(C,N) 粉和步骤1预处理后的改性石墨烯,加入球磨机中进行球磨;
步骤2-2、球磨结束后进行过滤、干燥,然后压制成生坯。
根据本发明一种优选的实施方式,在步骤2-1中,在研磨时, 采用WC-8%Co硬质合金球。
在进一步优选的实施方式中,在步骤2-1中,在研磨时,采 用3~8mm的WC-8%Co硬质合金球。
根据本发明一种优选的实施方式,在步骤2-1中,在研磨时, 采用无水乙醇为研磨介质。
在进一步优选的实施方式中,在步骤2-1中,在研磨时,无 水乙醇的加入量为100~500mL。
根据本发明一种优选的实施方式,在步骤2-1中,在研磨时, 球料重量比为(2~18):1,并以30~120r/min的速率研磨36~120h。
在进一步优选的实施方式中,在步骤2-1中,在研磨时,球 料重量比为(5~15):1,并以50~90r/min的速率研磨48~108h。
根据本发明一种优选的实施方式,在步骤2-2中,研磨结束 后金属陶瓷料浆经200~600目过滤,并于1~8Pa真空度、 70~140℃下进行干燥处理。
在进一步优选的实施方式中,在步骤2-2中,研磨结束后金 属陶瓷料浆经400目过滤,并于1~5Pa真空度、85~120℃下进行 干燥处理。
根据本发明一种优选的实施方式,在步骤2-2的干燥后,加 入SD橡胶成型剂,并再次进行干燥。
在进一步优选的实施方式中,SD橡胶成型剂的加入量为 7~16%。
其中,SD橡胶成型剂的加入量以原料组合物为100%计。 加入成型剂的作用是:粉末在压制过程中,内、外摩擦力的存 在会引起压制压力沿压坯方向降低,导致压坯密度分布不均, 在成型以前往混合料中加入某些有机物质作为成型剂,可以减 小压制过程中的摩擦力,改善粉末的流动性。并且,使用成型 剂可以促进粉末颗粒变形、降低单位压制压力、提高压坯强度、 改善密度分布的均匀性以及减少废品。同时,由于摩擦力的减 少,还可以减少粉末颗粒变形所需的净压力,提高模具寿命。
步骤3、对步骤2得到的生坯进行真空预烧结。
根据本发明一种优选的实施方式,步骤3包括以下子步骤:
步骤3-1、将生坯置于真空炉中,并以0.5~2.5℃/min(优选 0.8~2℃/min,更优选1~1.5℃/min)的速率升至400~700℃,保 温0.5~3h,然后于10~15Pa的真空下脱出成型剂;
其中,真空预烧结阶段开始升温速度比较慢,缓慢升温有 利于排除炉内的气体,提高真空度。
步骤3-2、以2~6℃/min(优选2.5~5℃/min,更优选3~4.5℃ /min)的升温速率升至1150~1250℃,保温0.5~2h,然后于5~10Pa 的真空下完成固相阶段烧结;
其中,固相阶段烧结中升温速率较快,由于在成型剂脱除 后,炉内气体较少,气氛相对稳定,升温速度加快,提高烧结 效率。
步骤3-3、以1~5℃/min(优选1.5~4℃/min,更优选2~3℃ /min)的升温速率升至1280~1350℃,保温0.2~1h,然后于1~5Pa 的真空下完成液相阶段烧结。
其中,在固相阶段烧结之后进行液相阶段烧结,在液相阶 段烧结中升温速率又变慢,这有利于材料均温热透,减小材料 内的热应力。
在本发明中,发明人经过大量实验发现,在真空预烧结阶 段,升温速率对材料最终的性能有至观影响。
步骤4、将步骤3真空预烧结后的金属陶瓷置于低压烧结炉 内,进行低压终烧结。
根据本发明一种优选的实施方式,所述低压终烧结如下进 行:以2~8℃/min的速率升至1350~1500℃,保温0.5~3h,然后 于5~15Pa的保护性气氛(例如氩气气氛)下进行低压终烧结。
在进一步优选的实施方式中,所述低压终烧结如下进行: 以3~6℃/min(例如4~5℃/min)的速率升至1400~1450℃,保温 1~2h,然后于5~10Pa的保护性气氛(例如氩气气氛)下进行低 压终烧结。
其中,低压终烧结阶段升温速率比较快,这样,在快速升 温的情况下可以防止晶粒长大,因为晶粒长大会使得材料硬度 降低。
本发明第三方面提供了一种根据本发明第二方面所述制备 方法得到的CVD涂层用Ti(C,N)基金属陶瓷基体材料。
本发明所具有的有益效果:
(1)本发明在Ti(C,N)基金属陶瓷中添加石墨烯,利用石 墨烯的碳单质属性提高Ti(C,N)基金属陶瓷作为CVD涂层基体 时的抗脱碳能力,并且,只加入少量的石墨烯即可提高Ti(C,N) 基金属陶瓷作为CVD涂层基体时的抗脱碳能力;
(2)本发明利用石墨烯超高的杨氏模量与本征强度提高基 体材料的横向断裂强度和硬度,阻碍涂层裂纹的扩展;
(3)本发明采用微米级别的原料即可得到性能优异的材 料,相较于纳米原料,大大降低了成本;
(4)本发明采用具有特定C/N比的Ti(C,N)粉末,得到低孔 隙、优异机械性能的材料;
(5)本发明所述方法在真空预烧结以及低压终烧结过程 中,严格控制升温速率,得到性能优异的金属陶瓷材料。
实施例
以下通过具体实施例进一步描述本发明。不过这些实施例 仅仅是范例性的,并不对本发明的保护范围构成任何限制。
实施例1
按重量百分比称取原料制备Ti(C,N)基金属陶瓷,其中平均 厚度为7nm、片层直径为20μm的石墨烯占0.75%,石墨烯微观 形貌如图1所示。粒度为1.17μm的Co占12%,粒度为2.65μm的 Ni占6%,粒度为1.01μm的WC占14%,粒度为1.75μm的Mo2C 占4%,其余是粒度为1.85μm的Ti(C0.7,N0.3)。
将石墨烯与无水乙醇配成质量百分比为0.011%的悬浊液 进行超声处理,聚山梨酯-80(化学式:C24H44O6)的加入量为 0.8vol%,采用NH3·H2O和HCOOH调PH值至4.5,超声分散时 间为40min,得到改性石墨烯。
将改性石墨烯及Co粉、Ni粉、WC粉、Mo2C粉、Ti(C0.7,N0.3)粉 一并加入滚筒式球磨机进行研磨,研磨球为Φ6mm的WC-8wt%Co硬 质合金球,球料重量比为10:1,研磨介质为无水乙醇,其加入量为300 mL,以56r/min速度下研磨72h。研磨结束后金属陶瓷料浆经400目过滤,在5Pa和90℃下真空干燥。干燥后按重量百分比为9%加入SD 橡胶成型剂;混合均匀后再次在5Pa和90℃下真空干燥,干燥后的混 合料经80目筛网过滤,在300~500MPa下压制成生坯。
将生坯在真空炉中,(1)升温速度为1.3℃/min,在560℃ 下保温1h,真空度为15Pa下脱除成型剂;(2)升温速度为3.6℃ /min,在烧结温度1210℃下保温1h,真空度为10Pa下完成固 相阶段烧结;(3)升温速度为2.5℃/min,在烧结温度为1310℃ 下保温35min,真空度5Pa下完成液相阶段烧结。
将预烧的金属陶瓷放在低压烧结炉中,低压终烧结升温速 度为4.2℃/min,在1440℃下保温60min,氩气压力为5MPa, 完成致密化烧结。
所制备的金属陶瓷硬度(Hv30)为1504MPa,横向断裂强度 为2218MPa。微观组织如图2中a所示,断口组织如图3中a所示。
实施例2
重复实施例1的制备过程,区别在于:石墨烯添加量为 0.5%。
所制备的金属陶瓷硬度(Hv30)为1396MPa,横向断裂强度 为2001MPa。微观组织如图2中b所示,断口组织如图3中b所示。
实施例3
重复实施例1的过程,区别在于,石墨烯添加量为1%。
所制备的金属陶瓷硬度(Hv30)为1449MPa,横向断裂强度 为1855MPa。微观组织如图2中c所示,断口组织如图3中c所示。
实施例4
重复实施例1的过程,区别在于:
A、在真空预烧结阶段:将生坯在真空炉中,(1)升温速 度为1.0℃/min,在560℃下保温1h,真空度为15Pa下脱除成型 剂;(2)升温速度为3.0℃/min,在烧结温度1210℃下保温1h, 真空度为10Pa下完成固相阶段烧结;(3)升温速度为2.0℃/min, 在烧结温度为1310℃下保温35min,真空度5Pa下完成液相阶 段烧结。
B、在低压终烧结阶段:将预烧的金属陶瓷放在低压烧结 炉中,低压终烧结升温速度为4.0℃/min,在1440℃下保温60 min,氩气压力为5MPa,完成致密化烧结。
所制备的金属陶瓷硬度(Hv30)为1458MPa,横向断裂强度 为2153MPa。
实施例5
重复实施例1的过程,区别在于:
A、在真空预烧结阶段:将生坯在真空炉中,(1)升温速 度为1.5℃/min,在560℃下保温1h,真空度为15Pa下脱除成型 剂;(2)升温速度为4.5℃/min,在烧结温度1210℃下保温1h, 真空度为10Pa下完成固相阶段烧结;(3)升温速度为3.0℃/min, 在烧结温度为1310℃下保温35min,真空度5Pa下完成液相阶 段烧结。
B、在低压终烧结阶段:将预烧的金属陶瓷放在低压烧结 炉中,低压终烧结升温速度为5.0℃/min,在1440℃下保温60 min,氩气压力为5MPa,完成致密化烧结。
所制备的金属陶瓷硬度(Hv30)为1533MPa,横向断裂强度 为2029MPa。
对比例
对比例1
重复实施例1的制备过程,区别在于:不添加石墨烯。
所制备的金属陶瓷硬度(Hv30)为1288MPa,横向断裂强度 为1536MPa。微观组织如图2中d所示,断口组织如图3中d所示。
与实施例1相比,黑芯相更多且尺寸更大,分布不均匀,断 口上微孔隙多,硬度与横向断裂强度都较低。说明添加适量的 石墨烯能有效改善金属陶瓷组织,提高硬度和横向断裂强度。
对比例2
重复实施例1的制备过程,区别在于:石墨烯添加量为 1.5%。
所制备的金属陶瓷硬度(Hv30)为1410MPa,横向断裂强度 为1767MPa。微观组织如图2中e所示,断口组织如图3中e所示。
与实施例1相比,组织不均匀,白芯相更粗大,断口上存在 灰黑色的碳集中区域,硬度与横向断裂强度都较低。说明,石 墨烯含量过高会导致碳聚集甚至渗碳现象出现,碳聚集不利于 硬度和强度。
对比例3
重复实施例1的制备过程,区别在于:石墨烯添加量为 0.25%。
所制备的金属陶瓷硬度(Hv30)为1387MPa,横向断裂强度 为1721MPa。微观组织如图2中e所示,断口组织如图3中e所示。
与实施例1相比,黑芯相更多且平均尺寸更大,断口上有少 量微孔隙,硬度与横向断裂强度都更低;与对比例1相比,硬度 和横向断裂强度有所提高。说明石墨烯添加量很少时,金属陶 瓷的性能可以提高,但是效果不够显著。
对比例4
重复实施例1的制备过程,区别在于:采用碳纳米管代替石 墨烯。
所制备的金属陶瓷硬度(Hv30)为1416MPa,横向断裂强度 为1784MPa。
对比例5
重复实施例1的制备过程,区别在于:在真空预烧结阶段:将生坯在真空炉中,(1)升温速度为3.5℃/min,在560℃下保温1h,真空度为15Pa下脱除成型剂;(2)升温速度为3.6℃/min,在烧结温度1210℃下保温1h,真空度为10Pa下完成固相阶段烧结;(3)升温速度为5.5℃/min,在烧结温度为1310℃下保温35min,真空度5Pa下完成液相阶段烧结。
所制备的金属陶瓷硬度(Hv30)为1402MPa,横向断裂强度 为1876MPa。
对比例6
重复实施例1的制备过程,区别在于:在低压预烧结阶段, 低压终烧结升温速度为1.5℃/min,在1440℃下保温60min,氩 气压力为5MPa,完成致密化烧结
所制备的金属陶瓷硬度(Hv30)为1319MPa。
对比例7
重复实施例1的制备过程,区别在于:采用Ti(C0.3,N0.7)替换 Ti(C0.7,N0.3)。
所制备的金属陶瓷孔隙度为A08B08,硬度(Hv30)为1037 MPa,横向断裂强度为694MPa。
对比例8
重复实施例1的制备过程,区别在于:采用Ti(C0.5,N0.5)替换 Ti(C0.7,N0.3)。
所制备的金属陶瓷孔隙度为A06B04,硬度(Hv30)为1152 MPa,横向断裂强度为1225MPa。
实验例
分别利用实施例1~3和对比例1~3得到的材料作为基体进 行中温化学气相沉积(CVD)涂层,涂层沉积温度为800℃,沉积 涂层为多层复合涂层,涂层成分从基体表面向外依次是TiCN、 Al2O3和TiN。通过划痕仪检测涂层结合力,加载速率为100 N/min。结果如表1所示。
表1涂层结合力检测结果
由表1可以看出:
(1)对比例1与实施例相比,其没有添加石墨烯的涂层金 属陶瓷,其涂层结合力最低,说明,石墨烯的加入可以提高涂 层的结合力。
(2)当石墨烯添加量较低(对比例3,0.25%)或较高(对 比例2,1.5%)时,也会影响涂层结合力。
(3)当石墨烯添加量为1wt%(实施例3)时,涂层结合性 能是最好的。也说明,在基体不出现碳集中这种组织不均匀问 题。
以上结合具体实施方式和范例性实例对本发明进行了详细 说明,不过这些说明并不能理解为对本发明的限制。本领域技 术人员理解,在不偏离本发明精神和范围的情况下,可以对本 发明技术方案及其实施方式进行多种等价替换、修饰或改进, 这些均落入本发明的范围内。本发明的保护范围以所附权利要 求为准。

Claims (10)

1.一种CVD涂层用Ti(C,N)基金属陶瓷基体材料,所述材料由一种组合物制成,所述组合物包括Ti(C,N)、Co、Ni、WC、Mo2C和石墨烯。
2.根据权利要求1所述的CVD涂层用Ti(C,N)基金属陶瓷基体材料,其特征在于,所述组合物中组分的重量百分配比如下:
3.根据权利要求1或2所述的CVD涂层用Ti(C,N)基金属陶瓷基体材料,其特征在于,所述组合物中组分的重量百分配比如下:
4.根据权利要求1至3之一所述的CVD涂层用Ti(C,N)基金属陶瓷基体材料,其特征在于,
在所述组合物中,Co的粒度为0.6~1.8μm,WC的粒度为0.6~1.8μm,Mo2C的粒度为0.8~3.5μm,Ti(C,N)的粒度为0.8~4.0μm;和/或
所述石墨烯为改性石墨烯,优选为聚山梨酯-80改性石墨烯;和/或
在Ti(C,N)粉末中,C原子与N原子的摩尔比为(6~8):3,优选为7:3。
5.权利要求1至4之一所述CVD涂层用Ti(C,N)基金属陶瓷基体材料的制备方法,其特征在于,所述方法包括以下步骤:
步骤1、石墨烯的预处理,得到改性石墨烯;
步骤2、生坯的压制;
步骤3、对步骤2得到的生坯进行真空预烧结;
步骤4、将步骤3真空预烧结后的金属陶瓷置于低压烧结炉内,进行低压终烧结。
6.根据权利要求5所述的制备方法,其特征在于,步骤1包括以下子步骤:
步骤1-1、将石墨烯加入有机溶剂中,得到石墨烯悬浊液;
步骤1-2、向石墨烯悬浊液中加入聚山梨酯-80;
步骤1-3、调pH值,进行超声分散,得到改性石墨烯。
7.根据权利要求5或6所述的制备方法,其特征在于,步骤2包括以下子步骤:
步骤2-1、按重量百分比称取Co、Ni、WC、Mo2C、Ti(C,N)粉和步骤1预处理后的改性石墨烯,加入球磨机中进行球磨;
步骤2-2、球磨结束后进行过滤、干燥,然后压制成生坯;
优选地,在步骤2-2的干燥后,加入SD橡胶成型剂,并再次进行干燥;
更优选地,SD橡胶成型剂的加入量为7~16%。
8.根据权利要求5至7之一所述的制备方法,其特征在于,步骤3包括以下子步骤:
步骤3-1、将生坯置于真空炉中,并以0.5~2.5℃/min(优选0.8~2℃/min,更优选1~1.5℃/min)的速率升至400~700℃,保温0.5~3h,然后于10~15Pa的真空下脱出成型剂;
步骤3-2、以2~6℃/min(优选2.5~5℃/min,更优选3~4.5℃/min)的升温速率升至1150~1250℃,保温0.5~2h,然后于5~10Pa的真空下完成固相阶段烧结;
步骤3-3、以1~5℃/min(优选1.5~4℃/min,更优选2~3℃/min)的升温速率升至1280~1350℃,保温0.2~1h,然后于1~5Pa的真空下完成液相阶段烧结。
9.根据权利要求5至8之一所述的制备方法,其特征在于,所述低压终烧结如下进行:以2~8℃/min的速率升至1350~1500℃,保温0.5~3h,然后于5~15Pa的保护性气氛(例如氩气气氛)下进行低压终烧结;
优选地,以3~6℃/min(例如4~5℃/min)的速率升至1400~1450℃,保温1~2h,然后于5~10Pa的保护性气氛(例如氩气气氛)下进行低压终烧结。
10.根据权利要求1至4之一所述的CVD涂层用Ti(C,N)基金属陶瓷基体材料,该材料由权利要求5至9之一所述的方法进行制备或制得。
CN201810462009.2A 2018-05-15 2018-05-15 一种CVD涂层用Ti(C,N)基金属陶瓷基体材料及其制备方法 Expired - Fee Related CN108588533B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810462009.2A CN108588533B (zh) 2018-05-15 2018-05-15 一种CVD涂层用Ti(C,N)基金属陶瓷基体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810462009.2A CN108588533B (zh) 2018-05-15 2018-05-15 一种CVD涂层用Ti(C,N)基金属陶瓷基体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108588533A true CN108588533A (zh) 2018-09-28
CN108588533B CN108588533B (zh) 2020-06-02

Family

ID=63630989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810462009.2A Expired - Fee Related CN108588533B (zh) 2018-05-15 2018-05-15 一种CVD涂层用Ti(C,N)基金属陶瓷基体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108588533B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182874A (zh) * 2018-10-24 2019-01-11 四川大学 一种添加石墨烯的Ti(C,N)基金属陶瓷的制备方法
CN111850373A (zh) * 2020-07-31 2020-10-30 中南大学 一种高熵环相结构的Ti(C,N)基金属陶瓷及其制备方法
CN115584409A (zh) * 2022-06-29 2023-01-10 苏州新锐合金工具股份有限公司 一种石墨烯增强增韧钛基金属陶瓷的制备方法
CN117464008A (zh) * 2023-12-25 2024-01-30 湘潭大学 一种残余应力增韧金属陶瓷刀具的加工系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176773A (ja) * 1995-12-26 1997-07-08 Nachi Fujikoshi Corp サーメット合金製ベーン
CN107099722A (zh) * 2017-05-02 2017-08-29 四川大学 基于碳迁移的表面自润滑Ti(C,N)基金属陶瓷制备方法
CN107099721A (zh) * 2017-05-02 2017-08-29 四川大学 基于碳化物形成元素促进碳迁移的金属陶瓷耐磨材料制备方法
CN107142407A (zh) * 2017-05-02 2017-09-08 四川大学 一种表面自润滑Ti(C,N)基金属陶瓷耐磨材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176773A (ja) * 1995-12-26 1997-07-08 Nachi Fujikoshi Corp サーメット合金製ベーン
CN107099722A (zh) * 2017-05-02 2017-08-29 四川大学 基于碳迁移的表面自润滑Ti(C,N)基金属陶瓷制备方法
CN107099721A (zh) * 2017-05-02 2017-08-29 四川大学 基于碳化物形成元素促进碳迁移的金属陶瓷耐磨材料制备方法
CN107142407A (zh) * 2017-05-02 2017-09-08 四川大学 一种表面自润滑Ti(C,N)基金属陶瓷耐磨材料的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182874A (zh) * 2018-10-24 2019-01-11 四川大学 一种添加石墨烯的Ti(C,N)基金属陶瓷的制备方法
CN111850373A (zh) * 2020-07-31 2020-10-30 中南大学 一种高熵环相结构的Ti(C,N)基金属陶瓷及其制备方法
CN115584409A (zh) * 2022-06-29 2023-01-10 苏州新锐合金工具股份有限公司 一种石墨烯增强增韧钛基金属陶瓷的制备方法
CN115584409B (zh) * 2022-06-29 2023-06-16 苏州新锐合金工具股份有限公司 一种石墨烯增强增韧钛基金属陶瓷的制备方法
CN117464008A (zh) * 2023-12-25 2024-01-30 湘潭大学 一种残余应力增韧金属陶瓷刀具的加工系统
CN117464008B (zh) * 2023-12-25 2024-03-01 湘潭大学 一种残余应力增韧金属陶瓷刀具的加工系统

Also Published As

Publication number Publication date
CN108588533B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
CN108588533A (zh) 一种CVD涂层用Ti(C,N)基金属陶瓷基体材料及其制备方法
JP7164906B2 (ja) 金属材料又は金属複合材料の調製方法
CN109161711B (zh) 一种表面具有双梯度层结构的超细晶梯度硬质合金及其制备方法
CN105671551B (zh) 金刚石复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
WO2015147249A1 (ja) 立方晶窒化硼素焼結体切削工具
CN110846547A (zh) 一种高熵合金结合的碳化钨硬质合金及其制备方法
WO2015192815A1 (zh) 一种碳化钨-立方氮化硼复合材料及其制备方法
JPH1177445A (ja) 硬質被覆層がすぐれた密着性を有する表面被覆超硬合金製エンドミル
CN113134612B (zh) 一种制备超细高纯高固溶度钨基合金粉的方法
CN104630589B (zh) 一种碳化钨包覆的复合硬质合金材料及其制备方法
WO2022011951A1 (zh) 钨掺杂钛基复合多孔材料及其制备方法
CN112247142A (zh) 一种具有核壳结构的双硬质相双粘结相金属碳化物陶瓷粉末及其制备方法
CN114438361B (zh) 表面细晶功能梯度无钴钛基金属陶瓷的制备方法
CN109848406B (zh) 钛基复合材料的粉末冶金制备方法及制品
CN109053191B (zh) 一种无粘结相碳氮化钛基金属陶瓷及其制备方法
JP5851826B2 (ja) 高温下での耐塑性変形性に優れる切削工具用wc基超硬合金および被覆切削工具ならびにこれらの製造方法
CN108165791B (zh) 一种无粘结相超细碳化钨硬质合金的制备方法
JP2007084382A (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体、並びにそれらからなる焼入鋼用切削工具
CN109136722A (zh) TiAl-Ti3AlC2自润滑复合材料及其制备方法
JP2013129915A (ja) 超硬合金体およびその応用
KR101640644B1 (ko) 내열충격성이 향상된 Ti계 소결합금 및 이를 이용한 절삭공구
CN112239360A (zh) 一种氧化硼与氧化镁及其反应产物协同增韧的碳化钨复合材料及其制备
CN112695238A (zh) 一种钒钛复合粘结相硬质合金及其制备方法
JP2011088253A (ja) 耐熱塑性変形性に優れたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
CN111663068A (zh) 一种近等粒径HfC改性WC-Co复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200602