CN108574022A - 一种铝镓氮基日盲紫外探测器及其制备方法 - Google Patents

一种铝镓氮基日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN108574022A
CN108574022A CN201710148802.0A CN201710148802A CN108574022A CN 108574022 A CN108574022 A CN 108574022A CN 201710148802 A CN201710148802 A CN 201710148802A CN 108574022 A CN108574022 A CN 108574022A
Authority
CN
China
Prior art keywords
gallium nitride
aluminum gallium
ultraviolet detector
nitride base
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710148802.0A
Other languages
English (en)
Inventor
孙月静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710148802.0A priority Critical patent/CN108574022A/zh
Publication of CN108574022A publication Critical patent/CN108574022A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了紫外探测器技术领域的一种铝镓氮基日盲紫外探测器,包括衬底,所述衬底的顶部设置有缓冲层,所述缓冲层的顶部设置有吸收层,所述吸收层的顶部设置有电极,所述衬底采用蓝宝石材料制成,该铝镓氮基日盲紫外探测器的制备方法包括以下步骤:S1:清洁衬底;S2:制备缓冲层;S3:制备吸收层;S4:冲洗;S5:制备沉积层;S6:蚀刻;S7:制备电极;S8:组合、安装,该发明提出的一种铝镓氮基日盲紫外探测器及其制备方法,工艺流程简单,成本低廉,能够实现日盲探测。

Description

一种铝镓氮基日盲紫外探测器及其制备方法
技术领域
本发明涉及紫外探测器技术领域,具体为一种铝镓氮基日盲紫外探测器及其制备方法。
背景技术
紫外探测技术是继红外和激光探测技术之后发展起来的又一重要光电探测技术,已成功应用于紫外光通信、紫外告警、紫外侦察及紫外制导等领域。在军事上,紫外探测技术可用于导弹制导、导弹预警、紫外通讯和生化分析等领域;在民用领域中,可用于火焰探测、生物医药分析、臭氧检测、紫外树脂固化、燃烧工程等领域,GaN三元合金系AlGaN随Al组分的变化,禁带宽度可以从GaN的3.4eV连续变化到AlN的6.2eV,对应的截止波长可以连续地从365nm变化到200nm.,覆盖了地球上大气臭氧层吸收主要窗口200~280nm,是制作太阳盲区紫外探测器的理想材料之一。现有的铝镓氮基日盲紫外探测器制作流程复杂,成本较为昂贵,无法达到日盲要求,为此,我们提出一种铝镓氮基日盲紫外探测器及其制备方法。
发明内容
本发明的目的在于提供一种铝镓氮基日盲紫外探测器及其制备方法,以解决上述背景技术中提出的现有的铝镓氮基日盲紫外探测器制作流程复杂,成本较为昂贵,无法达到日盲要求的问题。
为实现上述目的,本发明提供如下技术方案:一种铝镓氮基日盲紫外探测器,包括衬底,所述衬底的顶部设置有缓冲层,所述缓冲层的顶部设置有吸收层,所述吸收层的顶部设置有电极。
优选的,所述衬底采用蓝宝石材料制成。
优选的,该铝镓氮基日盲紫外探测器的制备方法包括以下步骤:
S1:清洁衬底:将衬底依次使用丙酮和乙醇置于超声波震荡器内震荡5分钟,采用氮气气枪吹干;
S2:制备缓冲层:将步骤S1中得到的清洁的衬底通过氨气和铝源,采用化学气相沉淀法制备AlN缓冲层;
S3:制备吸收层:将步骤S2中得到的AlN缓冲层同时通入镓源和铝源,继续通入氨气,进行AlGaN吸收层的制备,且AlGaN的生长时间为1小时;
S4:冲洗:AlGaN吸收层生长完成后采用丙酮和乙醇依次清洗杂尘,再采用纯水进行清洗,最后采用采用氮气气枪吹干;
S5:制备沉积层:在AlGaN吸收层的顶部通过电子枪蒸镀一层镍薄膜,采用丙酮和乙醇依次清洗杂尘,再采用纯水进行清洗,最后采用采用氮气气枪吹干;
S6:蚀刻:先采用以硫酸为主的溶液进行镍薄膜的蚀刻,再采用高密度电浆蚀刻系统进行干式蚀刻,蚀刻出电极图形,去除镍薄膜;
S7:制备电极:通过光刻形成电极图案,再采用电子束沉积生长电极,然后再经过退火处理;
S8:组合、安装:进行组合和修整,封装在紫外探测器的管壳上。
优选的,所述步骤S3中的镓源和铝源分别为三甲基镓和三甲基铝。
优选的,所述步骤S5中镍薄膜的厚度为35nm,所述S6中电极图形深度为100nm。
优选的,所述步骤S7中的退火温度为700℃,退火时间为1分钟。
与现有技术相比,本发明的有益效果是:该发明提出的一种铝镓氮基日盲紫外探测器及其制备方法,工艺流程简单,成本低廉,能够实现日盲探测。
附图说明
图1为本发明结构示意图;
图2为本发明制备方法流程图。
图中:1衬底、2缓冲层、3吸收层、4电极。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-2,本发明提供一种技术方案:一种铝镓氮基日盲紫外探测器,包括衬底1,所述衬底1的顶部设置有缓冲层2,所述缓冲层2的顶部设置有吸收层3,所述吸收层3的顶部设置有电极4。
其中,所述衬底1采用蓝宝石材料制成,蓝宝石衬底的生产技术成熟、器件质量较好,稳定性很好,能够运用在高温生长过程中,机械强度高,易于处理和清洗。
该铝镓氮基日盲紫外探测器的制备方法包括以下步骤:
S1:清洁衬底1:将衬底1依次使用丙酮和乙醇置于超声波震荡器内震荡5分钟,采用氮气气枪吹干;
S2:制备缓冲层2:将步骤S1中得到的清洁的衬底通过氨气和铝源,采用化学气相沉淀法制备AlN缓冲层;
S3:制备吸收层3:将步骤S2中得到的AlN缓冲层同时通入镓源和铝源,继续通入氨气,进行AlGaN吸收层的制备,且AlGaN的生长时间为1小时;
S4:冲洗:AlGaN吸收层生长完成后采用丙酮和乙醇依次清洗杂尘,再采用纯水进行清洗,最后采用采用氮气气枪吹干;
S5:制备沉积层:在AlGaN吸收层的顶部通过电子枪蒸镀一层镍薄膜,采用丙酮和乙醇依次清洗杂尘,再采用纯水进行清洗,最后采用采用氮气气枪吹干;
S6:蚀刻:先采用以硫酸为主的溶液进行镍薄膜的蚀刻,再采用高密度电浆蚀刻系统进行干式蚀刻,蚀刻出电极图形,去除镍薄膜;
S7:制备电极4:通过光刻形成电极图案,再采用电子束沉积生长电极,然后再经过退火处理;
S8:组合、安装:进行组合和修整,封装在紫外探测器的管壳上。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种铝镓氮基日盲紫外探测器,包括衬底(1),其特征在于:所述衬底(1)的顶部设置有缓冲层(2),所述缓冲层(2)的顶部设置有吸收层(3),所述吸收层(3)的顶部设置有电极(4)。
2.根据权利要求1所述的一种铝镓氮基日盲紫外探测器,其特征在于:所述衬底(1)采用蓝宝石材料制成。
3.一种铝镓氮基日盲紫外探测器的制备方法,其特征在于:该铝镓氮基日盲紫外探测器的制备方法包括以下步骤:
S1:清洁衬底(1):将衬底(1)依次使用丙酮和乙醇置于超声波震荡器内震荡5分钟,采用氮气气枪吹干;
S2:制备缓冲层(2):将步骤S1中得到的清洁的衬底通过氨气和铝源,采用化学气相沉淀法制备AlN缓冲层;
S3:制备吸收层(3):将步骤S2中得到的AlN缓冲层同时通入镓源和铝源,继续通入氨气,进行AlGaN吸收层的制备,且AlGaN的生长时间为1小时;
S4:冲洗:AlGaN吸收层生长完成后采用丙酮和乙醇依次清洗杂尘,再采用纯水进行清洗,最后采用采用氮气气枪吹干;
S5:制备沉积层:在AlGaN吸收层的顶部通过电子枪蒸镀一层镍薄膜,采用丙酮和乙醇依次清洗杂尘,再采用纯水进行清洗,最后采用采用氮气气枪吹干;
S6:蚀刻:先采用以硫酸为主的溶液进行镍薄膜的蚀刻,再采用高密度电浆蚀刻系统进行干式蚀刻,蚀刻出电极图形,去除镍薄膜;
S7:制备电极(4):通过光刻形成电极图案,再采用电子束沉积生长电极,然后再经过退火处理;
S8:组合、安装:进行组合和修整,封装在紫外探测器的管壳上。
4.根据权利要求3所述的一种铝镓氮基日盲紫外探测器的制备方法,其特征在于:所述步骤S3中的镓源和铝源分别为三甲基镓和三甲基铝。
5.根据权利要求3所述的一种铝镓氮基日盲紫外探测器的制备方法,其特征在于:所述步骤S5中镍薄膜的厚度为35nm,所述S6中电极图形深度为100nm。
6.根据权利要求3所述的一种铝镓氮基日盲紫外探测器的制备方法,其特征在于:所述步骤S7中的退火温度为700℃,退火时间为1分钟。
CN201710148802.0A 2017-03-14 2017-03-14 一种铝镓氮基日盲紫外探测器及其制备方法 Pending CN108574022A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710148802.0A CN108574022A (zh) 2017-03-14 2017-03-14 一种铝镓氮基日盲紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710148802.0A CN108574022A (zh) 2017-03-14 2017-03-14 一种铝镓氮基日盲紫外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN108574022A true CN108574022A (zh) 2018-09-25

Family

ID=63577423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710148802.0A Pending CN108574022A (zh) 2017-03-14 2017-03-14 一种铝镓氮基日盲紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN108574022A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494275A (zh) * 2018-11-22 2019-03-19 中国科学院长春光学精密机械与物理研究所 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1877868A (zh) * 2005-06-09 2006-12-13 中国科学院半导体研究所 减小表面态影响的氮化镓基msm结构紫外探测器
CN102361046A (zh) * 2011-09-30 2012-02-22 天津大学 AlGaN基MSM结构日盲型紫外探测器及其制备方法
CN102496648A (zh) * 2011-11-28 2012-06-13 南京大学 内置负反馈金属-半导体-金属结构紫外光单光子探测器
CN103247709A (zh) * 2013-05-23 2013-08-14 中国科学院长春光学精密机械与物理研究所 增强AlGaN基深紫外探测器响应度的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1877868A (zh) * 2005-06-09 2006-12-13 中国科学院半导体研究所 减小表面态影响的氮化镓基msm结构紫外探测器
CN102361046A (zh) * 2011-09-30 2012-02-22 天津大学 AlGaN基MSM结构日盲型紫外探测器及其制备方法
CN102496648A (zh) * 2011-11-28 2012-06-13 南京大学 内置负反馈金属-半导体-金属结构紫外光单光子探测器
CN103247709A (zh) * 2013-05-23 2013-08-14 中国科学院长春光学精密机械与物理研究所 增强AlGaN基深紫外探测器响应度的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494275A (zh) * 2018-11-22 2019-03-19 中国科学院长春光学精密机械与物理研究所 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法

Similar Documents

Publication Publication Date Title
US9330910B2 (en) Method of forming an array of nanostructures
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN102361046B (zh) AlGaN基MSM结构日盲型紫外探测器及其制备方法
CN100594622C (zh) 超薄硅基粒子探测器及其制备方法
CN108231924A (zh) 生长在r面蓝宝石衬底上的非极性AlGaN基MSM型紫外探测器及其制备方法
CN104038177A (zh) 用于紫外探测的薄膜体声波谐振器及其制备方法
CN103606514B (zh) 基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法
CN108878547B (zh) 基于纳米孔阵式超短周期超晶格的深紫外msm光电探测器
CN110416334A (zh) 一种基于异质外延Ga2O3薄膜深紫外光电探测器的制备方法
JP2012031000A (ja) 配列化ダイヤモンド膜およびその製造方法
CN104152856A (zh) 一种磁控溅射法制备Bi2Se3薄膜的方法
CN108574022A (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
CN100409460C (zh) 紫外光探测器的制备方法
CN110364582A (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器及其制备方法
CN102867886B (zh) 应用双色红外材料制备探测器芯片的方法及系统
CN102031560A (zh) 制备大尺寸GaN自支撑衬底的方法
CN109244173A (zh) 一种自供电双波段紫外光电探测器件及其制备方法
CN107230735B (zh) 具有缓冲层的CdZnTe薄膜光电探测器的制备方法
CN102721658A (zh) 一种热释电光谱探测器的制备方法
CN111370508A (zh) 基于bn的光电导型同质集成紫外/红外双色探测器及其制备方法
CN105591026A (zh) 一种高灵敏度霍尔元件的制备方法
CN112420871A (zh) 台面型铟镓砷探测器芯片及其制备方法
CN109326681B (zh) 一种双波段紫外光电探测器件及其制备方法
TW201443255A (zh) 製作氮化鎵之方法
JPS60175411A (ja) 半導体薄膜の製造方法及びその製造装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180925